文档库 最新最全的文档下载
当前位置:文档库 › 数字图像实验报告一图像的加噪处理与几何变换

数字图像实验报告一图像的加噪处理与几何变换

数字图像实验报告一图像的加噪处理与几何变换
数字图像实验报告一图像的加噪处理与几何变换

实验一图像的加噪处理与几何变换

一、实验目的

1.给Lena图像加高斯噪声,椒盐噪声,均匀分布噪声,观察图像;用平滑滤波器(均值滤波器,中值滤波器)分析效果。

2.对lena图像作裁剪、放大、缩小、旋转、平移等几何变换。

二、实验内容

1.采用中值滤波、均值滤波对受椒盐噪声干扰的图像滤波;

2.采用中值滤波、均值滤波对受高斯噪声干扰的图像滤波;

3.采用中值滤波、均值滤波对受均匀噪声干扰的图像滤波;

4.将图像lena.bmp裁剪成200X200大小;

5.制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色填充;

6.利用剪切图像函数制作动画;

7.将图像分别放大1.5倍和缩小0.8倍,插值方法使用双线性插值法,分别显示图像;

8.将图像水平镜像,再顺时针旋转45度,显示旋转后的图;

9.将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果。

三、实验步骤

(一)采用中值滤波,均值滤波对受椒盐噪声干扰的图像滤波

a = imread('E:\实验报告\数字图像处理实验报告\lena.jpg');%读取图像

b = rgb2gray(a); %转化为灰度图像

%给图像加入噪声

I = imnoise(b,'salt & pepper')%椒盐噪声

%扩展矩阵,生成待处理矩阵

n = 3;%模板阶数

m = (n-1)/2;

[p,q] = size(I);

PI = zeros(p+2*m,q+2*m);%待处理矩阵

for i = 1:p

for j = 1:q

PI(i+m,j+m) = I(i,j);

end

end

for i = 1:p

for ii = 1:m

PI(i+m,ii) = I(i,1);

PI(i+m,q+m+ii) = I(i,q);

end

end

for j = 1:q

for jj = 1:m

PI(jj,j+m) = I(1,j);

PI(p+m+jj,j+m) = I(p,j);

end

end

for ii = 1:m

for jj = 1:m

PI(ii,jj) = I(1,1);

PI(q+m+ii,jj) = I(p,1);

PI(ii,p+m+jj) = I(1,q);

PI(q+m+ii,p+m+jj) = I(p,q);

end

end

%中值滤波&均值滤波

derta = zeros(n,n);%n阶模板矩阵

PImid = PI;

PImean = PI;

for i = m+1:p+m

for j = m+1:q+m

for k = 1:m

for h = 1:m

derta(k,h) = PI(i+k-m-1,j+h-m-1);

derta(k,m+1) = PI(i+k-m-1,j);

derta(k,n-h+1) = PI(i+k-m-1,j+m+1-h); derta(m+1,h) = PI(i,j+h-m-1);

derta(m+1,m+1) = PI(i,j);

derta(m+1,n-h+1) = PI(i,j+m+1-h);

derta(n-k+1,h) = PI(i+m+1-k,j+h-m-1);

derta(n-k+1,m+1) = PI(i+m+1-k,j);

derta(n-k+1,n-h+1) = PI(i+m+1-k,j+m+1-h);

PImid(i,j) = median(median(derta));%中值滤波

PImean(i,j) = round(mean(mean(derta)));%均值滤波end

end

end

end

%输出结果

Imid = zeros(p,q);

Imean = zeros(p,q);

for i = 1:p

for j = 1:q

Imid(i,j) = PImid(i+m,j+m);

Imean(i,j) = PImean(i+m,j+m);

end

end

%显示结果

figure()

subplot(2,2,1);

imshow(b); title('原图像');

subplot(2,2,2);

imshow(I);title('加入椒盐噪声的图像');

subplot(2,2,3);

imshow(Imid,[0,255]);title('中值滤波处理后的图像'); subplot(2,2,4);

imshow(Imean,[0,255]);title('均值滤波处理后的图像');

生成图像如下:

由图可见,对于椒盐噪声,中值滤波效果更好。

(二)采用中值滤波,均值滤波对受高斯噪声干扰的图像滤波

a = imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');%读取图像

b = rgb2gray(a); %转化为灰度图像

%给图像加入噪声

I=imnoise(b,'gaussian' , 0.02);%高斯噪声

%扩展矩阵,生成待处理矩阵

n = 3;%模板阶数

m = (n-1)/2;

[p,q] = size(I);

PI = zeros(p+2*m,q+2*m);%待处理矩阵

for i = 1:p

for j = 1:q

PI(i+m,j+m) = I(i,j);

end

end

for i = 1:p

for ii = 1:m

PI(i+m,ii) = I(i,1);

PI(i+m,q+m+ii) = I(i,q);

end

end

for j = 1:q

for jj = 1:m

PI(jj,j+m) = I(1,j);

PI(p+m+jj,j+m) = I(p,j);

end

end

for ii = 1:m

for jj = 1:m

PI(ii,jj) = I(1,1);

PI(q+m+ii,jj) = I(p,1);

PI(ii,p+m+jj) = I(1,q);

PI(q+m+ii,p+m+jj) = I(p,q);

end

end

%中值滤波&均值滤波

derta = zeros(n,n);%n阶模板矩阵

PImid = PI;

PImean = PI;

for i = m+1:p+m

for j = m+1:q+m

for k = 1:m

for h = 1:m

derta(k,h) = PI(i+k-m-1,j+h-m-1);

derta(k,m+1) = PI(i+k-m-1,j);

derta(k,n-h+1) = PI(i+k-m-1,j+m+1-h);

derta(m+1,h) = PI(i,j+h-m-1);

derta(m+1,m+1) = PI(i,j);

derta(m+1,n-h+1) = PI(i,j+m+1-h);

derta(n-k+1,h) = PI(i+m+1-k,j+h-m-1);

derta(n-k+1,m+1) = PI(i+m+1-k,j);

derta(n-k+1,n-h+1) = PI(i+m+1-k,j+m+1-h);

PImid(i,j) = median(median(derta));%中值滤波

PImean(i,j) = round(mean(mean(derta)));%均值滤波end

end

end

end

%输出结果

Imid = zeros(p,q);

Imean = zeros(p,q);

for i = 1:p

for j = 1:q

Imid(i,j) = PImid(i+m,j+m);

Imean(i,j) = PImean(i+m,j+m);

end

end

%显示结果

figure()

subplot(2,2,1);

imshow(b); title('原图像');

subplot(2,2,2);

imshow(I);title('加入高斯噪声的图像');

subplot(2,2,3);

imshow(Imid,[0,255]);title('中值滤波处理后的图像'); subplot(2,2,4);

imshow(Imean,[0,255]);title('均值滤波处理后的图像');

生成图像如下:

由图可见,对于高斯噪声,均值滤波效果更好。

(三)采用中值滤波,均值滤波对受均匀噪声干扰的图像滤波

I=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

subplot(2,2,1);

imshow(I)

title('原图像');

J=imnoise(I,'poisson');%加均匀噪声

b = rgb2gray(J)

subplot(2,2,2);

imshow(J)

title('加均匀噪声');

K4=medfilt2(b);

subplot(2,2,3);

imshow(K4,[]);

title('中值滤波图像');

subplot(2,2,4);

w2=fspecial('average',[5,5]);

h=imfilter(J,w2,'replicate');

imshow(h);

title('均值滤波图像');

生成图像如下:

由图可见,两种滤波方式效果相近,但中值滤波稍好一些。(四)将图像lena.jpg裁剪成200X200大小

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

figure;

imshow(f);

title('原图');

f2=imcrop(f,[50,50,250,250]);

figure;

imshow(uint8(f2));

title('裁剪后');

(五)制作动画,将一幅图像逐渐向左上角平移移出图像区域,空白的地方用白色填充

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

[m,n,x]=size(f);

f=double(f);

for i=1:3

mx=10*i;

my=10*i;

g=zeros(m,n,x)+255;

%g(mx+1:m,my+1:n,1:x)=f(1:m-mx,1:n-my ,1:x);

g(1:m-mx,1:n-my ,1:x)=f(mx+1:m,my+1:n,1:x);

subplot(3,1,i);

imshow(uint8(g));

end

(六)利用剪切图像函数制作动画

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg '); [m,n]=size(f);

for i=50:10:75

m=i;

n=i;

f2=imcrop(f,[n,n,m,m]);

figure;

imshow(uint8(f2));

end

生成图像如下:

(七)将图像分别放大1.5倍和缩小0.8倍,插值方法使用双线性插值法,分别显示图像

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

figure;

imshow(f);

title('原图');

f=double(f);

f1=imresize(f,1.5,'bilinear');

figure;

imshow(uint8(f1));

title('放大1.5倍');

f2=imresize(f,0.8,'bilinear');

figure;

imshow(uint8(f2));

title('缩小0.8倍');

生成图像如下:

(八)将图像水平镜像,再顺时针旋转45度,显示旋转后的图

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

subplot(131);

imshow(f);

title('原图');

[m,n,x]=size(f);

g=zeros(m,n,x);

for i=1:m

for j=1:n

for k=1:x

g(i,j,k)=f(i,n-j+1,k);

end

end

end

subplot(132);

imshow(uint8(g));

title('水平镜像');

f2=imrotate(g,-45,'crop');

subplot(133);

imshow(uint8(f2));

title('顺时针旋转45度');

生成图像如下:

(九)将图像分别进行水平方向30度错切,垂直方向45度错切,分别显示结果

f=imread('E:\实验报告\数字图像处理实验报告\lena.jpg ');

subplot(131);

imshow(f);

title('原图');

h=size(f);

f1=zeros(h(1)+round(h(2)*tan(pi/6)),h(2),h(3));

for m=1:h(1)

for n=1:h(2)

f1(m+round(n*tan(pi/6)),n,1:h(3))=f(m,n,1:h(3));

end

end

subplot(132);

imshow(uint8(f1));

title('水平30度');

f2=zeros(h(1),h(2)+round(h(2)*tan(pi/4)),h(3));

for m=1:h(1)

for n=1:h(2)

f2(m,n+round(m*tan(pi/4)),1:h(3))=f(m,n,1:h(3));

end

end

subplot(133);

imshow(uint8(f2));

title('垂直45度');

生成图像如下:

四、实验总结

这次实验主要是对图像高斯噪声、椒盐噪声的滤波效果比较以及对图像的各种几何变换。通过实验,我发现对于高斯噪声,均值滤波效果更好;而对于椒盐噪声,中值滤波效果更好。不同的滤波器适用于不同的噪声滤除场合,在实际过程中一定要随机应变,才能得到较好的图像效果。

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

数字图像处理实验四图像几何变换

课程名称数字图像处理与分析 实验序号实验4 实验项目图像几何变换 实验地点 实验学时实验类型 指导教师实验员 专业班级 学号姓名 2017年9月25日

成绩: 教 师 评 语

三、实验软硬件环境 装有MATLAB软件的电脑 四、实验过程(实验步骤、记录、数据、分析) 1、图片比例缩放 代码: I=imread('11.jpg'); J=imresize(I,1.25); J2=imresize(I,1.25,'bicubic'); imshow(I); figure,imshow(J); figure,imshow(J2); Y=imresize(I,[100150],'bilinear');%Y=imresize(I,[mrows ncols],method)---返回一个指定行列的图像。若行列比与原图不一致,输出图像将发生变形。 figure,imshow(Y) %nearest,bilinear,bicubic为最近邻插值、双线性插值、双三次插值方法。默认为nearest。 运行结果: 分析:由实验结果可知,实现了图片放大和缩小的效果。 2、图像旋转 代码:

J=imrotate(I,32,'bilinear');%J=imrotate(I,angle,method,’crop’)------crop用于剪切旋转后增大的图像部分,返回和原图大小一样的图象。 imshow(I); figure,imshow(J) 运行结果: 分析:由实验结果可知,实现了图片旋转的效果 3、图像剪切 代码:

J=imcrop(I); figure(1),imshow(I);title('yuantu'); figure(2),imshow(J);title('croptu') J1=imcrop(I,[604010090]);%对指定区域进行剪切操作figure(3),imshow(J1);title('croptu2'); 运行结果: 运行代码后,出现如下界面,选中要裁剪的区域,双击被选中的区域 出现以下界面:

几何画板实验报告

一.实验内容:画出一个正方形 二.实验目的:学会使用变换中的旋转按钮 三.实验步骤: ①画出一条线段; ②选中线段左端点双击,标记中心; ③选中线段和另一端点,选择变换中的旋转按钮,并设置旋转角度为90°,然后在依次做出另外两条边。 四.实验结果 实验二 一实验内容:构造三角形的中线 二实验目的:学会构造线段中点

三实验步骤: ①单击线段工具,构造出一个三角形ABC; ②选中线段AB,执行构造-中点命令,构造出AB中点D ③单击线段工具,连接CD. 四实验结果 实验三 一实验内容:构造三角形的外心 二实验目的:学会构造线段的中垂线 三实验步骤: ①单击线段工具,构造出一个三角形ABC; ②选中线段AB,执行构造-中点命令,构造出AB中点D,同时选中AB和D,执行构造-垂线

③在AC上重复②,两垂线交点即为外心 四实验结果 一实验内容:绘制三角形的内心 二实验目的:学会构造已知角的平分线 三实验步骤: ①画出任意三点A,B,C,选中A,B.C三点,执行构造-线段,构造出三角形ABC; ②依次选中B,A,C,执行构造-角平分线,构造出BAC ∠的角平分线i; ③按照②的步骤做出ABC ∠的角平分线j; ④选中i,j,执行构造-中点命令,构造出三角形内心D; ⑤选中i,j,执行显示-隐藏平分线,隐藏平分线。 四实验结果:

实验五 一实验内容:绘制函数x =的函数图像 y3 二实验目的:绘图菜单的使用方法 三实验步骤: ①执行绘图-定义坐标系命令,新建坐标系,并将原点坐标的标签设为O; ②执行数据-新建函数命令,新建函数x =; y3 ③选中函数,执行绘图-绘制函数命令,画出x =的函数图像. y3 四实验结果

数字图像处理实验报告.

数字图像处理实验报告

实验一 数字图像的基本操作和灰度变换 一、 实验目的 1. 了解数字图像的基本数据结构 2. 熟悉Matlab 中数字图像处理的基本函数和基本使用方法 3. 掌握图像灰度变换的基本理论和实现方法 4. 掌握直方图均衡化增强的基本理论和实现方法 二、实验原理 1. 图像灰度的线性变换 灰度的线性变换可以突出图像中的重要信息。通常情况下,处理前后的图像灰度级是相同的,即处理前后的图像灰度级都为[0,255]。那么,从原理上讲,我们就只能通过抑制非重要信息的对比度来腾出空间给重要信息进行对比度展宽。 设原图像的灰度为),(j i f ,处理后的图像的灰度为),(j i g ,对比度线性展宽的原理示意图如图1.1所示。假设原图像中我们关心的景物的灰度分布在[a f , b f ]区间内,处理后的图像中,我们关心的景物的灰度分布在[a g ,b g ]区间内。在这里)(a b g g g -=?()b a f f f >?=-,也就是说我们所关心的景物的灰度级得到了展宽。 根据图中所示的映射关系中分段直线的斜率我们可以得出线性对比度展 b g a g a b )j 图1.1 对比度线性变换关系

宽的计算公式: ),(j i f α, a f j i f <≤),(0 =),(j i g a a g f j i f b +-)),((, b a f j i f f <≤).,( (1-1) b b g f j i f c +-)),((, 255),(<≤j i f f b (m i ,3,2,1 =;n j ,3,2,1 =) 其中,a a f g a = ,a b a b f f g g b --=,b b f g c --=255255,图像的大小为m ×n 。 2. 直方图均衡化 直方图均衡化是将原始图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。 离散图像均衡化处理可通过变换函数: 来实现。 三、实验步骤 1.图像灰度线性变换的实现 (1)读入一幅灰度图像test1.tif ,显示其灰度直方图。 新建M 文件,Untitled1.m ,编辑代码如下。 得到读入图像test1和它的灰度直方图。

实验二、应用轨迹与跟踪功能绘制图形(几何画板)

实验二、应用轨迹与跟踪功能绘制图形 一、实验目的: 认识、分清主动点和被动点,学会应用轨迹与追踪功能绘制图形 二、实验内容 1、作出双曲线、抛物线的轨迹 2、设ABCD为矩形,P是AB上的一动点,过P作PE⊥AC于E,PF⊥BD于F, (1)作出EF的中点轨迹。 (2)作出线段EF运动的轨迹。 3、三角形ABC顶点A在一定圆上运动,另外两个顶点固定,作出三角形ABC外心的轨迹。并讨论分出各种情形。 4、作出与已知定圆、定直线都相切的圆的圆心的轨迹。 三、实验步骤 1、(1)做一条射线,取端点A和射线上一点B构成线段作为定长2a 做一条直线,上面取两点F1 、F2为焦点。|F1 F2| >|AB| 再在射线上取点C 构造线段AC、BC 以F1为圆心,AC为半径做圆,F2为圆心,BC为半径做圆。 两圆相交的两点分别记为F、G。 选中点C、F构造轨迹,选中点C、G构造轨迹。则得到双曲线的一支。同理作图得双曲线另一支。 (2)做一条直线,取点上两点A、B 构造线段AB,并以A为圆心,AB为半径做圆,交直线于点C

选中点A和直线构造垂线I 在此垂线上取一点E。 选中点E和垂线I,构造垂线m。 选中点E、B构造线段。并选择它作中点F。 选中F和线段构造垂线n。 m与n交于一点G。 选中点E、G构造轨迹。则得到抛物线。 2、(1)制作矩形ABCD,取P上一点。连接AC、BD。 选中P和AC构造垂线,与AC的交点为E。 选中P和BD构造垂线,与BD的交点为F。 选中E、F构造线段。选择线段EF构造中点。 选中P、及EF的中点构造轨迹。 (2)选中点P及线段EF构造轨迹。 3、在平面上作一个圆。取圆上一点O。构造三角形BCD 分别取三条边的中点作垂线。三条垂线交于一点即是外心E。 选中点A和外心E,构造轨迹。 讨论:当三角形为锐角三角形时,轨迹在三角形内或与三角形最长边相交;当三角形为直角三角形,该轨迹的一个端点为三角形斜边中点,其他点均在三角形外,并平行于竖直的直角边;当三角形为钝角时,轨迹完全在三角形外,或与三角形最长边相交。 结论:外心运动轨迹在定点CD边所做的中垂线上。 4、构造定圆O和定直线k。

数字图像处理——彩色图像实验报告

6.3实验步骤 (1)对彩色图像的表达和显示 * * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * * rgbcube(0,0,10); %从正面观察彩色立方体 rgbcube(10,0,10); %从侧面观察彩色立方 rgbcube(10,10,10); %从对角线观察彩色立方体 %* * * * * * * * * *索引图像的显示和转换* * * * * * * * * * f=imread('D:\Picture\Fig0604(a)(iris).tif'); figure,imshow(f);%f是RGB真彩图像 %rgb图像转换成8色索引图像,不采用抖动方式 [X1,map1]=rgb2ind(f,8,'nodither'); figure,imshow(X1,map1); %采用抖动方式转换到8色索引图像 [X2,map2]=rgb2ind(f,8,'dither'); figure,imshow(X2,map2); %显示效果要好一些 g=rgb2gray(f); %f转换为灰度图像 g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像 figure,imshow(g1);%显示抖动处理后的二值图像 程序运行结果:

彩色立方体原图 不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像 灰度图像抖动处理后的二值图像

(2)彩色空间转换 f=imread('D:\Picture\Fig0604(a)(iris).tif'); figure,imshow(f);%f是RGB真彩图像 %转换到NTSC彩色空间 ntsc_image=rgb2ntsc(f); figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息 %转换到HIS彩色空间 hsi_image=rgb2hsi(f); figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2)); %显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息 程序运行结果: 原图 转换到NTSC彩色空间

数字图像处理复习题

第一章绪论 一.选择题 1. 一幅数字图像是:( ) A、一个观测系统 B、一个有许多像素排列而成的实体 C、一个2-D数组中的元素 D、一个3-D空间的场景。 提示:考虑图像和数字图像的定义 2. 半调输出技术可以:( ) A、改善图像的空间分辨率 B、改善图像的幅度分辨率 C、利用抖动技术实现 D、消除虚假轮廓现象。 提示:半调输出技术牺牲空间分辨率以提高幅度分辨率 3. 一幅256*256的图像,若灰度级数为16,则存储它所需的比特数是:( ) A、256K B、512K C、1M C、2M 提示:表达图像所需的比特数是图像的长乘宽再乘灰度级数对应的比特数。 4. 图像中虚假轮廓的出现就其本质而言是由于:( ) A、图像的灰度级数不够多造成的 B、图像的空间分辨率不够高造成 C、图像的灰度级数过多造成的 D、图像的空间分辨率过高造成。 提示:平滑区域内灰度应缓慢变化,但当图像的灰度级数不够多时会产生阶跃,图像中的虚假轮廓最易在平滑区域内产生。 5. 数字图像木刻画效果的出现是由于下列原因所产生的:() A、图像的幅度分辨率过小 B、图像的幅度分辨率过大 C、图像的空间分辨率过小 D、图像的空间分辨率过大 提示:图像中的木刻效果指图像中的灰度级数很少 6. 以下图像技术中属于图像处理技术的是:()(图像合成输入是数据,图像分类输出 是类别数据) A、图像编码 B、图像合成 C、图像增强 D、图像分类。 提示:对比较狭义的图像处理技术,输入输出都是图像。 解答:1.B 2.B 3.A 4.A 5.A 6.AC 二.简答题 1. 数字图像处理的主要研究内容包含很多方面,请列出并简述其中的4种。 2. 什么是图像识别与理解? 3. 简述数字图像处理的至少3种主要研究内容。 4. 简述数字图像处理的至少4种应用。 5. 简述图像几何变换与图像变换的区别。 解答: 1. ①图像数字化:将一幅图像以数字的形式表示。主要包括采样和量化两个过程。②图像增强:将一幅图像中的有用信息进行增强,同时对其无用信息进行抑制,提高图像的可观察性。③图像的几何变换:改变图像的大小或形状。④图像变换:通过数学映射的方法,将空域的图像信息转换到频域、时频域等空间上进行分析。⑤图像识别与理解:通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。 2. 图像识别与理解是指通过对图像中各种不同的物体特征进行定量化描述后,将其所期望获得的目标物进行提取,并且对所提取的目标物进行一定的定量分析。比如要从一幅照片上确定是否包含某个犯罪分子的人脸信息,就需要先将照片上的人脸检测出来,进而将

几何画板实验报告(函数y=Asin(ωx+φ)图象)

实验报告 实验项目:设计制作课堂教学型的课件 班级:姓名: 学号:实验时间:2013 年月日 一、实验目的:通过计算机辅助教学的理论与实践相结合,查阅资料,设计制作中学数学某一节课(自选内容)的课堂教学型课件,在实验过程中掌握课堂教学型课件设计方法与制作技巧。 二、实验设备:多媒体计算机、几何画板等 三、教学设计方案

四、课件的创作思路 按照课本要求,考虑到函数y=Asin(ωx+φ)的图象相对难掌握,特选取几何画板作为课件的制作软件。课件设计由浅入境,通过对旧知识点的回顾复习,再慢慢计入新知识点的学习,以问题为基本主导线,注重学生自主动手,自主学习能力,通过讨论,探讨问题渐渐深入课程学习,渐渐把握参数φ、ω、A对函数y=Asin(ωx+φ)的图象的影响。所以课件在设计中看重问题,情景的设计,以及如何让学生更容易,更直观地了解,掌握参数φ,ω,A对函数y=Asin(ωx+φ)的图象的变换规律。讲授新知识点后及时进行例题讲解,让学生查漏补缺,真正把知识学懂,学通,学透,本课件按照人教版要求,符合普遍学生的学习接受能力,通过提出问题观察图片,吸引学生的注意力,以带动学生思考问题。在传递新内容上,通过图文解说,形象表达学习内容,层次分明,能让学生容易理解、学习和掌握知识。学习完新知识后,进行一段小结,巩固学生记忆。最后布置几道与这节课内容相关的习题,是为了巩固本节课内容。使学生通过本节课,能基本掌握参数φ,ω,A对函数y=Asin(ωx+φ)的图象的变换规律。 五、思考题

分析课件所使用的媒体在课堂教学实践中的作用。 本课件主要应用了几何画板软件,应用几何画板的“形象、直观”的动态效果,能很好的演示课本上的内容和几何图片,容易让学生理解掌握新概念。本节课的一些思考及练习,能很好的培养学生的发散思维,达到举一反三的目的。几何画板的重要作用就是能准确地表达几何图像。本课件适用大部分地区高中学校的课堂教学。

图像处理实验报告

重庆交通大学 学生实验报告 实验课程名称数字图像处理 开课实验室数学实验室 学院理学院年级信息与计算科学专业 2 班学生姓名李伟凯学号631122020203 开课时间2014 至2015 学年第 1 学期

实验(一)图像处理基础 ?实验目的 学习Matlab软件的图像处理工具箱,掌握常用的一些图像处理命令;通过编程实现几种简单的图像增强算法,加强对图像增强的理解。 ?实验内容 题目A.打开Matlab软件帮助,学习了解Matlab中图像处理工具箱的基本功能;题目B.掌握以下常见图像处理函数的使用: imread( ) imageinfo( ) imwrite( ) imopen( ) imclose( ) imshow( ) impixel( ) imresize( ) imadjust( ) imnoise( ) imrotate( ) im2bw( ) rgb2gray( ) 题目C.编程实现对图像的线性灰度拉伸y = ax + b,函数形式为:imstrech(I, a, b); 题目D.编程实现对图像进行直方图均衡化处理,并将实验结果与Matab中imhist 命令结果比较。 三、实验结果 1).基本图像处理函数的使用: I=imread('rice.png'); se = strel('disk',1); I_opened = imopen(I,se); %对边缘进行平滑 subplot(1,2,1), imshow(I), title('原始图像') subplot(1,2,2), imshow(I_opened), title('平滑图像') 原始图像平滑图像

实验报告二 Matlab图像代数运算和几何变换

实验二Matlab图像代数运算和几何变换 一、实验目的 1、掌握不同图像类型的转换 2、掌握图像代数运算和几何变换的方法; 3、掌握灰度级插值法的实验方法。 二、实验内容 1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither)(p69-73); 2、练习课本6.3.2(p139-p143)图像代数运算的内容; 3、练习图像平移 (p148),图像比例变换(p153),图像旋转(p156),图像镜像变换(p158),图像切割(p160)Matlab实现例题; 4、练习灰度级插值法(p171)。 三、实验步骤和结果 1、练习图像类型转换的相关命令(ind2rgb,mat2gray,grayslice,rgb2gray,rgb2ind,im2bw,ind2gray,dither) (1)mat2gray()函数 I=imread('rice.png'); >> J=filter2(fspecial('sobel'),I); >> K=mat2gray(J); >> imshow(I); >> figure,imshow(K) (2)、grayslice()函数 >> I=imread('snowflakes.png'); >> X=grayslice(I,16); >> imview(I) imview(X,jet(16)) (3)、rgb2ind()函数 > RGB=imread('peppers.png'); >> imshow(RGB); >> figure,imshow(RGB) >> [X,map]=rgb2ind(RGB,128); >> figure,imshow(X,map) (4)、im2bw()函数 >> load trees >> BW=im2bw(X,map,0.4); >> figure,imshow(X,map) >> figure,imshow(BW) (5)、ind2gray()函数 load trees >> I=ind2gray(X,map); >> figure,imshow(X,map) >> figure,imshow(I) (6)、dither()函数 >> RGB=imread('peppers.png'); >> [X,map]=rgb2ind(RGB,256); >> I=dither(RGB,map); >> BW=dither(I); >> imshow(RGB,map); >> figure,imshow(RGB,map); >> figure,imshow(BW) Result: (1)转换后图像(2)索引色图像

数字图像实验报告

图像处理实验报告 1、实验目的: (1)用高斯低通滤波器对图像进行处理,并了解效果以及产生该效果的原因。 (2)生成图片,并对该图片进行多种滤波器处理:算术均值,几何均值,谐波均值,逆谐波均值,中值滤波,中点滤波,最大,最小值滤波等。并分析比较。 2、实验思路: (1) 先将原图像进行零填充,然后再FFT。使用函数paddedsize.计算图像FFT所用的填充尺寸,获得填充参数,使用dftuv函数获得U,V的值,代入高斯滤波器传递函数,最后通过频域滤波得到图像。 (2)实验要求的滤波器都可以用自定义函数spfilt实现。主要的难点在于是spfilt函数的使用。 3、实验代码 (1) f = imread('c.bmp'); subplot(2,2,1),imshow(f,[]), title('原始图像'); PQ = paddedsize(size(f));%用函数paddedsize获得填充参数 [U,V]= dftuv(PQ(1),PQ(2));%计算PQ1*PQ2大小的矩形每一点到矩形原点距离的平方 D0=30; H = exp(-(U.^2 +V.^2)/(2*(D0^2)));%高斯滤波传递函数 for i=1:1:10; F = fft2(f,PQ(1),PQ(2));%得到有填充的傅里叶变换 g = dftfilt(f,H);%频域处理得到滤波图像 f=g; end;

subplot(2,2,2),imshow(g,[]), title('D0=30'); D0=30;%改变循环的值重复以上步骤 H = exp(-(U.^2 +V.^2)/(2*(D0^2))); for i=1:1:20; F = fft2(f,PQ(1),PQ(2)); g = dftfilt(f,H); f=g; end; subplot(2,2,3),imshow(g,[]), title('20次滤波'); D0=30; H = exp(-(U.^2 +V.^2)/(2*(D0^2))); for i=1:1:50; F = fft2(f,PQ(1),PQ(2)); g = dftfilt(f,H); f=g; end; subplot(2,2,4),imshow(g,[]), title('50次滤波'); (2) tk = 1 : 17+7 : (17+7)*10; I = zeros(210+10*2, (17+7)*10); for i = 1 : length(tk)-1 I(10:10+210, tk(i+1):tk(i+1)+6) = 1; end

使用“平移”“旋转”与“轨迹”功能绘制复杂几何图形

几何画板实验报告:使用“平移”“旋转”与“轨迹”功能绘制复 杂几何图形 一、实验目的 掌握“平移”“旋转”与“轨迹”功能及其应用,能熟练将前两者结合绘制复杂图形。 二、实验内容 题目1、绘制正五边形并设置控制按钮使其绕中心旋转180度。 步骤:1、先绘制正五边形。 (1)、任意绘制一条线段,选择旋转72度,连续旋转5次(图1) (2)、连接端点,构成正五边形并得出中点O(图2) 图1 图2 2、【构造】一个圆E,【构造】圆上的半段弧GF,并【构造】弧上的一点D(图3) 图3 图4 3、设定角度DEF为标记角度,选中正五边形,点击【变换】,【旋转】,选择标记角度并以中心O为旋转中心。(图4) 4、选中点G,E选择【编辑】,【操作类按钮】,【移动】命令,得到名为“从D→G移动”的按钮,同理得名为“从D→F移动”的按钮.图5为旋转180度的图像和两个按钮。

图5 题目2、作出圆柱及过其棱上一点且与底面平行的截面。并设置截面的平行移动。 步骤:1、作出一个同心圆A,过A作水平线,在大圆上任取一点E作水平线的垂线EF,连接AE与小圆交于点G,过点G作EF的垂线,交于点H,以E为主动点,H为被动对象构造轨迹,一次选中点E和点H【构造】【轨迹】,即圆柱的底面。(图1) 图1 图2 2、将其余图形隐藏,只留下椭圆。过椭圆中点A作水平线交于G,过A点作AG的垂线AF,并标记AF向量;将G绕A点旋转180度到G’点,在椭圆上任取一点H,将H沿AF向量的方向平移到H’点,再以H为主动点,H’为被动对象构造轨迹,得到圆柱的上底面也是一个椭圆;同理将G与G’也平移上去,再连接棱,即得到圆柱;( 图2) 3、在棱G’C上任取一点N,标记G’N向量,把H按照J’N向量的方向平移到H’’点,同样以H为主动点,H’’为被动对象构造轨迹,得到截面;(图3)

matlab图像处理实验报告

图像处理实验报告 姓名:陈琼暖 班级:07计科一班 学号:20070810104

目录: 实验一:灰度图像处理 (3) 实验二:灰度图像增强 (5) 实验三:二值图像处理 (8) 实验四:图像变换 (13) 大实验:车牌检测 (15)

实验一:灰度图像处理题目:直方图与灰度均衡 基本要求: (1) BMP灰度图像读取、显示、保存; (2)编程实现得出灰度图像的直方图; (3)实现灰度均衡算法. 实验过程: 1、BMP灰度图像读取、显示、保存; ?图像的读写与显示操作:用imread( )读取图像。 ?图像显示于屏幕:imshow( ) 。 ?

2、编程实现得出灰度图像的直方图; 3、实现灰度均衡算法; ?直方图均衡化可用histeq( )函数实现。 ?imhist(I) 显示直方图。直方图中bin的数目有图像的类型决定。如果I是个灰度图像,imhist将 使用默认值256个bins。如果I是一个二值图像,imhist使用两bins。 实验总结: Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。 通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强 题目:图像平滑与锐化 基本要求: (1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算. 实验过程: 1、 使用邻域平均法实现平滑运算; 步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ? 对图像添加噪声 J = imnoise(I,type,parameters)

opengl立方体的简单三维交互式几何变换实验报告+代码

立方体的简单三维交互式几何变换 这个学期对opengl的学习,使我对计算机图形学的一些算法过程有了更多的了解。因为对三维图形的显示比较感兴趣,就做了立方体的简单三维交互式几何变换。 功能:键盘的方向键实现立方体的上下左右平移;A键,S键分别实现向前,向后旋转;J键,K键分别实现放大,缩小;C键退出。 程序模块: 1.该模块为绘制一个立方体。 void DrawBox() { glBegin(GL_QUADS); //前面 glColor3f(1,0,0); glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下 glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下 glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上 glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上 // 后面 glColor3f(0,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下 glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上

glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下 // 顶面 glColor3f(0,0,1); glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面 glColor3f(1,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的右下// 右面 glColor3f(0,1,1); glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下// 左面 glColor3f(1,0,1);

几何画板实验报告要点

实验一数学教学软件基本操作 一、实验目的: 二、实验内容: 1、作出三角形的垂心。 2、作出三角形的外接圆与内切圆。 外接圆 内切圆 3、验证:三角形三边的中点、三条高的垂足、垂心到三顶点的中点共圆。

4、作出两圆的内外公切线。 三、实验步骤 1、作出三角形的垂心。 步骤: ○1构造△ABC; ○2选中点A和线段BC,构造垂线; ○3同理,构造线段AB、BC上的垂线; ○4交点D即为垂心。 2、作出三角形的外接圆与内切圆。 外接圆步骤:

○1构造△ABC; ○2选中线段AB,构造中点E; ○3选中线段AB和点E,构造垂线; ○4同理构造线段AC、BC上的中垂线,交点为K; ○5选中点K、A,构造圆。 内切圆步骤: ○1构造△ABC; ○2选中线段AB、AC,构造角平分线; ○3选中AB、BC,构造角平分线,交点为D; ○4选中A、D,构造圆。 3、验证:三角形三边的中点、三条高的垂足、垂心到三顶点的中点共圆。 步骤: ○1构造△ABC; ○2选中线段AB、BC、AC分别构造中点D、E、F; ○3选中线段BC和点A构造垂线,垂足为H,同理得到垂足L、K,三条 垂线的交点为M; ○4选中点A和M构造线段,再选中线段AM构造中点O,同理得到点N、P; ○5选中点E、P、O构造过三点的弧,选中点O、D、E构造过三点的弧; 4、作出两圆的内外公切线。 外公切线步骤: ○1构造两圆C、D,圆心分别为C、D(注:圆C 的半径大于圆 D 的半径); ○2选中点C、D,构造直线CD; ○3在圆D 上任意取一点F,连接构造线段DF; ○4选中点C、线段DF,构造平行线交圆 C 于点G、P ○5选中点G、F,再构造直线GF 交直线CD 于点H; ○6选中点D、H,构造线段DH,再构造线段DH 的中点M; ○7依次选中M、D(H),接着“构造”—“以圆心和圆周上的点作圆”—“生成一个圆M 交圆 D 于点O 和N ; ○8分别构造出直线OH 和直线NH,即为所求的外公切线。 内公切线步骤: ○1构造线段FP 交直线CD 于点Q; ○2选中点C、Q,构造线段,再构造中点R; ○3依次选中点R、C(Q),构造圆交圆C 于点S、T; ○4分别构造出直线QT 和直线QS,即为所求的内公切线。 四、实验的结论及实验中存在的问题。

数字图像处理实验报告92184

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同 一图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果, 要求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后 的图像。 4) 运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查看其特点, 显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤 波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理, 要求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif

X-opengl立方体的简单三维交互式几何变换实验报告代码

立方体的简单三维交互式几何变换 立方体的简单三维交互式几何变换。 功能:键盘的方向键实现立方体的上下左右平移;A键,S键分别实现向前,向后旋转;J键,K键分别实现放大,缩小;C键退出。 程序模块: 1.重绘回调函数,在窗口首次创建或用户改变窗口尺寸时被调用。void reshape(int w, int h) { glViewport(0, 0, w, h);// 指定视口的位置和大小 glMatrixMode(GL_PROJECTION); glLoadIdentity(); //glFrustum(-1.0, 1.0, -1.0, 1.0, 3.1, 10.0); //gluPerspective(45,1,0.1,10.0); glOrtho(-2.0, 2.0, -2.0, 2.0, 2.0, 10.0); } 2.绘制一个立方体。 void DrawBox() { glBegin(GL_QUADS); //前面

glColor3f(1,0,0); glVertex3f(-1.0f, -1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左上// 后面 glColor3f(0,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右下glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左下 // 顶面 glColor3f(0,0,1); glVertex3f(-1.0f, 1.0f, -1.0f); // 四边形的左上glVertex3f(-1.0f, 1.0f, 1.0f); // 四边形的左下glVertex3f( 1.0f, 1.0f, 1.0f); // 四边形的右下glVertex3f( 1.0f, 1.0f, -1.0f); // 四边形的右上// 底面 glColor3f(1,1,0); glVertex3f(-1.0f, -1.0f, -1.0f); // 四边形的右上glVertex3f( 1.0f, -1.0f, -1.0f); // 四边形的左上glVertex3f( 1.0f, -1.0f, 1.0f); // 四边形的左下

数字图像处理实验报告实验三

中南大学 数字图像处理实验报告实验三数学形态学及其应用

实验三 数学形态学及其应用 一.实验目的 1.了解二值形态学的基本运算 2.掌握基本形态学运算的实现 3.了解形态操作的应用 二.实验基本原理 腐蚀和膨胀是数学形态学最基本的变换,数学形态学的应用几乎覆盖了图像处理的所有领域,给出利用数学形态学对二值图像处理的一些运算。 膨胀就是把连接成分的边界扩大一层的处理。而收缩则是把连接成分的边界点去掉从而缩小一层的处理。 二值形态学 I(x,y), T(i,j)为 0/1图像Θ 腐蚀:[]),(&),(),)((),(0,j i T j y i x I AND y x T I y x E m j i ++=Θ== 膨胀:[]),(&),(),)((),(0 ,j i T j y i x I OR y x T I y x D m j i ++=⊕== 灰度形态学T(i,j)可取10以外的值 腐蚀: []),(),(min ),)((),(1 ,0j i T j y i x I y x T I y x E m j i -++=Θ=-≤≤ 膨胀: []),(),(max ),)((),(1 ,0j i T j y i x I y x T I y x D m j i +++=⊕=-≤≤ 1.腐蚀Erosion: {}x B x B X x ?=Θ: 1B 删两边 2B 删右上 图5-1 剥去一层(皮) 2.膨胀Dilation: {}X B x B X x ↑⊕:= 1B 补两边 2B 补左下 图5-2 添上一层(漆) 3.开运算open :

B B X ⊕Θ=)(X B 4.闭close :∨ Θ⊕=B B X X B )( 5.HMT(Hit-Miss Transform:击中——击不中变换) 条件严格的模板匹配 ),(21T T T =模板由两部分组成。1T :物体,2T :背景。 {} C x x i X T X T X T X ??=?21, 图5-3 击不中变换示意图 性质: (1)φ=2T 时,1T X T X Θ=? (2))()()(21T X T X T X C Θ?Θ=? C T X T X )()(21Θ?Θ= )/()(21T X T X ΘΘ= 6.细化/粗化 (1)细化(Thin ) C T X X T X XoT )(/??=?= 去掉满足匹配条件的点。 图5-4 细化示意图 系统细化{}n B oB XoB T Xo ))(((21=, i B 是1-i B 旋转的结果(90?,180?,270?)共8种情况 适于细化的结构元素 1111000d d I = d d d L 10110 0= (2)粗化(Thick ) )(T X X T X ??=? 用(){}0,01=T (){}0,12=T 时,X X X T X =?=? X 21 1 1 2 3 T ? XoT X ? X X ?T X ΘT T ⊕

数字图像实验报告讲解

数 字 图 像 实 验 报 告 学院:计算机与信息工程学院 专业:通信工程 学号:1008224072 姓名:张清峰

实验一图像增强—灰度变换 专业:通信工程学号:1008224072姓名:张清峰 一、实验目的: 1、了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。 2、学会对图像直方图的分析。 3、掌握直接灰度变换的图像增强方法。 二、实验原理及知识点 术语‘空间域’指的是图像平面本身,在空间与内处理图像的方法是直接对图像的像素进行处理。空间域处理方法分为两种:灰度级变换、空间滤波。空间域技术直接对像素进行操作其表达式为 g(x,y)=T[f(x,y)] 其中f(x,y)为输入图像,g(x,y)为输出图像,T是对图像f进行处理的操作符,定义在点(x,y)的指定领域内。 定义点(x,y)的空间邻近区域的主要方法是,使用中心位于(x,y)的正方形或长方形区域,。此区域的中心从原点(如左上角)开始逐像素点移动,在移动的同时,该区域会包含不同的领域。T应用于每个位置(x,y),以便在该位置得到输出图像g。在计算(x,y)处的g值时,只使用该领域的像素。 灰度变换T的最简单形式是使用领域大小为1×1,此时,(x,y)处的g值仅由f 在该点处的亮度决定,T也变为一个亮度或灰度级变化函数。当处理单设(灰度)图像时,这两个术语可以互换。由于亮度变换函数仅取决于亮度的值,而与(x,y)无关,所以亮度函数通常可写做如下所示的简单形式: s=T(r) 其中,r表示图像f中相应点(x,y)的亮度,s表示图像g中相应点(x,y)的亮度。 三、实验内容: 1、图像数据读出 2、计算并分析图像直方图 3、利用直接灰度变换法对图像进行灰度变换 下面给出灰度变化的MATLAB程序 f=imread('C:\ch17\tu\6.jpg'); g=imhist(f,256); imshow(g) %显示其直方图

相关文档
相关文档 最新文档