文档库 最新最全的文档下载
当前位置:文档库 › 串口通信

串口通信

串口通信
串口通信

#include"STC12C5A60S2.h"

#define S2TI 0x02 //发送完成中断标志

#define ES2 0x01 //串口2中断使能位

#define S2RI 0x01

sbit led = P1^0;

void Uart1Init(void);

void Uart2Init(void);

void Uart1SendByte( unsigned char );

void Uart2SendByte( unsigned char );

void UART1_Send_String( unsigned char * );

void Uart2SendString(unsigned char *);

unsigned char tmp;

unsigned char ch[] = "123";

unsigned char ch1[] = "123";

bit flag = 0;

void main()

{

int i = 0;

Uart1Init();

// Uart2Init();

EA = 1;

flag = 0;

for( i= 0; i<3; i++ )

{

UART1_Send_String( ch );UART1_Send_String( ch );

Uart1SendByte('a');

// Uart2SendString( ch1 );

// Uart2SendByte( 'e' );

// while(1);

}

while(1);// while(1);

}

void Uart1Init(void) //9600bps@11.0592MHz

{

PCON &= 0x7f; //波特率不倍速

SCON = 0x50; //8位数据,可变波特率

AUXR &= 0xbf; //定时器1时钟为Fosc/12,即12T 与传统的51单片机速度一样

AUXR &= 0xfe; //串口1选择定时器1为波特率发生器确定波特率的发生器TMOD &= 0x0f; //清除定时器1模式位

TMOD |= 0x20; //设定定时器1为8位自动重装方式

TL1 = 0xFD; //设定定时初值

TH1 = 0xFD; //设定定时器重装值

ET1 = 0; //禁止定时器1中断

TR1 = 1; //启动定时器1

ES = 1;

}

void Uart2Init(void) //9600bps@11.0592MHz

{

AUXR &= 0xf7; //波特率不倍速

S2CON = 0x50; //8位数据,可变波特率

BRT = 0xFD; //设定独立波特率发生器重装值

AUXR &= 0xfb; //独立波特率发生器时钟为Fosc/12,即12T

AUXR |= 0x10; //启动独立波特率发生器

IE2 |= ES2;

}

void Uart1SendByte(unsigned char byte)

{

ES = 0; //关串口中断ES是enable seirol interrupt

TI = 0; //清空发送完中断请求标志位

SBUF = byte; //将数据放入寄存器发送

while(TI == 0);//等待发送完毕,发送完毕TI == 1

TI = 0; //清空发送完中断请求标志位

ES = 1; //开串口中断

}

void Uart2SendByte( unsigned char byte )

{

unsigned char temp = 0;

IE2 &= (~ES2);//关闭串口2中断//ES2 = 0;

S2CON &= (~S2TI);//S2TI = 0;

S2BUF = byte;//装入数据

do

{

temp = S2CON;

temp = temp & 0x02;//temp = S2TI;

}while(temp == 0);//判断是否发送完毕

S2CON &= (~S2TI);//S2TI = 0;

IE2 |= ES2;//ES2 = 1;

}

void UART1_Send_String( unsigned char *ch )

{

while( *ch!='\0' )

{

Uart1SendByte( *ch );

ch++;

}

}

void Uart2SendString(unsigned char *ch)

{

IE2 &= (~ES2);//关闭串口2中断//ES2 = 0;

S2CON &= (~S2TI);//S2TI = 0;

while(*ch!='\0') //判断一串数据是否结束

{

Uart2SendByte( *ch );

ch++;

}

S2CON &= (~S2TI);//S2TI = 0;

IE2 |= ES2;//ES2 = 1;

}

void Uart1ISR(void) interrupt 4

{

unsigned char tmp;

if(RI)

{

ES=0;//关串行口中断

RI=0;//接收中断信号清零,表示将继续接收

while(RI!=0);

while(ES!=0);

tmp = SBUF;

Uart1SendByte(tmp);

ES=1;//开串行口中断

}

}

void Uart2ISR(void) interrupt 8

{

IE2 &= (~ES2);//关闭串口2中断//ES2 = 0;

if(S2CON & S2RI) //if(S2RI == 1)

{

S2CON &= (~S2RI);//S2RI = 0;

tmp = S2BUF;

// flag = 1;

}

else

{

S2CON &= (~S2TI);//S2TI = 0;

}

IE2 |= ES2;

}

vb串口通信复习资料总结

串口基本概念与串口调试 1. 串口的定义:串口即串行接口的简称。CPU 与外设连接的接口电路称为I/O 口,串口是I/O 口的一种,采用串 行通信协议在一条信号线上将数据逐位传输的通信模式,所以又称“串行通信接口。 2. 数据传输方式:串行通信(同步&异步)、并行通信。 3. 同步通信:指在约定的通信速率下,发送端和接收端的时钟信号频率和相位始终保持一致,这就保证了通信双 方在发送和接收数据时具有完全一致的定时关系。 4. 异步通信: 5. 异步通信特点: a) 时钟要求不高,硬件成本低; b) 在不同传输系统中,通信格式设定可完全不同; c) 通信速率较慢; d) 依靠起始位和停止位可以到达同步; 6. 数据编码的方式:不归零编码(NRZ )、曼彻斯特编码、差分曼彻斯特编码。 7. 数据调制方式:幅移键控(ASK )、频移键控(FSK )、相移键控(PSK )。 8. 调幅方式: a) TTL 标准:+5v ——“1”,0v ——“0”(正逻辑); b) RS-232标准:-3V~-15V ——“1”,+3V~+15V ——“0”;(负逻辑); c) 20mA 电流环:存在20mA 电流为“1”,不存在为“0”; d) 60mA 电流环:存在60mA 电流为“1”,不存在为“0 ”; 9. 数据传送方式:单工、半双工、全双工。 10. 数据传送速率: a) 码元速率(R B )单位:波特/秒(baud/S )波特率;R B =log 2N (N 为编码级数); b) 信息速率(R b )单位:比特/秒(Bit/S )比特率;R b =log 22; R B /R b =log 2N /log 22=log 2N (计算机中编码级数为2,比特率等于波特率) c) 位时间(位周期):传送一个二进制位所需时间;T d =1波特/波特率 11. 发送时钟与接收时钟: a) 公式:F =n ×B b) F —发送时钟频率(Hz );B —数据传输的波特率(Baud/s );n —波特率因子(Baud -1); c) 发送/接收时钟周期:T c =1/F =T d /n ; 12. 串口接头类型:9针串口(DB-9)、25针串口(DB-25)13. 串口接线:接收接发送、发送接接收、信号地相连(25为7脚,9为5脚。) 14. 串行通信特点:接线少、成本低。 15. 串口连接线种类: a) 串口直连线;一公一母;发发/收收(延长) b) 串口交叉线;双公/双母;收发/发收(双机通信) 16. RS-232C : a) 全称:EIA-RS-232C (EIA :美国电子工业协会;RS :推荐标准) b) 全名:数据终端设备和数据通信设备之间串行二进制数据交换接口标准 c) 电气特性: i. RxD/TxD 上为1负0正; ii. RTS 、CTS 、DSR 、DTR 、DCD 上有效为正,无效为负 17. 串口调试的内容: a) 认识串口连接线和制作串口连接线; b) 采用相应串口调试工具软件对所使用的串口进行诊断。 18. 串口参数的设置:波特率、数据位、停止位和校验位。

c语言串口通信范例

一个c语言的串口通信程序范例 分类:技术笔记 标签: c语言 串口通信 通信程序 it 最近接触一个项目,用HL-C1C激光位移传感器+易控组态软件完成生产线高度跳变检测,好久没有接触c c#,一些资料,找来做个记录,也许大家用的着 #include #include #include #include #define COM232 0x2f8 #define COMINT 0x0b #define MaxBufLen 500 #define Port8259 0x20 #define EofInt 0x20 static int comportaddr; static char intvectnum; static unsigned char maskb; static unsigned char Buffer[MaxBufLen]; static int CharsInBuf,CircIn,CircOut; static void (interrupt far *OldAsyncInt)();

static void interrupt far AsyncInt(void); void Init_COM(int ComPortAddr, unsigned char IntVectNum, int Baud, unsigned char Data, unsigned char Stop, unsigned char Parity) { unsigned char High,Low; int f; comportaddr=ComPortAddr; intvectnum=IntVectNum; CharsInBuf=0;CircIn=0;CircOut=0; f=(Baud/100); f=1152/f; High=f/256; Low=f-High*256; outp(ComPortAddr+3,0x80); outp(ComPortAddr,Low); outp(ComPortAddr+1,High); Data=(Data-5)|((Stop-1)*4); if(Parity==2) Data=Data|0x18; else if(Parity==1) Data=Data|0x8; outp(ComPortAddr+3,Data); outp(ComPortAddr+4,0x0a);

串口通信测试方法

串口通信测试方法 LELE was finally revised on the morning of December 16, 2020

串口通信测试方法 1关于串口通信的一些知识: RS-232C是目前最常用的串行接口标准,用来实现计算机和计算机之间、计算机和外设之间的数据通信。 在PC机系统中都装有异步通信适配器,利用它可以实现异步串行通信。而且MCS-51单片机本身具有一个全双工的串行接口,因此只要配以电平转换的驱动电路、隔离电路就可以组成一个简单可行的通信接口。 由于MCS-51单片机的输入和输出电平为TTL电平,而PC机配置的是RS-232C 标准串行接口,二者电气规范不一致,因此要完成PC机与单片机的数据通信,必须进行电平转换。 注明:3)RS-232C上传送的数字量采用负逻辑,且与地对称 逻辑1:-3~-15V 逻辑0:+3~+15V 所以与单片机连接时常常需要加入电平转换芯片: 2实现串口通信的三个步骤: (1)硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如计算机的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换。我们采用了三线制连接串口,也就是说和计算机的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。 使用MAX232串口通信电路图(9孔串口接头) (2)串行通信程序设计 ①通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在设计过程中,有如下约定: 0x31:PC机发送0x31,单片机回送0x01,表示选择本单片机; 0x**:PC机发送0x**,单片机回送0x**,表示选择单片机后发送数据通信正常; 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。 ②串行通信程序设计主要有微机发送接收程序和单片机发送接收程序,微机上的发送和接收程序主要采用计算机高级语言编写,如C语言,因为了能够在计算机端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里利用如下图标的一个免费计算机串口调试软件,故而这一块计算机通信的程序可不写!

串行通信接口典型应用举例

串行通信接口典型应用举例 SCI_FLAG .usect ".data0",1 ;SCI标志寄存器 TXD_PTR .usect ".data0",8 ;发送的数据存放区 RXD_PTR .usect ".data0",8 ;接收到的数据存放区 .include "F2407REGS.H" ;引用头部文件 .def _c_int0 ;(1)建立中断向量表 .sect ".vectors" ;定义主向量段 RSVECT B _c_int0 ;PM 0 复位向量 1 INT1 B GISR1 ;PM 2 中断优先级1 4 INT2 B PHANTOM ;PM 4 中断优先级2 5 INT3 B PHANTOM ;PM 6 中断优先级3 6 INT4 B PHANTOM ;PM 8 中断优先级4 7 INT5 B PHANTOM ;PM A中断优先级5 8 INT6 B PHANTOM ;PM C 中断优先级6 9 RESERVED B PHANTOM ;PM E (保留位) 10 SW_INT8 B PHANTOM ;PM 10 用户定义软件中断— … SW_INT31 B PHANTOM ;PM 3E 用户定义软件中断— ;中断子向量入口定义pvecs .sect ".pvecs" ;定义子向量段 PVECTORS B PHANTOM ;保留向量地址偏移量0000h B PHANTOM ;保留向量地址偏移量0001h … B PHANTOM ;保留向量地址偏移量0005h B SCI_RX_ISR ;保留向量地址偏移量0006h SCI接收中断 B PHANTOM ;保留向量地址偏移量0007h … B PHANTOM ;保留向量地址偏移量0041h ;(2)主程序: .text _c_int0 SETC INTM CLRC SXM CLRC OV M CLRC CNF 214

VC++_串口上位机编程实例

VC++串口上位机简单例程(源码及详细步骤) (4.33MB) VC++编写简单串口上位机程序 2010年4月13日10:23:40 串口通信,MCU跟PC通信经常用到的一种通信方式,做界面、写上位机程序的编程语言、编译环境等不少,VB、C#、LABVIEW等等,我会的语言很少,C语言用得比较多,但是还没有找到如何用C语言来写串口通信上位机程序的资料,在图书管理找到了用VC++编写串口上位机的资料,参考书籍,用自己相当蹩脚的C++写出了一个简单的串口上位机程序,分享一下,体验一下单片机和PC通信的乐趣。 编译环境:VC++6.0 操作系统:VMWare虚拟出来的Windows XP 程序实现功能: 1、PC初始化COM1口,使用n81方式,波特率57600与单片机通信。PC的COM口编号可以通过如下方式修改: 当然也可以通过上位机软件编写,通过按钮来选择COM端口号,但是此次仅仅是简单的例程,就没有弄那么复杂了。COM1口可用的话,会提示串口初始化完毕。否则会提示串口已经打开Port already open,表示串口已经打开,被占用了。 2、点击开始转换,串口会向单片机发送0xaa,单片机串口中断接收到0xaa后启动ADC转

换一次,并把转换结果ADCL、ADCH共两个字节的结果发送至PC,PC进行数值转换后在窗口里显示。(见文章末尾图) 3、为防止串口被一只占用,点击关闭串口可以关闭COM1,供其它程序使用,点击后按钮变为打开串口,点击可重新打开COM1。 程序的编写: 1、打开VC++6.0建立基于对话框的MFC应用程序Test,

2、在项目中插入MSComm控件:工程->增加到工程->Components and Controls->双击Registered ActiveX Controls->选择Microsoft Communications Control,version6.0->Insert,按

VB串口通信(附图教程)

界面如下: 代码如下: Private Sub Form_Load() If MSComm1.PortOpen = True Then MSComm1.PortOpen = False Else End If Combo1.AddItem "COM1" Combo1.AddItem "COM2" Combo1.AddItem "COM3" Combo1.AddItem "COM4" Combo1.AddItem "COM5" Combo1.AddItem "COM6" Combo1.AddItem "COM7" Combo1.AddItem "COM8" Combo1.AddItem "COM9" Combo1.AddItem "COM10"

Combo1.AddItem "COM11" Combo1.AddItem "COM12" Combo1.AddItem "COM13" Combo1.AddItem "COM14" Combo1.AddItem "COM15" Combo1.AddItem "COM16" Combo1.ListIndex = 2 Combo2.AddItem "256000" Combo2.AddItem "128000" Combo2.AddItem "115200" Combo2.AddItem "57600" Combo2.AddItem "38400" Combo2.AddItem "28800" Combo2.AddItem "19200" Combo2.AddItem "14400" Combo2.AddItem "12800" Combo2.AddItem "11520" Combo2.AddItem "9600" Combo2.AddItem "4800" Combo2.AddItem "2400" Combo2.AddItem "1200" Combo2.AddItem "600" Combo3.AddItem "无None" Combo3.AddItem "奇Odd" Combo3.AddItem "偶Even" Combo4.AddItem "4" Combo4.AddItem "5" Combo4.AddItem "6" Combo4.AddItem "7" Combo4.AddItem "8" Combo5.AddItem "1" Combo5.AddItem "2" https://www.wendangku.net/doc/8d4179318.html,mPort = Combo1.ListIndex + 1 MSComm1.Settings = "9600,n,8,1"

RS232串口通信实验报告

RS232串口通信实验报告 学院:电子信息学院 班级:08031102 姓名:张泽宇康启萌余建军 学号:2011301966 2011301950 2011301961 时间:2014年11月13日 学校:西北工业大学

一.实验题目: 设计一个简单的基于串口通信的信息发送和接受界面 二.实验目的: 1.熟悉并掌握RS232串口标准及原理。 2.实现PC机通过RS232串口进行数据的收发。 3.熟悉VC语言编写程序的环境,掌握基本的VC语言编程技巧。 三.实验内容 程序代码: P// PC1PC2Dlg.cpp : implementation file // #include "stdafx.h" #include "PC1PC2.h" #include "PC1PC2Dlg.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif ////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About class CAboutDlg : public CDialog { public: CAboutDlg(); // Dialog Data //{{AFX_DATA(CAboutDlg) enum { IDD = IDD_ABOUTBOX }; //}}AFX_DATA // ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(CAboutDlg) protected: virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.wendangku.net/doc/8d4179318.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

WIN_API串口通信详细讲解带范例程序说明

WIN32 API串口通讯实例教程 第一节实现串口通讯的函数及串口编程简介 API函数不仅提供了打开和读写通讯端口的操作方法,还提供了名目繁多的函数以支持对串行通讯的各种操作。常用函数及作用下: 函数名作用 CreateFile 打开串口 GetCommState 检测串口设置 SetCommState 设置串口 BuilderCommDCB 用字符串中的值来填充设备控制块 GetCommTimeouts 检测通信超时设置 SetCommTimeouts 设置通信超时参数 SetCommMask 设定被监控事件 WaitCommEvent 等待被监控事件发生 WaitForMultipleObjects 等待多个被监测对象的结果 WriteFile 发送数据 ReadFile 接收数据 GetOverlappedResult 返回最后重叠(异步)操作结果 PurgeComm 清空串口缓冲区,退出所有相关操作 ClearCommError 更新串口状态结构体,并清除所有串口硬件错误 CloseHandle 关闭串行口 用Windows API 编写串口程序本身是有巨大优点的,因为控制能力会更强,效率也会更高。 API编写串口,过程一般是这样的: 1、创建串口句柄,用CreateFile; 2、对串口的参数进行设置,其中比较重要的是波特率(BaudRate),数据宽度(BytesBits),奇偶校验(Parity),停止位(StopBits),当然,重要的还有端口号(Port); 3、然后对串口进行相应的读写操作,这时候用到ReadFile和WriteFile函数; 4、读写结束后,要关闭串口句柄,用CloseFile。 下面依次讲述各个步骤的过程。

CSharp串口通信

using System; using System.Collections.Generic; using https://www.wendangku.net/doc/8d4179318.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.IO.Ports; namespace SerialPorts { public partial class frm_Main : Form { #region Public Enumerations public enum DataMode { Text, Hex } public enum LogMsgType { Incoming, Outgoing, Normal, Warning, Error }; #endregion private Color[] LogMsgTypeColor = { Color.Orange, Color.Green, Color.Black, Color.Blue, Color.Red }; //禁用和启用程序中各控件的状态 private void EnableControls() { // 基于串口的打开与否,设置控件状态 gbPortSettings.Enabled = !ComPort.IsOpen; btns.Enabled = btnstop.Enabled = txtSendData.Enabled = btnSend.Enabled = ComPort.IsOpen; if (ComPort.IsOpen) btnOpenPort.Text = "关闭串口"; else btnOpenPort.Text = "打开串口"; } //初始化组件的数据,为串口提供相关参数 private void InitializeControlValues() { cmbParity.Items.Clear(); cmbParity.Items.AddRange(Enum.GetNames(typeof(Parity))); cmbStopBits.Items.Clear(); cmbStopBits.Items.AddRange(Enum.GetNames(typeof(StopBits))); cmbPortName.Items.Clear(); foreach (string s in SerialPort.GetPortNames()) cmbPortName.Items.Add(s); cmbPortName.Text = cmbPortName.Items[0].ToString(); cmbParity.Text = cmbParity.Items[0].ToString(); cmbStopBits.Text = cmbStopBits.Items[0].ToString(); cmbDataBits.Text = cmbDataBits.Items[0].ToString(); cmbParity.Text = cmbParity.Items[0].ToString(); cmbBaudRate.Text = cmbBaudRate.Items[0].ToString(); EnableControls(); } //十六进制转换字节数组 private byte[] HexStringToByteArray(string s)

几种通信总线详尽总结

微处理器中常用的集成串行总线是通用异步 接收器传输总线(UART)、串行通信接口(SCI) 和通用串行总线(USB)等,这些总线在速度、 物理接口要求和通信方法学上都有所不同。本文详细介绍了嵌入式系统设计的串行总线、驱动器和物理接口的特性,并为总线最优选择提供性能比较和选择建议。 由于在消费类电子产品、计算机外设、汽车和工业应用中增加了嵌入式功能,对低成本、高速和高可靠通信介质的要求也不断增长以满足这些应用,其结果是越来越多的处理器和控制器用不同类型的总线集成在一起,实现与PC软件、开发系统(如仿真器)或网络中的其它设备进行通信。目前流行的通信一般采用串行或并行模式,而串行模式应用更广泛。 微处理器中常用的集成串行总线是通用异步接收器传输总线、串行通信接口、同步外设接口(SPI)、内部集成电路(I2C) 和通用串行总线,以及车用串行总线,包括控制器区域网(CAN)和本地互连网(LIN)。这些总线在速度、物理接口要求和通信方法学上都有所不同。本文将对嵌入式系统设计的串行总线、驱动器和物理接口这些要求提供一个总体介绍,为选择最优总线提供指导并给出一个比较图表(表1)。为了说明方便起见,本文的阐述是基于微处理器的设计。 串行与并行相比 串行相比于并行的主要优点是要求的线数较少。例如,用在汽车工业中的LIN 串行总线只需要一根线来与从属器件进行通信,Dallas公司的1-Wire总线只使用一根线来输送信号和电源。较少的线意味着所需要的控制器引脚较少。集成在一个微控制器中的并行总线一般需要8条或更多的线,线数的多少取决于设计中地址和数据的宽度,所以集成一个并行总线的芯片至少需要8个引脚来与外部器件接口,这增加了芯片的总体尺寸。相反地,使用串行总线可以将同样的芯片集成在一个较小的封装中。 另外,在PCB板设计中并行总线需要更多的线来与其它外设接口,使PCB板面积更大、更复杂,从而增加了硬件成本。此外,工程师还可以很容易地将一个新器件加到一个串行网络中去,而且不会影响网络中的其它器件。例如,可以很容易地去掉总线上旧器件并用新的来替代。

UART串口通信设计实例

2.5 UART串口通信设计实例(1) 接下来用刚才采用的方法设计一个典型实例。在一般的嵌入式开发和FPGA设计中,串口UART是使用非常频繁的一种调试手段。下面我们将使用Verilog RTL编程设计一个串口收发模块。这个实例虽然简单,但是在后续的调试开发中,串口使用的次数比较多,这里阐明它的设计方案,不仅仅是为了讲解RTL编程,而且为了后续使用兼容ARM9内核实现嵌入式开发。 串口在一般的台式机上都会有。随着笔记本电脑的使用,一般会采用USB转串口的方案虚拟一个串口供笔记本使用。图2-7为UART串口的结构图。串口具有9个引脚,但是真正连接入FPGA开发板的一般只有两个引脚。这两个引脚是:发送引脚TxD和接收引脚RxD。由于是串行发送数据,因此如果开发板发送数据的话,则要通过TxD线1 bit接着1 bit 发送。在接收时,同样通过RxD引脚1 bit接着1 bit接收。 再看看串口发送/接收的数据格式(见图2-8)。在TxD或RxD这样的单线上,是从一个周期的低电平开始,以一个周期的高电平结束的。它中间包含8个周期的数据位和一个周期针对8位数据的奇偶校验位。每次传送一字节数据,它包含的8位是由低位开始传送,最后一位传送的是第7位。

这个设计有两个目的:一是从串口中接收数据,发送到输出端口。接收的时候是串行的,也就是一个接一个的;但是发送到输出端口时,我们希望是8位放在一起,成为并行状态(见图2-10)。我们知道,串口中出现信号,是没有先兆的。如果出现了串行数据,则如何通知到输出端口呢?我们引入“接收有效”端口。“接收有效”端口在一般情况下都是低电平,一旦有数据到来时,它就变成高电平。下一个模块在得知“接收有效”信号为高电平时,它就明白:新到了一个字节的数据,放在“接收字节”端口里面。

1C#中串口通信编程教程

C#中串口通信编程教程 本文将介绍如何在.NET平台下使用C#创建串口通信程序,.NET2.0提供了串口通信的功能,其命名空间是System.IO.Ports。这个新的框架不但可以访问计算机上的串口,还可以和串口设备进行通信。我们将使用标准的RS232C在PC间通信。它工作在全双工模式下,而且我们不打算使用任何的握手或流控制器,而是使用无modem连接。 命名空间 System.IO.Ports命名空间中最重用的是SerialPort类。 创建SerialPort对象 通过创建SerialPort对象,我们可以在程序中控制串口通信的全过程。 我们将要用到的SerialPort类的方法: ReadLine():从输入缓冲区读一新行的值,如果没有,会返回NULL WriteLine(string):写入输出缓冲 Open():打开一个新的串口连接 Close():关闭 Code: //create a Serial Port object SerialPort sp=new SerialPort(); 默认情况下,DataBits值是8,StopBits是1,通信端口是COM1。这些都可以在下面的属性中重新设置 : BaudRate:串口的波特率 StopBits:每个字节的停止位数量 ReadTimeout:当读操作没有完成时的停止时间。单位,毫秒 还有不少其它公共属性,自己查阅MSDN。 串口的硬件知识 在数据传输的时候,每个字节的数据通过单个的电缆线传输。包包括开始位,数据,结束为。一旦开始位传出,后面就会传数据,可能是5,6,7或8位,就看你的设定了。发送和接收必须设定同样的波特率和数据位数。

几种通信总线详尽总结

微处理器中常用的集成串行总线就是通用异步接收器传输总线(UART)、串行通 信接口(SCI)与通用串行总线(USB)等,这些总 线在速度、物理接口要求与通信方法学上都 有所不同。本文详细介绍了嵌入式系统设计 的串行总线、驱动器与物理接口的特性,并为 总线最优选择提供性能比较与选择建议。 由于在消费类电子产品、计算机外设、汽车与工业应用中增加了嵌入式功能,对低成本、高速与高可靠通信介质的要求也不断增长以满足这些应用,其结果就是越来越多的处理器与控制器用不同类型的总线集成在一起,实现与PC软件、开发系统(如仿真器)或网络中的其它设备进行通信。目前流行的通信一般采用串行或并行模式,而串行模式应用更广泛。 微处理器中常用的集成串行总线就是通用异步接收器传输总线、串行通信接口、同步外设接口(SPI)、内部集成电路(I2C) 与通用串行总线,以及车用串行总线,包括控制器区域网(CAN)与本地互连网(LIN)。这些总线在速度、物理接口要求与通信方法学上都有所不同。本文将对嵌入式系统设计的串行总线、驱动器与物理接口这些要求提供一个总体介绍,为选择最优总线提供指导并给出一个比较图表(表1)。为了说明方便起见,本文的阐述就是基于微处理器的设计。 串行与并行相比

串行相比于并行的主要优点就是要求的线数较 少。例如,用在汽车工业中的LIN串行总线只需要一根线来与从属器件进行通信,Dallas公司的1-Wire总线只使用一根线来输送信号与电源。较少的线意味着所需要的控制器引脚较少。集成在一个微控制器中的并行总线一般需要8条或更多的线,线数的多少取决于设计中地址与数据的宽度,所以集成一个并行总线的芯片至少需要8个引脚来与外部器件接口,这增加了芯片的总体尺寸。相反地,使用串行总线可以将同样的芯片集成在一个较小的封装中。 另外,在PCB板设计中并行总线需要更多的线来与其它外设接口,使PCB板面积更大、更复杂,从而增加了硬件成本。此外,工程师还可以很容易地将一个新器件加到一个串行网络中去,而且不会影响网络中的其它器件。例如,可以很容易地去掉总线上旧器件并用新的来替代。 串行总线的故障自诊断与调试也非常简单,可以很容易地跟踪网络中一个有故障的器件并用新器件替换而不会干扰网络。但另一方面,并行总线比串行速度快。例如,Rambus公司的“Redwood”总线速度可高达6、4GHz,而最高的串行速度不会超过几个兆赫。 在工业与汽车应用中常用的串行协议 1、UART

C#串口通信总结

我们知道对于标准DLL,可以采用DllImport进行调用。例如: [DllImport("KMY350X.dll")] private static extern int OpenPort(int PortNum, int BaudRate); 如果一些厂家比较懒的话,没有提供相应的dll,我们只能对它进行串口通信编程了。以前从没接触过串口编程,最近在一个项目中有几个地方都需要采用串口通信,跟公司一个老手请教后,感觉学到了很多东西,特在此做个总结: 一、首先我们来认识下什么是串口 右键我的电脑-管理-设备管理器-端口,选择一个端口,点击属性。 我们可以看到该串口的属性,在C#中我们使用SerialPort类来表示串口 ConfigClass config = new ConfigClass(); comm.serialPort.PortName = config.ReadConfig("SendHealCard"); //波特率 comm.serialPort.BaudRate = 9600; //数据位 comm.serialPort.DataBits = 8; //两个停止位

comm.serialPort.StopBits = System.IO.Ports.StopBits.One; //无奇偶校验位 comm.serialPort.Parity = System.IO.Ports.Parity.None; comm.serialPort.ReadTimeout = 100; comm.serialPort.WriteTimeout = -1; 二、串口调试工具 在对串口进行编程时候,我们要向串口发送指令,然后我们解析串口返回的指令。在这里向大家推荐一款工具。 串口调试助手.exe 将要发送的指令用空格隔开,选择HEX显示为放回的字符串。 三、正式编程

串口通信的接线方法

目前较为常用的串口有9针串口(DB9)和25针串口(DB25),通信距离较近时(<12m),可以用电缆线直接连接标准RS232端口(RS422、RS485较远),若距离较远,需附加调制解调器(MODEM)。最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连,本文只涉及到最为基本的接法,且直接用RS232相连。 1、DB9和DB25的常用信号脚说明 2、RS232C串口通信接线方法(三线制) 首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连同一个串口的接收脚和发送脚直接用线相连对9针串口和25针串口,均是2与3直接相连; 两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口) 图2 上面表格是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼些交叉,信号地对应相接,就能百战百胜。 3、串口调试中要注意的几点: 不同编码机制不能混接,如RS232C不能直接与RS422接口相连,市面上专门的各种转换器卖,必须通过转换器才能连接; 线路焊接要牢固,不然程序没问题,却因为接线问题误事;

串口调试时,准备一个好用的调试工具,如串口调试助手、串口精灵等,有事半功倍之效果; 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口易损坏。 RS232C标准串口接线方法 (第二版) 检验仪器与微机的通讯主要是以RS232C标准接口为主,而串口的接线方法也有一定的标准,在此谈谈几种常用的串口接法,仅作参考: 一、标准接法 1、9对9(包括9针对9孔,9孔对9孔,9针对9针): 说明:以下的孔、针指串口线两端的串口,不过2、3有可能不交换 2-------------3 3-------------2 4-------------6 5-------------5 6-------------4 7-------------8 8-------------7 2、9对25(包括9孔对25孔,9孔对25针) 2-------------3 (备注:2、3有可能不交换) 3-------------2 4-------------6 5-------------7 6-------------20 7-------------5 8-------------4

51单片机串口通信的原理与应用流程解析

51单片机串口通信的原理与应用流程解析 一、原理简介 51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。 与之前一样,首先我们来了解单片机串口相关的寄存器。 SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。 串行口控制寄存器SCON(见表1)。 表1 SCON寄存器 表中各位(从左至右为从高位到低位)含义如下。 SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。 表2 串行口工作方式控制位 其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。 SM2 :多机通信控制位。该仅用于方式2 和方式3 的多机通信。其中发送机SM2 = 1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。工作于方式0 时,SM2 必须为0。

串口记录

一、原理简介 51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。 与之前一样,首先我们来了解单片机串口相关的寄存器。 SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。 串行口控制寄存器SCON(见表1)。 表1 SCON寄存器 表中各位(从左至右为从高位到低位)含义如下。 SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。 表2 串行口工作方式控制位 其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。 SM2 :多机通信控制位。该仅用于方式2 和方式3 的多机通信。其中发送机SM2 =1(需要程序控制设置)。接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。工作于方式0 时,SM2 必须为0。 REN :串行接收允许位:REN =0 时,禁止接收;REN =1 时,允许接收。 TB8 :在方式2、3 中,TB8 是发送机要发送的第9 位数据。在多机通信中它代表传输的地址或数据,TB8=0 为数据,TB8=1 时为地址。 RB8 :在方式2、3 中,RB8 是接收机接收到的第9 位数据,该数据正好来自发送机的TB8,从而识别接收到的数据特征。 TI :串行口发送中断请求标志。当CPU 发送完一串行数据后,此时SBUF 寄存器为空,硬件使TI 置1,请求中断。CPU 响应中断后,由软件对TI 清零。 RI :串行口接收中断请求标志。当串行口接收完一帧串行数据时,此时SBUF 寄存器为满,硬件使RI 置1,请求中断。CPU 响应中断后,用软件对RI 清零。 电源控制寄存器PCON(见表3)。 表3 PCON寄存器

串口通信程序

#include "stdafx.h" #include "Modbus.h" #include "ModbusDlg.h" #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif #define CT2A (data) ///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App About static const UCHAR aucCRCHi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; static const UCHAR aucCRCLo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,

相关文档