文档库 最新最全的文档下载
当前位置:文档库 › 最新高考物理动量定理练习题

最新高考物理动量定理练习题

最新高考物理动量定理练习题
最新高考物理动量定理练习题

最新高考物理动量定理练习题

一、高考物理精讲专题动量定理

1.质量为0.2kg 的小球竖直向下以6m/s 的速度落至水平地面,再以4m/s 的速度反向弹回,取竖直向上为正方向,

(1)求小球与地面碰撞前后的动量变化;

(2)若小球与地面的作用时间为0.2s ,则小球受到地面的平均作用力大小?(取g=10m/s 2).

【答案】(1)2kg?m/s ;方向竖直向上;(2)12N ;方向竖直向上; 【解析】 【分析】 【详解】

(1)小球与地面碰撞前的动量为:p 1=m (-v 1)=0.2×(-6) kg·m/s=-1.2 kg·m/s 小球与地面碰撞后的动量为p 2=mv 2=0.2×4 kg·

m/s=0.8 kg·m/s 小球与地面碰撞前后动量的变化量为Δp =p 2-p 1=2 kg·m/s (2)由动量定理得(F -mg )Δt =Δp 所以F =

p t ??+mg =

2

0.2

N +0.2×10N=12N ,方向竖直向上.

2.质量为70kg 的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知人先自由下落3.2m ,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时间为1s ,取g =10m/s 2.求缓冲过程人受到安全带的平均拉力的大小. 【答案】1260N 【解析】 【详解】

人下落3.2m 时的速度大小为

28.0m /s v gh ==

在缓冲过程中,取向上为正方向,由动量定理可得

()0()F mg t mv -=--

则缓冲过程人受到安全带的平均拉力的大小

1260N mv

F mg t

=

+=

3.如图所示,质量

的小车A 静止在光滑水平地面上,其上表面光滑,左端有一

固定挡板。可视为质点的小物块B 置于A 的最右端,B 的质量。现对小车A 施加

一个水平向右的恒力F =20N ,作用0.5s 后撤去外力,随后固定挡板与小物块B 发生碰撞。

假设碰撞时间极短,碰后A 、B 粘在一起,继续运动。求:

(1)碰撞前小车A 的速度;

(2)碰撞过程中小车A 损失的机械能。 【答案】(1)1m/s (2)25/9J 【解析】 【详解】

(1)A 上表面光滑,在外力作用下,A 运动,B 静止, 对A ,由动量定理得:,

代入数据解得:m/s ;

(2)A 、B 碰撞过程系统动量守恒,以向右为正方向,

由动量守恒定律得:,

代入数据解得:

碰撞过程,A 损失的机械能:,

代入数据解得:

4.如图甲所示,足够长光滑金属导轨MN 、PQ 处在同一斜面内,斜面与水平面间的夹角θ=30°,两导轨间距d =0.2 m ,导轨的N 、Q 之间连接一阻值R =0.9 Ω的定值电阻。金属杆ab 的电阻r=0.1 Ω,质量m=20 g ,垂直导轨放置在导轨上。整个装置处在垂直于斜面向上的匀强磁场中,匀强磁场的磁感应强度B =0.5 T 。现用沿斜面平行于金属导轨的力F 拉着金属杆ab 向上运动过程中,通过R 的电流i 随时间t 变化的关系图像如图乙所示。不计其它电阻,重力加速度g 取10 m/s 2。

(1)求金属杆的速度v 随时间t 变化的关系式; (2)请作出拉力F 随时间t 的变化关系图像; (3)求0~1 s 内拉力F 的冲量。

【答案】(1)5t =v (2)图见解析;(3)0.225 N s F I =? 【解析】 【详解】

(1)设瞬时感应电动势为e ,回路中感应电流为i ,金属杆ab 的瞬时速度为v 。

由法拉第电磁感应定律:e Bd =v 闭合电路的欧姆定律:e

i R r

=+ 由乙图可得,0.5i t = 联立以上各式得:5t =v

(2)ab 沿导轨向上运动过程中,由牛顿第二定律,得: sin F Bid mg ma θ--=

由第(1)问可得,加速度25m /s a = 联立以上各式可得:0.050.2F t =+ 由此可画出F -t 图像:

(3)对金属棒ab ,由动量定理可得: sin F I mgt BIdt m θ--=v

由第(1)问可得: 1 s t =时,=5 m/s v 联立以上各式,得:0.225 N s F I =?

另解:由F -t 图像的面积可得1

(0.20.25) 1 N s =0.225 N s 2

F I =+???

5.质量为2kg 的球,从4.05m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达到的最大高度为3.2m ,如果球从开始下落到弹起并达到最大高度所用时间为1.75s ,不考虑空气阻力(g 取10m/s 2),求小球对钢板的作用力的大小和方向. 【答案】700N 【解析】 【详解】

物体从下落到落地过程中经历的时间为1t ,从弹起到达到最高点经历的时间为2t ,则有:

21112h gt =

,22212

h gt = 可得:1122 4.05

s 0.9s 10

h t g ?=

==, 2222 3.2s 0.8s 10

h t g ?=

== 球与钢板作用的时间:12 1.750.90.8s 0.05s t t t t ?=--=--=总

由动量定理对全过程可列方程:00mgt F t -?=-总

可得钢板对小球的作用力210 1.75

N 700N 0.05

mgt F t ??===?总,方向竖直向上.

6.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量。为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变。利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系。(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】

【解析】 【分析】

根据“粒子器壁各面碰撞的机会均等”即相等时间内与某一器壁碰撞的粒子为该段时间内粒子总数的,一个粒子每与器壁碰撞一次给器壁的冲量是,据此根据动量定理求与某

一个截面碰撞时的作用力F ; 【详解】

一个粒子每与器壁碰撞一次给器壁的冲量是:

在时间内能达到面积为S 容器壁上的粒子所占据的体积为:

由于粒子有均等的概率与容器各面相碰,即可能达到目标区域的粒子数为:

根据动量定理得:

考虑单位面积

,整理可以得到:

根据牛顿第三定律可知,单位面积所受粒子的压力大小为。

【点睛】

本题的关键是建立微观粒子的运动模型,然后根据动量定理列式求解平均碰撞冲力,要注意粒子的运动是无规则的。

7.小物块电量为+q ,质量为m ,从倾角为θ的光滑斜面上由静止开始下滑,斜面高度为h ,空间中充满了垂直斜面匀强电场,强度为E ,重力加速度为g ,求小物块从斜面顶端滑到底端的过程中: (1)电场的冲量. (2)小物块动量的变化量.

【答案】(1)q 2sin E h

g

θ 方向垂直于斜面向下(2)2m gh 方向沿斜面向下 【解析】

(1)小物块沿斜面下滑,根据牛顿第二定律可知:sin mg ma θ=,则:sin a g θ= 根据位移与时间关系可以得到:

21sin sin 2h g t θθ=,则:12sin h

t g

θ= 则电场的冲量为:2sin Eq h

I Eqt g

θ==

,方向垂直于斜面向下 (2)根据速度与时间的关系,小物块到达斜面底端的速度为:gsin v at t θ==? 则小物块动量的变化量为:

12sin sin 2sin h

p mv mg t mg m gh g

θθθ?===?

=,方向沿斜面向下. 点睛:本题需要注意冲量以及动量变化量的矢量性的问题,同时需要掌握牛顿第二定律以及运动学公式的运用.

8.质量为200g 的玻璃球,从1.8m 高处自由下落,与地面相碰后,又弹起1.25m ,若球与地面接触的时间为0.55s ,不计空气阻力,取g=10m/s 2。求: (1)在与地面接触过程中,玻璃球动量变化量的大小和方向; (2)地面对玻璃球的平均作用力的大小。 【答案】(1) ,竖直向上(2)

【解析】 【详解】

(1)小球下降过程中只受重力,机械能守恒,根据机械能守恒,有:mgH =m v 12 解得:

小球上升过程中只受重力,机械能守恒,根据机械能守恒,有:mgh =m v 22

解得:

假设竖直向下为正方向,则;

负号表示方向竖直向上; (2)根据动量定理有:Ft+mgt=?p

代入已知解得:F=-6 N

“-”表示F的方向竖直向上;

【点睛】

本题关键是明确乒乓球上升和下降过程机械能守恒,然后结合机械能守恒定律和动量定理列式求解,注意正方向的选取.

9.高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,求:

(1)整个过程中重力的冲量;

(2)该段时间安全带对人的平均作用力大小.

【答案】(1)(2)

【解析】

试题分析:对自由落体运动,有:

h=

解得:,

则整个过程中重力的冲量I=mg(t+t1)=mg(t+)

(2)规定向下为正方向,对运动的全程,根据动量定理,有:

mg(t1+t)﹣Ft=0

解得:

F=

10.质量为0.5kg的小球从h=2.45m的高空自由下落至水平地面,与地面作用0.2s后,再以5m/s的速度反向弹回,求小球与地面的碰撞过程中对地面的平均作用力.(不计空气阻力,g=10m/s2)

【答案】35N

【解析】

小球自由下落过程中,由机械能守恒定律可知:

mgh=1

2

mv12;

解得:v12210 2.457

gh=??=m/s,

同理,回弹过程的速度为5m/s,方向竖直向上,

设向下为正,则对碰撞过程由动量定理可知:

mgt-F t=-mv′-mv

代入数据解得:F=35N

由牛顿第三定律小球对地面的平均作用力大小为35N,方向竖直向下.

11.如图,一质量为M=1.5kg的物块静止在光滑桌面边缘,桌面离水平面的高度为

h =1.25m .一质量为m =0.5kg 的木块以水平速度v 0=4m/s 与物块相碰并粘在一起,碰撞时间极短,重力加速度为g =10m/s 2.不及空气阻力,求:

(1)碰撞过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离. 【答案】(1)3J (2)0.5m 【解析】

试题分析:(1)对m 与M 组成的系统,碰撞过程中动量守恒,设碰后共同速度为v ,有 mν0=(m+M )ν 解得v=1m/s

碰撞后系统损失的机械能22011

()22

E mv m M v ?=-+ 解得△E=3J

(2)物块离开桌面后做平抛运动,设落地点离桌面边缘的水平距离为x ,有 竖直方向作自由落体:212

h gt = 解得t=0.5s

水平方向匀速直线: x=vt=0.5m

考点:动量守恒定律;机械能守恒定律;平抛运动

【名师点睛】本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.

12.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m 高处.已知运动员与网接触的时间为1.2s.若把在这段时间内网对运动员的作用力当作恒力处理,g=10m/s 2.. 求: (1)运动员着网前瞬间的速度大小; (2)网对运动员的作用力大小.

【答案】(1)8m/s ,方向向下 (2)1500N 【解析】(1)从h 1=3.2m 自由落体到床的速度为v 1

=8ms ,方向向下

(2)离网的速度为v 2

=10m/s

规定向下为正方向,由动量定理得

=1500N

所以网对运动员的作用力为1500N.

点睛:根据题意可以把运动员看成一个质点来处理,下落过程是自由落体运动,上升过程是竖直上抛运动,算出自由落体运动末速度和竖直上抛运动的初速度,根据动量定理求出网对运动员的作用力。

高考物理复习之动量 动量定理

2007年高考物理复习之动量动量定理 复习要点 1、掌握动量、冲量概念 2、了解动量与冲量间关系,掌握动量定理及其应用 3、掌握动量守恒定律及其应用 4、熟悉反冲运动,碰撞过程 二、难点剖析 1、动量概念及其理解 (1)定义:物体的质量及其运动速度的乘积称为该物体的动量P=mv (2)特征:①动量是状态量,它与某一时刻相关;②动量是矢量,其方向质量物体运动速度的方向。 (3)意义:速度从运动学角度量化了机械运动的状态动量则从动力学角度量化了机械运动的状态。 2、冲量概念及其理解 (1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t (2)特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。 (3)意义:冲量是力对时间的累积效应。对于质量确定的物体来说,合外力决定看其速度将变多快; 合外力的冲量将决定着其速度将变多少。对于质量不确定的物体来说,合外力决定看其动量将变多快;合外力的冲量将决定看基动量将变多少。 3、关于冲量的计算 (1)恒力的冲量计算 恒力的冲量可直接根据定义式来计算,即用恒 力F乘以其作用时间△t而得。 (2)方向恒定的变力的冲量计算。 如力F的方向恒定,而大小随时间变化的情况 如图—1所示,则该力在时间 △t=t2-t1内的冲量大小在数值上就等于图11—1中阴影 部分的“面积”。图—1 (3)一般变力的冲量计算 在中学物理中,一般变力的冲量通常是借助于动量定理来计算的。 (4)合力的冲量计算 几个力的合力的冲量计算,既可以先算出各个分力的冲量后再求矢量和,又可以先算各个分力的合力再算合力的冲量。 4、动量定理 (1)表述:物体所受合外力的冲量等于其动量的变化 I=△P F△t=mv-mv。 (2)导出:动量定理实际上是在牛顿第二定律的基础上导出的,由牛顿第二定律 F=mv 两端同乘合外力F的作用时间,即可得 F△t=ma△t=m(v-v0)=mv-mv0 (3)物理:①动量定理建立的过程量(I=F△t)与状态量变化(△P=mv-mv0)间的关系,这就提供了一种“通过比较状态以达到了解过程之目的”的方法;②动量定理是矢量式,这使得在运用动量应用于一维运动过程中,首先规定参考正方向以明确各矢量的方向关系是十分重要的。

高考物理总复习--物理动能与动能定理及解析

高考物理总复习--物理动能与动能定理及解析 一、高中物理精讲专题测试动能与动能定理 1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求: (1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ; (3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】 (1)在B 点时有v B = cos60? v ,得v B =6m/s (2)从B 点到E 点有2 102 B mgh mgL mgH mv μ--=- ,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有 2 1'202 B mgh mgh mg L mv μ--?=-,得h ′=1.2m

最新高考物理模拟题及答案(20210120165454)

18.静止在地面上的一小物体,在竖直向上的拉力作用下开始运动,在向上运动的过程中,物体的机械能与 二、选择题:本题共 8 小题,每小题 6 分。在每小题给出的四个选项中,第 14~17 题只有一项符合题目要求; 位移的关系图象如图所示,其中 0~s 1过程的图线是曲线, s 1~s 2过程的图线为平行于横轴的直线.关于物体上升 第 18~21 题有多项符合题目要求。全部选对得 6 分,选对但不全的得 3 分,有选错的得 0 分。 过程(不计空气阻力)的下列说法正确的( ) 14. 如图甲, 一物体沿光滑斜面由静止开始从顶端下滑到底端,若用 h 、s 、v 、a 分别表示物体下 降的高度、位移、速度和加速度, t 表示所用的时间,则在乙图画出的图像中正确的是 h s v a A .s 1~s 2过程中物体做匀速直线运动 B .0~s 1过程中物体所受的拉力是变力,且不断减小 C .0~s 2过程中物体的动能先增大后减小 D .0~s 2过程中物体的加速度先减小再反向增大,最后保持不变且等于重力加速度 t t t o o o o A B C D 甲 乙 t 19. 如图所示,两颗质量不等卫星分别位于同一轨道上绕地球做匀速圆周运动 . 若卫星均顺时针运 行,不计卫星间的相互作用力, 则以下判断中正确的 是 甲 15. 图甲是小型交流发电机的示意图,两磁极 N 、S 间的磁场可视为水平方向的匀强磁场, A 为 卫星 1 A. 两颗卫星的运动速度大小相等 交流电流表,线圈绕垂直于磁 场的水 i / A B. 两颗卫星的加速度大小相等 平轴 OO 沿逆时针方向匀速 10 2 转动, 2 t / 10 s 从图示位置开始计时,产生的 O 交变电 2 C. 两颗卫星所受到的向心力大小相等 D. 卫星1向后喷气就一定能追上卫星 2 地球 卫星 2 流随时间变化的图像如图乙所 10 2 示,以 20. 如图所示, 在竖直向上的匀强电场中, A 球位于 B 球的正上方, 质量相等的两个小球以相同初 甲 乙 甲 下判断正确的是 A. 交 流电 的频 率是 100 H z B .电流 表的示数为 20 A 速度水平抛出, 它们最后落在水平面上同一点, 其中只有一个 小球带 电,不计空气阻力,下例判断正确的是 A E A .如果 A 球带电,则 A 球一定带负电 B C .0.02 s 时穿过线圈的磁通量最大 D .0.01s 时线圈平面与磁场方向平行 B .如果 A 球带电,则 A 球的电势能一定增加 16.如图所示,两个质量均为 m 用轻质弹簧连接的物块 A 、B 放在一倾角为 θ的光滑斜面上,系统 C .如果 B 球带电,则 B 球一定带负电 静止.现用一平行于斜面向上的恒力 F 拉物块 A ,使之沿斜面向上运动,当物块 B 刚要离开固 D .如果 B 球带电,则 B 球的电势能一定增加 21. 如图所示, 固定的倾斜光滑杆上套有一个质量为 m 的圆环,圆环与一弹性橡皮绳相连, 橡皮绳 定在斜面上的挡板 C 时,物块 A 运动的距离为 d ,瞬时速度 为 v ,已知 的另一端固定在地面上的 A 点,橡皮绳竖直时处于原长 h . 让圆环沿杆滑下,滑到杆的底端时 弹簧劲度系数为 k ,重力加速为 g ,则此时( ) A .物块 A 速度为零. 则在圆环下滑过程中 (橡皮绳始终处于弹性限度内) 运动的距离 d=mgsin θ/2k

河南省高考物理总复习讲义 第13章 第1讲 动量定理 动量守恒定律

第1讲 动量定理 动量守恒定律 知识一 冲量和动量定理 1.冲量 (1)定义:力F 与力的作用时间t 的乘积. (2)定义式:I =Ft . (3)单位:N·s (4)方向:恒力作用时,与力的方向相同. (5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 2.动量定理 (1)内容:物体所受合力的冲量等于物体的动量变化. (2)表达式:? ?? ?? Ft =mv 2-mv 1 I =Δp 知识二 动量和动量守恒定律 1.动量 (1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p 来表示. (2)表达式:p =mv . (3)单位:kg·m/s . (4)标矢性:动量是矢量,其方向和速度方向相同. 2.动量守恒定律 (1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变,这就是动量守恒定律. (2)表达式 m 1v 1+m 2v 2=m 1v ′1+m 2v ′2,即相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和. 3.动量守恒定律的适用条件 (1)理想守恒:系统不受外力或所受外力的合力为零. (2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力. 知识三 碰撞、反冲和爆炸问题 1.弹性碰撞和非弹性碰撞 动量是否守恒 机械能是否守恒 弹性碰撞 守恒 守恒 非完全弹性碰撞 守恒 有损失 完全非弹性碰撞 守恒 损失最大 2.

在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开.这类问题相互作用的过程中系统的动能增大,且常伴有其他形式能向动能的转化. 3.爆炸问题 爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动. 考点一 对动量定理的理解及应用 一、适用范围 适用于恒力作用也适用于变力作用,适用于直线运动也适用于曲线运动,适用于受持续的冲量作用,也适用于受间断的多个冲量的作用. 二、解释现象 一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小. 三、解题的基本思路 1.确定研究对象:一般为单个物体或由多个物体组成的系统. 2.对物体进行受力分析.可以先求每个力的冲量,再求各力冲量的矢量和;或先求合力,再求其冲量. 3.抓住过程的初末状态,选好正方向,确定各动量和冲量的正负号. 4.根据动量定理列方程代入数据求解. 排球运动是一项同学们喜欢的体育运动.为了了解排球的某些性能,某同学让 排球从距地面高h 1=1.8 m 处自由落下,测出该排球从开始下落到第一次反弹到最高点所用时间为t =1.3 s ,第一次反弹的高度为h 2=1.25 m .已知排球的质量为m =0.4 kg ,g 取10 m/s 2 ,不计空气阻力.求: (1)排球与地面的作用时间; (2)排球对地面的平均作用力的大小. 【解析】 (1)排球第一次落到地面的时间为t 1,第一次反弹到最高点的时间为t 2, 由h 1=12gt 21,h 2=12 gt 2 2,得 t 1=0.6 s ,t 2=0.5 s 所以排球与地面的作用时间Δt =t -t 1-t 2=0.2 s. (2)方法一:设排球第一次落地的速度大小为v 1,第一次反弹离开地面时的速度大小为v 2,则有: v 1=gt 1=6 m/s ,v 2=gt 2=5 m/s 设地面对排球的平均作用力的大小为F ,以排球为研究对象,取向上为正方向,则在排球与地面的作用过程中,由动量定理得: (F -mg )Δt =mv 2-m (-v 1) 解得:F =m v 2+v 1 Δt +mg 代入数据得:F =26 N 根据牛顿第三定律得:排球对地面的平均作用力为26 N. 方法二:全过程应用动量定理 取竖直向上为正方向,从开始下落到第一次反弹到最高点的过程用动量定理得F (t -t 1 -t 2)-mgt =0

高考物理高考物理动量定理解题技巧分析及练习题(含答案)

高考物理高考物理动量定理解题技巧分析及练习题(含答案) 一、高考物理精讲专题动量定理 1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停 在沙坑里.求: ⑴沙对小球的平均阻力F ; ⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122 () mg t t t + (2)1mgt 【解析】 试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得: 方向竖直向上 ⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理 点评:本题考查了利用冲量定理计算物体所受力的方法. 2.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。

高中物理 动能 动能定理资料

动能动能定理 动能定理是高中教学重点内容,也是高考每年必考内容,由此在高中物理教学中应提起高度重视。 一、教学目标 1.理解动能的概念: (1)知道什么是动能。 制中动能的单位是焦耳(J);动能是标量,是状态量。 (3)正确理解和运用动能公式分析、解答有关问题。 2.掌握动能定理: (1)掌握外力对物体所做的总功的计算,理解“代数和”的含义。 (2)理解和运用动能定理。 二、重点、难点分析 1.本节重点是对动能公式和动能定理的理解与应用。 2.动能定理中总功的分析与计算在初学时比较困难,应通过例题逐步提高学生解决该问题的能力。 3.通过动能定理进一步加深功与能的关系的理解,让学生对功、能关系有更全面、深刻的认识,这是本节的较高要求,也是难点。 三、主要教学过程 (一)引入新课 初中我们曾对动能这一概念有简单、定性的了解,在学习了功的概念及功和能的关系之后,我们再进一步对动能进行研究,定量、深入地理解这一概念及其与功的关系。 (二)教学过程设计 1.什么是动能?它与哪些因素有关?这主要是初中知识回顾,可请学生举例回答,然后总结作如下板书: 物体由于运动而具有的能叫动能,它与物体的质量和速度有关。 下面通过举例表明:运动物体可对外做功,质量和速度越大,动能越大,物体对外做功的能力也越强。所以说动能是表征运动物体做功的一种能力。 2.动能公式 动能与质量和速度的定量关系如何呢?我们知道,功与能密切相关。因此我们可以通过做功来研究能量。外力对物体做功使物体运动而具有动能。下面我们就通过这个途径研究一个运动物体的动能是多少。 列出问题,引导学生回答: 光滑水平面上一物体原来静止,质量为m,此时动能是多少?(因为物体没有运动,所以没有动能)。在恒定外力F作用下,物体发生一段位移s,得到速度v (如图1),这个过程中外力做功多少?物体获得了多少动能?

高考物理模拟题及答案

高二物理(选修1-1)第一章电场电流质量检测试卷 一、填空题 1.电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,直到1752年,伟大的科学家_________________冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,发现天电和摩擦产生的电是一样的,才使人类摆脱了对雷电现象的迷信。 2.用____________和______________的方法都可以使物体带电。无论那种方法都不能_________电荷,也不能__________电荷,只能使电荷在物体上或物体间发生____________,在此过程中,电荷的总量__________,这就是电荷守恒定律。 3.带电体周围存在着一种物质,这种物质叫_____________,电荷间的相互作用就是通过____________发生的。 4.电场强度是描述电场性质的物理量,它的大小由____________来决定,与放入电场的电荷无关。由于电场强度由大小和方向共同决定,因此电场强度是______________量。 5.避雷针利用_________________原理来避电:带电云层靠近建筑物时,避雷针上产生的感应电荷会通过针尖放电,逐渐中和云中的电荷,使建筑物免遭雷击。 6.某电容器上标有“220V 300μF”,300μF=____F=_____pF。 7.某电池电动势为1.5V,如果不考虑它内部的电阻,当把它的两极与150Ω的电阻连在一起时,16秒内有______C的电荷定向移动通过电阻的横截面,相当于_______个电子通过该截面。 8.将一段电阻丝浸入1L水中,通以0.5A的电流,经过5分钟使水温升高1.5℃,则电阻丝两端的电压为_______V,电阻丝的阻值为_______Ω。 二、选择题 9.保护知识产权,抵制盗版是我们每个公民的责任与义务。盗版书籍影响我们的学习效率甚至会给我们的学习带来隐患。小华有一次不小心购买了盗版的物理参考书,做练习时,他发现有一个关键数字看不清,拿来问老师,如果你是老师,你认为可能是下列几个数字中的那一个 A.6.2×10-19C B.6.4×10-19C C.6.6×10-19C D.6.8×10-19C 10.真空中有两个静止的点电荷,它们之间的作用力为F,若它们的带电量都增大为原来的2倍,距离减少为原来的1/2,它们之间的相互作用力变为 A.F/2 B.F C.4F D.16F 11.如左下图所示是电场中某区域的电场线分布图,A是电场中的一点,下列判断中正确的是 A.A点的电场强度方向向左B.A点的电场强度方向向右 C.负点电荷在A点受力向右 D.正点电荷受力沿电场线方向减小

1动量竞赛讲义动量定理

高中物理奥赛讲义·动量与能量 第一讲、动量定理 一.冲量:力对时间的累积效应;I =Ft 变力冲量的求解:重视F -t 图的物理意义 二.动量:物体的质量与速度的乘积;P =mv 质点系(系统)的动量:P =i i v m 三.动量定理: 1.动量定理的基本形式与表达式:I 合=ΔP 2.单方向动量定理的表达式:I x 合=ΔP x ,I y 合=ΔP y … 3.质点系动量定理:I 外合=P t 总—P 0总 1.微元模型 例1.一根均匀柔软的链条悬挂在天花板上,且下端正好触地。若松开悬点,让链条自由下落。试证 明,在下落过程中,链条对地板的作用力等于已落在地板上的那段链条重力的三倍。 例2.一根均匀柔软的绳子长为l 、质量为m ,对折后两端固定在一个钉子上。其中一端突然从钉子 上脱落。求下落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力。 2.整体与局部 例3.质量为M 的金属球和质量为m 的木球以细线相连,细线绷直且全部没入水中,从静止开始以 加速度a 在水中下沉,经时间t 1细线断开,再经时间t 2木球停止下沉,求此时金属球M 的下沉速度。

3.某一方向上动量定理 例4.三个质点A、B、C质量分别为m1、m2、m3,位于光滑水平面上,用已拉直的不可伸长的柔软细绳AB和BC连接,∠ABC=π-α,α为锐角,如图所示。现有一冲量为I的冲击力沿BC方向作用于C点,求A的速度。例5.如图所示,四个质量均为m的质点,用同样长度且不可伸长的轻绳联结成菱形ABCD,静止放在水平光滑的桌面上。若突然给质点A一个历时极短的沿CA方向的冲击,当冲击结束的时刻,质点A的速度为v,其他质点也获得一定的速度,∠BAD=2α(α<π/4)。求此质点系统受到冲击后所具有的总动量和总能量。

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高考物理模拟试卷及答案

2015年高考物理模拟试卷(1) 一、单项选择题 (本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,只有一个选项 是正确的) 13.下列说法正确的是 A .C 146经一次α衰变后成为N 14 7 B .氢原子的核外电子从半径较小的轨道跃迁到半径较大的轨道时,原子的能量增大 C .温度升高能改变放射性元素的半衰期 D .核反应方程应遵循质子数和中子数守恒 14.一铁架台放于水平地面上,其上有一轻质细线悬挂一小球,开始时细线竖直,现将水平力F 作用于 小球上,使其缓慢地由实线位置运动到虚线位置,铁架台始终保持静止,在这一过程中,下列说法正确的是 A .水平拉力F 是恒力 B .铁架台对地面的压力一定不变 C .铁架台所受地面的摩擦力不变 D .铁架台对地面的摩擦力始终为零 15.甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是 A .乙的速度大于第一宇宙速度 B . 甲的运行周期小于乙的周期 C .甲的加速度小于乙的加速度 D .甲有可能经过北极的正上方 16.如图,一重力不计的带电粒子以一定的速率从a 点对准圆心射人一圆形 匀强磁场,恰好从b 点射出.若增大粒子射入磁场的速率,下列判断正确的是 A .该粒子带正电 B .从bc 间射出 C .从ab 间射出 D .在磁场中运动的时间不变 二.双项选择题 (本大题共5小题,每小题6分,共30分.在每小题给出的四个选项中,只有两个选项 正确,只选一项且正确得3分) 17.对悬挂在空中密闭的气球从早晨到中午过程(体积变化忽略不计),下列描 述中正确的是 A .气球内的气体从外界吸收了热量,内能增加 B .气球内的气体温度升高、体积不变、压强减小 C .气球内的气体压强增大,所以单位体积内的分子增加,单位面积的碰撞频率增加 D .气球内的气体虽然分子数不变,但分子对器壁单位时间、单位面积碰撞时的作用力增大 18.如图所示,小船自A 点渡河,到达正对岸B 点,下 列措施可能满足要求的是 A .航行方向不变,船速变大 B .航行方向不变,船速变小 C .船速不变,减小船与上游河岸的夹角a D .船速不变,增大船与上游河岸的夹角a 19.为保证用户电压稳定在220V ,变电所需适时进行调压,图甲为调压变压器示意图.保持输入电压 F α B A

动能及动量定理复习讲义

动能及动量定理复习讲义 1 知识结构示意图 2 推导过程及应用举例 ①动能定理 推导:==- 结论1: 结论2: 简述:该推导过程看似简单,其实是一举两得。一来寻找到了动能的表达式,即 (结合“功是能量转化的量度”来讲述);二来整个表达式也是个有用的定理,即动能定理。虽然是牛顿第二定律加运动学公式的推论,但功能更强。 例1:如图所示,一光滑圆弧槽固定于水平地面上,半径为R。现从左侧无初速度释放一小球,试问当该小球滑至槽底时,速度为多少?

分析:用动能定理求解即可,解略。 答案: 总结:此题简单易做,目的在于告诉学生牛顿第二定律加运动学公式(匀变速直线)不能解决的问题,其推论动能定理却能轻松求解。 例2:若上题中圆弧槽是出粗糙的,且已知小球滑至槽底时速度为V,求该过程中,摩擦力对其做功为多少? 分析:求变力做功,用动能定理的第二种结构,即 解:由动能定理可知, 得: 答案: 需要说明,非恒力是不适于用这个公式来求做功的,此时往往要借助于动能定理。但有些不是恒力的情况,却也能用其他公式来展开。比如公式:以及.前者针对的是以恒定功率启动的汽车,后者尤其适合于非均匀电场中的电场力做功。而对于弹簧做功,有时会用初、末弹力之和的一半,做为平均值,方能代入求解。 ②动量定理

推导: 结论1: 结论2: 简述:大家现在已经知道,都能得到具有特定含义的物理量。那么,运动学所 涉及的物理量还有t,若是尝试把力和时间积累,是否也可以得出具有特定含义的物理量呢?该定理的推导过程即可顺理成章地引入了。类比动能定理讲解。 例3:如图所示,两质量为m的相同物块竖直悬挂,现把之间连线剪断,且知当下方物块下落至速度为V时,上方物块刚好弹到最高处。求此过程中,弹簧弹力对上方物块的冲量为多大? 分析:变力冲量,用动量定理求解,其中的分力是恒力的,可将其冲量用Ft展开。 解:根据题意,设弹簧弹力对物块冲量为I,且该过程时间为t,则由动量定理可知,对上方物块: 对下方物体,由运动学公式可得: 两式联立可得:

高考物理动量定理真题汇编(含答案)

高考物理动量定理真题汇编(含答案) 一、高考物理精讲专题动量定理 1.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=?,右侧斜面的中间用阻值为2R =Ω的电阻连接。在左侧斜面区域存在垂直斜面向下的匀强磁场,磁感应强度大小为10.5T B =,右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场,磁感应强度为20.5T B =。在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab ,另一导体棒cd 置于左侧斜面轨道上,与导轨垂直且接触良好,ab 棒和cd 棒的质量均为0.2kg m =,ab 棒的电阻为12r =Ω,cd 棒的电阻为24r =Ω。已知t =0时刻起,cd 棒在沿斜面向下的拉力作用下开始向下运动(cd 棒始终在左侧斜面上运动),而ab 棒在水平拉力F 作用下始终处于静止状态,F 随时间变化的关系如图乙所示,ab 棒静止时细导线与竖直方向的夹角37θ=?。其中导轨的电阻不计,图中的虚线为绝缘材料制成的固定支架。 (1)请通过计算分析cd 棒的运动情况; (2)若t =0时刻起,求2s 内cd 受到拉力的冲量; (3)3 s 内电阻R 上产生的焦耳热为2. 88 J ,则此过程中拉力对cd 棒做的功为多少? 【答案】(1)cd 棒在导轨上做匀加速度直线运动;(2)1.6N s g ;(3)43.2J 【解析】 【详解】 (1)设绳中总拉力为T ,对导体棒ab 分析,由平衡方程得: sin θF T BIl =+ cos θT mg = 解得: tan θ 1.50.5F mg BIl I =+=+ 由图乙可知: 1.50.2F t =+ 则有: 0.4I t = cd 棒上的电流为:

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。 (1)求滑块第一次运动到B 点时对轨道的压力。 (2)求滑块在粗糙斜面上向上滑行的最大距离。 (3)通过计算判断滑块从斜面上返回后能否滑出A 点。 【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】 (1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有 ()21 2 B mg h R mv += 那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且 ()2 N 270N B mg h R mv F mg mg R R +=+=+= 故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。 (2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得 cos37sin37cos370mg h R R L mgL μ+-?-?-?=() 所以 1.2m L = (3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得 ()21 2cos370.542 B mv mg h R mgL mg mgR μ'=+-?=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。 【点睛】 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。

2020高三模拟高考物理试题及答案

2020年高三模拟高考物理试题 14,北斗卫星导航系统(BDS )空间段由35颗卫星组成,包括5颗静止轨道卫星(地球同步卫星)、27颗中轨道地球卫星、3颗其他卫星.其中有一颗中轨道地球卫星的周期为16小时,则该卫星与静止轨道卫星相比 A .轨道半径小 B .角速度小 C .线速度小 D .向心加速度小 15.用频率为v 的单色光照射阴极K 时,能发生光电效应,改变光电管两端的电压,测得电流随电压变化的图象如图所示,U 0为遏止电压.已知电子的带电荷量为e ,普朗克常量为h ,则阴极K 的极限频率为 A .0 eU v h + B .0eU v h - C . 0eU h D .v 16.物块在1N 合外力作用下沿x 轴做匀变速直线运动,图示为其位置坐标和速率的二次方的关系图线,则关于该物块有关物理量大小的判断正确的是 A .质量为1kg B .初速度为2m /s C .初动量为2kg ?m /s D .加速度为0.5m /s 2 17.如图所示,D 点为固定斜面AC 的中点,在A 点先后分别以初速度v 01和v 02水平抛出一个小球,结果小球分别落在斜面上的D 点和C 点.空气阻力不计.设小球在空中运动的时间分别为t 1和t 2,落到D 点和C 点前瞬间的速度大小分别为v 1和v 2,落到D 点和C 点前瞬间的速度 方向与水平方向的夹角分别为1θ和2θ,则下列关系式正确的是

A . 1212t t = B .01021 2v v = C . 122v v = D .12tan tan 2 θθ= 18.如图所示,边长为L 、电阻为R 的正方形金属线框abcd 放在光滑绝缘水平面上,其右边有一磁感应强度大小为B 、方向竖直向上的有界匀强磁场,磁场的宽度为L ,线框的ab 边与磁场的左边界相距为L ,且与磁场边界平行.线框在某一水平恒力作用下由静止向右运动,当ab 边进入磁场时线框恰好开始做匀速运动.根据题中信息,下列物理量可以求出 的是 A .外力的大小 B .匀速运动的速度大小 C .通过磁场区域的过程中产生的焦耳热 D .线框完全进入磁场的过程中通过线框某横截面的电荷量 19.如图所示,竖直墙壁与光滑水平地面交于B 点,质量为m 1的光滑半圆柱体O 1紧靠竖直墙壁置于水平地面上,可视为质点的质量为m 2的均匀小球O 2用长度等于AB 两点间距离的细线悬挂于竖直墙壁上的A 点,小球O 2静置于半圆柱体O 1上,当半圆柱体质量不变而半径不同时,细线与竖直墙壁的夹角B 就会跟着发生改变,已知重力加速度为g ,不计各接触面间的摩擦,则下列说法正确的是 A .当60θ ?=时,半圆柱体对地面的压力123 m g g + B .当60θ ?=时,小球对半圆柱体的压力 23 2 m g C .改变圆柱体的半径,圆柱体对竖直墙壁的最大压力为21 2 m g D .圆柱体的半径增大时,对地面的压力保持不变 20.如图所示,匀强电场的方向与长方形abcd 所在的平面平行,ab 3.电子从a 点运动到b 点的

高考物理动量定理基础练习题

高考物理动量定理基础练习题 一、高考物理精讲专题动量定理 1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。求: (1)C的质量m C; (2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I; (3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。 【答案】(1)2kg ;(2)27J,36N·S;(3)9J 【解析】 【详解】 (1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒 m C v1=(m A+m C)v2 解得C的质量m C=2kg。 (2)t=8s时弹簧具有的弹性势能 E p1=1 2 (m A+m C)v22=27J 取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小 I=(m A+m C)v3-(m A+m C)(-v2)=36N·S (3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大 (m A+m C)v3=(m A+m B+m C)v4 1 2(m A+m C)2 3 v= 1 2 (m A+m B+m C)2 4 v+E p2 解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。 2.如图所示,质量为m=245g的木块(可视为质点)放在质量为M=0.5kg的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为m0 = 5g的子弹以速度v0=300m/s沿水平方向射入木块并留在其中(时间极短),子弹射入后,g取10m/s2,求: (1)子弹进入木块后子弹和木块一起向右滑行的最大速度v1 (2)木板向右滑行的最大速度v2

高考物理动能与动能定理解题技巧及练习题(含答案)

高考物理动能与动能定理解题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

高考物理动量定理基础练习题及解析

高考物理动量定理基础练习题及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 22 02v v aL -= 可解得:22 1002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv = -

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122 E m v m v = + 其中 121 4m m = 12m m m =+

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)

最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案) 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求: (1)弹簧获得的最大弹性势能; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能; (3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动 能定理得:?μmgl+W弹=0?m v02 由功能关系:W弹=-△E p=-E p 解得 E p=10.5J; (2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 ?2μmgl=E k?m v02 解得 E k=3J; (3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况: ①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 ?2mgR=m v22?E k 小物块能够经过最高点的条件m≥mg,解得R≤0.12m ②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心 等高的位置,即m v12≤mgR,解得R≥0.3m; 设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:

相关文档
相关文档 最新文档