文档库 最新最全的文档下载
当前位置:文档库 › 代数发展史

代数发展史

代数发展史
代数发展史

代数发展史

一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。在此简要介绍代数学的有关历史发展情况。

“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“a l-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首

次把“algebra”译成“代数”。后来清代学者华蘅芳和英国人傅兰雅合译英国瓦里斯的《代数学》,卷首有“代数之法,无论何数,皆可以任何记号代之”,亦即:代数,就是运用文字符号来代替数字的一种数学方法。古希腊数学家丢番图(Diophantus)用文字缩写来表示未知量,在公元250年前后丢番图写了一本数学巨著《算术》(Arithmetica)。其中他引入了未知数的概念,创设了未知数的符号,并有建立方程序的思想。故有“代数学之父”(Father of algebra)的称号。

代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。

1、算术

算术给予我们一个用之不竭的、充满有趣真理的宝库----高斯(Gauss,1777-1855)

数可以说成是统治整个量的世界,而算术的四则可以被认为是作为数学家的完全的装备---麦斯韦(James Clark Maxwell 1831-1879)

算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。

算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。它后来被阿拉伯人采用,之后传到西欧。15世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。 19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺(Peano)进一步完善了格拉

斯曼的体系。算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其它分支的最坚实的基础。

2、初等代数

作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二是增高未知量的次数,考察一元二次方程或准二次方程。初等代数的主要内容在16世纪便已基本上发展完备了。古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。3世纪的丢番图用有理数求一次、二次不定方程的解。13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。16世纪意大利数学家发现了三次和四次方程的解法。代数学符号发展的历史,可分为三个阶段。第一个阶段为三世纪之前,对问题的解不用缩写和符号,而是写成一篇论文,称为文字叙述代数。第二个阶段为三世纪至16世纪,对某些较常出现的量和运算采用了缩写的方法,称为简化代数。三世纪的丢番图的杰出贡献之一,就是把希腊代数学简化,开创了简化代数。然而此后文字叙述代数,在除了印度以外的世界其它地方,还十分普通地存在了好几百年,尤其在西欧一直到15世纪。第三个阶段为16世纪以后,对问题的解多半表现为由符号组成的数学速记,这些符号与所表现的内容没有什么明显的联系,称为符号代数。韦达(Viète)在他的《分析方法入门》(Inartem analyticem isagoge,1591)著作中,首次系统地使用了符号表示未知量的值进行运算,提出符号运算与数的区别,规定了代数与算术的分界。韦达是第一个试图创立一般符号代数的的数学家,他开创的符号代数,经笛卡尔(Descarte)改进后成为现代的形式。笛卡尔用小写字母a, b, c等表示已知量,而用x, y, z代表未知量。这种用法已经成为当今的标准用法。“+”、“-”号第一次在数学书中出现,是1489年维德曼的著作《商业中的巧妙速算法》(Behend und hüpsch Rechnung uff allen kauffmanschafften, 1489)。不过正式为大家所公认,作为加、减法运算的符号,那是从1514年由荷伊克开始的。1540年,雷科德(R.

Rcorde)开始使用现在使用的“=”。到1591年,韦达在著作中大量使用后,才逐渐为人们所接受。1600年哈里奥特(T. Harriot)创用大于号“>”和小于号“<”。1631年,奥屈特给出“×”、“÷”作为乘除运算符。1637年,笛卡尔第一次使用了根号,并引进用字母表中头前的字母表示已知数、后面的字母表示未知数的习惯做法。至于“≮”、“≯”、“≠”这三个符号的出现,那是近代的事了。数的概念的拓广,在历史上并不全是由解代数方程所引起的,但习惯上仍把它放在初等代数里,以求与这门课程的安排相一致。公元前4世纪,古希腊人发现无理数。公元前2世纪(西汉时期),我国开始应用负数。1545年,意大利的卡尔达诺(N. Cardano)在《大术》中开始使用虚数。1614年,英国的耐普尔发明对数。17世纪末,一般的实数指数概念才逐步形成。

3、高等代数

在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程发展成为多项式理论。前者是向量空间、线性变换、型论、不变量论和张量代数等内容的一门近世代数分支学科,而后者是研究只含有一个未知量的任意次方程的一门近世代数分支学科。作为大学课程的高等代数,只研究它们的基础。高次方程组(即非线性方程组)发展成为一门比较现代的数学理论----代数几何。线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意,而且写了成千篇关于这两个课题的文章。向量的概念,从数学的观点来看不过是有序三元数组的一个集合,然而它以力或速度作为直接的物理意义,并且数学上用它能立刻写出物理上所说的事情。向量用于梯度,散度,旋度就更有说服力。同样,行列式和矩阵如导数一样(虽然在数学上不过是一个符号,表示包括的极限的长式子,但导数本身是一个强有力的概念,能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。

十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚

的叙述。而在欧洲,第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹(Leibnitz,1693年)。 1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。 1764年,Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。参照克莱姆和Bezout 的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则,并推广了他的展开行列式的方法,用r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。1841年,德国数学家雅可比(Jacobi)总结并提出了行列式的最系统的理论。另一个研究行列式的是法国最伟大的数学家柯西(Cauchy),他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了laplace的展开定理。相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由Wilhelm Jordan撰写的测地学手册中。许多人把著名的数学家Camille Jordan误认为是“高斯 - 约当”消去法中的约当。矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。

1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。在1855年矩阵代数得到了Arthur Cayley的进一步发展。Cayley研究了线性变换的组成并提出了矩阵

乘法的定义,使得复合变换ST的系数矩阵变为矩阵S和矩阵T的乘积。他还进一步研究了那些包括矩阵的逆在内的代数问题。1858年,Cayley在他的矩阵理论文集中提出著名的Cayley-Hamilton理论,即断言一个矩阵的平方就是它的特征多项式的根。利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det (AB)=det(A)det(B)为矩阵代数和行列式间提供了一种联系。数学家Cauchy首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既V×W不等于W×V)的向量代数是由Hermann Grassmann在他的《线性扩张论》(Die lineale Ausdehnungslehre)一书中提出的(1844)。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为1的矩阵,或简单矩阵。在19世纪末美国数学物理学家Willard Gibbs发表了关于《向量分析基础》(Elements of Vector Analysis)的著名论述。其后物理学家P.A.M. Dirac提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在20世纪由物理学家给出的。

矩阵的发展是与线性变换密切相连的。到19世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由Peano于1888年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

4、数论

以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。

早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》中的“更相减损法”是相同的。埃拉托色尼则给出了寻找不大于给定的自然数N的全部素数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1,在这筛子般的纸草上留下

的便全是素数了。当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。丢番图的《算术》中给出了求所有整数解的方法。费尔马指出在n >3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形成了系统的数论。

数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。19世纪后半期出现了解析数论,用分析方法研究素数的分布。二十世纪出现了完备的数论理论。

5、抽象代数

抽象代数(Abstract algebra)又称近世代数(modern algebra),它产生于十九世纪。

抽象代数是研究各种抽象的公理化代数系统的数学学科。由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定,而数学家将个别的演算经由抽象手法把共有的内容升华出来,并因此而达到更高层次,这就诞生了抽象代数。抽象代数,包含有群论、环论、伽罗瓦理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象代数已经成了当代大部分数学的通用语言。

被誉为天才数学家的伽罗瓦(Galois, Evariste,1811-1832)是近世代数的创始人之一。他深入研究了一个方程能用根式求解所必须满足的本质条件,他提出的“伽罗瓦域”、“伽罗瓦群”和“伽罗瓦理论”都是近世代数所研究的最重要的课题。伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成

和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响。

1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数。第二年,Grassmann推演出更有一般性的几类代数。1857年,Cayley设计出另一种不可交换的代数——矩阵代数。他们的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是兼容的),就能研究出许多种代数体系。 1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。

有一位杰出女数学家被公认为抽象代数奠基人之一,被誉为代数女皇,她就是诺特(Emmy Noether), 1882年3月23日生于德国埃尔朗根,1900年入埃朗根大学,1907年在数学家哥尔丹指导下获博士学位。诺特的工作在代数拓扑学、代数数论、代数几何的发展中有重要影响。1907-1919年,她主要研究代数不变式及微分不变式。她在博士论文中给出三元四次型的不变式的完全组。还解决了有理函数域的有限有理基的存在问题。对有限群的不变式具有有限基给出一个构造性证明。她不用消去法而用直接微分法生成微分不变式,在格丁根大学的就职论文中,讨论连续群(李群)下不变式问题,给出诺特定理,把对称性、不变性和物理的守恒律联系在一起。 1920~1927年间她主要研究交换代数与「交换算术」。1916年后,她开始由古典代数学向抽象代数学过渡。1920年,她已引入「左模」、「右模」的概念。1921年写出的<<整环的理想理论>>是交换代数发展的里程碑。建立了交换诺特环理论,证明了?#####胤纸舛ɡ怼?926年发表<<代数数域及代数函数域的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出素理想因子唯一分解定理的充分必要条件。诺特的这套理论也就是现代数学中的“环”和“理想”的系统理论,一般认为抽象代数形式的时间就是1926年,从此代数学研究对象从研究代数方程根的计算与分布,进入到研究数字、文字和更一般元素的代数运算规律和各种代数结构,完成了古典代数到抽象代数的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人之一。 1927-1935年,诺特研究非交换代数与「非交换算术」。她把表示理论、理想理论及模理论统一在所谓“超复系”即代数的基础上。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。诺特的思想通过她的

学生范.德.瓦尔登的名著<<近世代数学>>得到广泛的传播。她的主要论文收在<<诺特全集>>(1982)中。

1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。

到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。

6、后记

现在,可以笼统地把代数学解释为关于字母计算的学说,但字母的含义是在不断地拓广的。在初等代数中,字母表示数;而在高等代数和抽象代数中,字母则表示向量(或n元有序数组)、矩阵、张量、旋量、超复数等各种形式的量。可以说,代数已经发展成为一门关于形式运算的一般学说了。一个带有形式运算的集合称为代数系统,因此,代数是研究一般代数系统的一门科学。

代数史

代数史 代数是慷慨的,它提供给人们的常常比人们要求的还要多。 达朗贝尔 过去的三个世纪中,代数在两条轨道上延续:一条是走向更高层的抽象理论,另一条是走向具象的计算方法。 约翰.塔巴克 前言 1.重视难点。 数学的难点表现在什么地方?表现在如下三个方面: 其一是概念,数学概念是从实际事物中抽象出来的,含义精确。正确地学好概念是学好数学的关键。 另一个难点是符号。可以说,数学是符号的科学。其深远意义还在于,它为其他科学,如物理学、化学等科学提供了简明语言。数学符号的作用在于它们给出了抽象概念的简单的具体化身,而且还给出了非常简单的实现各种运算的可能性。 第三难点是抽象。数学的抽象远远超过其他科学,数学的抽象度是逐步提高的。 在教学中,我们应当突出重点,分散难点,或化解难点,以利学生的理解。 2.传授理解。 对代数学来说,理解什么?我们认为,有两件事情是重要的:一件是理解代数的基本思想,一件是掌握代数的基本方法。 我们知道,代数是研究“运算”的科学。运算有两层含义:一是运算对象,一是运算或变换的规则。但是,运算对象在不断扩充,运算的含义也在变化和加深。 §1. 中学代数的主要内容 中学代数主要完成了那些成果呢? 1.从数值运算过渡到符号运算。算术的特点是数值运算,代数的特点是符号运算。中学代数实现了从数值运算到符号运算的过渡,沿着抽象思维的道路走上了数学的更高级的阶段。但是,在中学代数中,符号代表的仍然是数。 2.二元、三元一次线性方程组的解。三元一次线性方程组的一般形式是333322221111dzcybxadzcybxadzcybxa=++=++=++ 为了求解线性方程组,我们采用逐次消去一些未知量的方法以简化方程组,这就是实施了下面的变换: 1)互换两个方程的位置; 2)把某一方程两边同乘一常数; 3)某一方程加上另一方程的常数倍。 这些变换称为初等变换。这样,在代数里第一次出现了变换的概念。一个简单而重要的事实是,线性方程组经过一系列初等变换,变成一个新的方程组,新的方程组与原方程组同解,即,在初等变换下,方程组的解保持不变,或者说,解是初等变换下的不变量。由此,代数方程组给两个重要的概念:变换与不变量。 由线性方程组的理论自然地引出了2、3阶矩阵和2、3阶行列式的概念,这2

高等代数II期末考试试卷及答案A卷

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交() ()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:

(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}1 20V V = 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。

几何学的发展简史

几何学的发展简史 上海市第十中学数学教研组王沁 [课前设计] 中国古代是一个在世界上数学领先的国家,用近代数学科目来分类的话,可以看出:无论是算术、代数还是几何、三角,中国古代数学在各方面都十分发达。而且在数学理论与实际需要的联系中,创造出了与古希腊等欧洲国家风格迥异的实用数学。 可惜的是,现行的教材对中国古代数学家的成就介绍得很少。即使教材中有,但是也基本上出现在阅读材料中,几乎没有老师会去介绍,当然,学生也很少去看。 我本人接触这些数学历史知识也是拜赐学校提供的再学习机会。我校有一个由秦一岚校长总负责、全校老师共同参与的市级课题:史情教育与各学科校本课程的整合。如何在数学学科上整合史情教育,在数学课中充分挖掘数学学科的民族精神内涵,弘扬中华民族精神和上海城市精神,渗透德育教育,探索出一条符合学生特点的教学方法,通过师生互动,能提高学生团结协作精神,并提高学生的科学素养,是摆在我面前的一个重要课题。为此,我做了以下几方面的准备。 第一步,确定课题。高二正在上立体几何,于是确定上几何学(偏重立体几何)的发展简史。 第二步,收集资料。主要是阅读大量有关数学史的书籍。 第三步,理清脉络。把看到的大量信息进行梳理,按照时间顺序、

内容与教材内容的相关程度、在几何史上地位的重要性等方面进行选取。 第四步,组织教案。确定前一部分讲几何学发展简史,后一部分让学生用学习过的几何知识(主要是立体几何)来解决一些实际问题。 数学应用能力是基础数学教育的重要组成部分,同时它也是学生比较薄弱的环节。中学里的数学内容多半是纯粹的数学基础知识,而现在国家提倡数学素质教育,那么提高数学应用能力是其中重要的一环。为了提高同学对立体几何的兴趣,提高学生应用立体几何知识解决实际问题的能力,我选择了四道应用性较强的例题:平改坡问题,遮阳篷的角度,飞机高度测量和蜂巢表面积最小问题。鉴于学生的实际数学水平与能力,我没有让学生从数学实际问题出发自行建立数学模型,而是在帮助他们建立了数学模型后,指导学生如何看懂模型,如何联系学习过的数学知识解决数学问题。 我希望通过我的课,能让更多的学生了解数学的历史,了解中国数学的历史,为我国古代数学家的杰出贡献而自豪。同时让同学看到数学是多么有用的一门学科,多么有趣的一门学科,希望无论是数学成绩好还是数学成绩不理想的同学都能对数学永远保持一分兴趣。 [教案] 教学目标: (1)让学生大致了解几何学(主要是立体几何)学在中外的发展简史;

数学史话线性代数发展史简介

数学史话线性代数发展史简介 数学史话—线性代数发展史简介 一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。 傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。 F. Cajori 从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。 V. Z.卡兹 数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。 M(Kline 一、了解数学史的重要意义 数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。与其他文化一样,数学科学是几千年来人类智慧的结晶。在学习数学时,我们基本是通过学习教材来认识这门学科的。教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌

和数学思想产生的过程。正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。 数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。 通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。 二、代数学的历史发展情况 数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟 通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本节简要介绍一下代数学的历史发展情况。 “代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔?花拉子米(al-Khwarizmī,约780,850)一本代数教程,书名的直译为《还原与对消的计算概要》(其书名中的al-jabr 这个词意为“还原”,它所指的意思是把方程式一边的负项移到方程另一端“还原”为正项;al-muqabala意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文词“algebra”就是阿拉伯文“al-jabr”的讹用。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

高等代数课程的基本内容与主要方法

2010年第2期 牡丹江教育学院学报 No 12,2010 (总第120期) JOU RN A L OF M U D AN JIA N G CO LL EG E OF EDU CA T IO N Serial N o 1120[收稿日期]2009-10-25 [作者简介]戴立辉(1963-),男,江西乐安人,闽江学院教授,研究方向为矩阵论;林大华(1959-),男,福建福州人,闽江学院副教授,研究方向为代数学;吴霖芳(1979-),女,福建永安人,闽江学院讲师,硕士,研究方向为微分方程;陈翔(1980-),男,福建连江人,闽江学院讲师,硕士,研究方向为代数环论。 [基金项目]/十一五0国家课题/我国高校应用型人才培养模式研究0数学类子课题项目(F IB070335-A2-03)。 高等代数课程的基本内容与主要方法 戴立辉 林大华 吴霖芳 陈 翔 (闽江学院,福建 福州 350108) [摘 要] 对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时体现高等代数课程要求学生掌握的知识体系。 [关键词] 高等代数;基本内容;主要方法[中图分类号]O 15 [文献标识码]A [文章编号]1009-2323(2010)02-0146-03 高等代数是高等学校数学专业的一门必修的专业基础课程,它是由多项式理论和线性代数两部分组成。多项式部分以一元多项式的因式分解理论为中心,线性代数部分主要包括行列式、线性方程组、矩阵、二次型、线性空间、线性变换、K -矩阵与若尔当标准形、欧几里得空间等。 通过高等代数课程的教学,要求学生掌握一元多项式及线性代数的基本知识和基础理论,熟悉和掌握抽象的、严格的代数方法,理解具体与抽象、特殊与一般、有限与无限等辨证关系,提高抽象思维、逻辑推理及运算能力。根据我们多年的教学经验,本文拟对高等代数的基本内容与主要方法进行归纳和总结,使其所涉及的知识点之间的相互关系清晰明了,同时也体现出了高等代数课程要求学生掌握的知识体系。 一、多项式 一元多项式理论主要讨论了三个问题:整除性理论,因式分解理论和根的理论。其中整除性是基础,因式分解是核心。 (一)基本内容 1.整除性理论)))整除,最大公因式,互素。 2.因式分解理论)))不可约多项式,典型分解式,重因式。 3.根的理论)))多项式函数,根的个数,根与系数的关系。 (二)主要方法 1.多项式除多项式的带余除法。 2.用辗转相除法求两个多项式的最大公因式,最大公因式的判别法。 3.两多项式互素的判别法。 4.不可约多项式的判别法,多项式标准分解式求法,重因式的判别法。 5.多项式函数值的求法,x -c 除多项式f (x )的综合除法,多项式按x -x 0的方幂展开的方法。 6.多项式根的判别法,多项式重根的判别法。 7.整系数多项式有理根的求法,艾森斯坦判断法。二、行列式 行列式是线性方程组理论的一个重要组成部分,是一种重要的数学工具。 (一)基本内容 n 级排列及其性质,n 级行列式的概念,行列式的性质,行列式的计算,克拉默规则。 (二)主要方法 1.求一个排列的逆序数的方法。 2.行列式的计算方法:定义法,性质法,化为三角形行列式的方法,降级法(按一行或一列展开法、拉普拉斯展开法),化为范得蒙行列式的方法,递推法,加边法,数学归纳法,拆项法。 3.一些特殊行列式的计算方法)))三角形行列式,ab 型行列式,范得蒙行列式,爪型行列式,三对角行列式。 4.克莱姆规则。三、线性方程组 /线性方程组0这部分在理论上解决了线性方程组有解的判定、解的个数及求法、解的结构等。 (一)基本内容 1.向量的线性关系)))n 维向量,向量的线性运算,线性组合,线性表出,线性相关,线性无关,极大线性无关组,向量组等价,向量组的秩。 2.矩阵的秩)))矩阵的秩=矩阵行(列)向量组的秩,即矩阵的行(列)秩=矩阵不为零的子式的最大级数,初等变换不改变矩阵的秩,用初等变换计算矩阵的秩。 3.线性方程组的解的情形)))线性方程组有解的判定,线性方程组解的个数,齐次线性方程组解的情形。 4.线性方程组解的结构)))齐次线性方程组的基础解系,齐次线性方程组解的表示,非齐次线性方程组解的表示。

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

代数发展简史

代 数 发 展 简 史 一门科学的历史是那门科学中最宝贵的一部分一门科学的历史是那门科学中最宝贵的一部分,,因为科学只能给我们知识因为科学只能给我们知识,, 而历史却能给我们智慧 而历史却能给我们智慧。。 傅鹰 数学的历史是重要的数学的历史是重要的,,它是文明史的有价值的组成部分它是文明史的有价值的组成部分,, 人类的进步和科学思想是一致的人类的进步和科学思想是一致的。。 F. Cajori 0、引言 数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。在此简要介绍代数学的有关历史发展情况。 “代数”(algebra )一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khow ārizm ī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa ’l muqabalah ,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程 另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr ”译为拉丁文“aljebra ”,拉丁文“aljebra ”一词后来被许多国家采用,英文译作“algebra ”。 阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一 般认为他生于花拉子模[Khwarizm ,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbull ī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma ’m ūn ,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah ,是自公元前3世纪亚历山大博物馆之后最重

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

线性代数发展简史

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级:2012084 成员组成:201208420 联系方式:************ 2013年11月6日 摘要:线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 关键词:行列式,矩阵,,,, 正文:线性代数的发展简史 引言 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。1848 年英格兰的J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。1855 年矩阵代数得到了Arthur Cayley 的工作培育。Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换ST 的系数矩阵变为矩阵S 和矩阵T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由Cayley 在1858 年在他的矩阵理论文集中提出的。利用单一的字母A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家Cauchy 首先给出了特征方程的术语,并证明了阶数超过3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论,数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既v x w 不等于w x v )的向量代数是由Hermann Grassmann 在他的《线性扩张论》(Die lineale Ausdehnungslehre )一书中提出的。(1844) 。

线性代数发展史

线性代数发展史 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹( Leibnitz ,1693 年)。 1750 年克莱姆( Cramer )在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是拉格朗日( Lagrange )在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss )大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre )一书中提出的。(1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

关于高等代数的一些解题方法总结

高等代数论文 题目:有关二次型的总结 学院:理学院 专业:信息与计算科学 姓名:王颀 学号:11271014 2011年12月30日

学习高等代数,最好的方法是多进行总结分类,将知识系统化。下面那二次型这章来进行操作。 二次型的问题来源于解析几何: 平面解析 一次曲线:Ax + By + C = 0 (直线); 二次曲线:Ax 2 + Bxy + Cy 2 + Dx + Ey = F → 经平移 变换化,旋转变换化成为Ax 2+ By 2 = d (二次齐次多项式) → 可根据二次项系数确定曲线类型(椭圆、抛物线、双曲线等); 空间解析 一次曲面: Ax + By + Cz + D = 0 (平面); 二次曲面: (平移后不含一次项)→ Ax + By + Cz + 2Dxy + 2Exz + 2Fyz = G (18-19世纪上半期表示方法) → 通过方程变形,选定主轴方向为坐标轴,可化简为 a/x/2 + b/y/2 + c/z/2 = d/ → 据二次项系数符号确定二次曲面的分类 更一般的问题: 数域P 上含n 个变量x 1,x 2,…,x n 的二次齐次多项式如何化成平方和形式,即标准型问题,是18世纪中期提出的一个课题 了解了二次型的相关背景,我们进行对课本上二次型的内容进行总结。 二次型这章内容如下 5.1 二次型及其矩阵表示 5.2 二次型的标准形 5.3 惯性定理和规范形 5.4 实二次型的正定性 在这章的学习中,我们需要学会二次型的矩阵表示,求解矩阵的秩,通过线性替换将二次型化为标准型,了解矩阵合同,规范型,掌握正定二次型的判定方法。 例1.二次型??? ? ?????? ??=21 21213201),(),(x x x x x x f 的矩阵为( 3 )。 (1)、102 3?? ??? (2)、1 22 3?? ??? (3)、1113?? ??? (4)、1 113-?? ?-?? 注意对于任意一个二次型,都唯一确定这一个对称矩阵,这个对称矩阵才叫做二次型的矩阵。二次型的秩就是矩阵的秩。 例2.将二次型2212311213233(,,)246f x x x x x x x x x x x =+-++化为标准形,并写出所用的非退化线性替换。 解:用配方法: 2 2 2 2 12311232323233 (,,)[2(2)(2)](2)6f x x x x x x x x x x x x x x =+-+---++ 2221232233(2)103x x x x x x x =+--+- 2 2 2 2 12322333 (2)(1025)22x x x x x x x x =+---++

代数与代数基本定理的历史

代数与代数基本定理的历史 1.关于代数的故事 在十九世纪以前,代数被理解为关于方程的科学。十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。作为中学数学课程的代数,其中心内容就是方程理论。代数的发展是和方程分不开的。代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题的条件列同方程,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于60,求这个数。算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。代数解法:设某数为x ,则可见代数解法与算术思路不同。各有自己的一套规则,代数解法比较简单明了。古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。据说,1858年苏格兰有一位古董收藏家兰德在非洲的尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。例如有一个问题翻译成数学语言是: “啊哈,它的全部,它的1/7,其和等于19。” 如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。贾宪等的高次方程数值解方法,秦九韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,及其有限级数求和的“招差法公式”,都早于欧洲几百年。“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。从些,“代数”这个名词便一直在我国沿用下来。 2.代数基本定理 任何n(n>0)次多项式在复数域中至少有一个根。一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积?这样的分解,关键证明代数基本定理。代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基本思路如下:设f (z)为n次实系数多项式,记z = x + yi (x, y为实数),考察方程:f (x + yi) = u (x, y) + v (x, y)i = 0即u (x, y) = 0与v (x, y) = 0分别表示oxy坐标平面上的两条曲线,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出u (a, b) = v (a, b) = 0即f (a + bi) = 0,故此便是代数方程f (z)的一个根。这个论证具有

相关文档