文档库 最新最全的文档下载
当前位置:文档库 › 氯气泄漏重大事故后果模拟分析(经典)

氯气泄漏重大事故后果模拟分析(经典)

氯气泄漏重大事故后果模拟分析(经典)
氯气泄漏重大事故后果模拟分析(经典)

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。

第七章氯气泄漏重大事故后果模拟分析

7.1危险区域的确定

概述:

泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。

氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。

以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。

毒害区域的计算方法:

(1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t

(℃),此时全部液氯放出的热量为:

Q=WC(t-t

)

设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为:

W=Q/q=WC(t-t

)/q

氯的相对分子质量为M

r ,则在沸点下蒸发的液氯体积V

g

(m3)为:

V g=22.4W/M r273+t0/273

V g =22.4WC(t-t

0)/ M

r

q273+t

/273

氯的有关理化数据和有毒气体的危险浓度如下:

相对分子质量:71

沸点: -34℃

液体平均此热:0.98kj/kg.℃

汽化热: 2.89×102kj/kg

吸入5-10mim致死浓度:0.09%

吸入0.5-1h致死浓度: 0.0035-0.005%

吸入0.5-1h致重病浓度:0.0014-0.0021%

已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积:

氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V

g

(m3)的液氯可以产生令人致死的有毒空气体积为:

V

1 = V

g

×100/0.09 = 1111V

g

(m3)

氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V

g

(m3)的液氯可以产生令人致死的有毒空气体积为:

V

2=V

g

×100/0.00425=23529V

g

(m3)

氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则V

g

(m3)的液氯可以产生令人致重病的有毒空气体积为:

V

3=V

g

×100/0.00175=57l43V

g

(m3)

假设这些有毒空气以半球形向地面扩散,则可求出该有毒气体的扩散气体半径为:R=[(V

g

/C)/(1/2×4/3π)]1/3

式中: R —有毒气体半径 m

V

g

—液氯的蒸汽体积 m3

C —有毒介质在空气中危险浓度值 %

7.2 液氯泄漏事故毒害区域模拟计算

以一只液氯钢瓶(1000kg)发生严重泄漏事故后果计量

如液氯泄漏量W =1000kg,环境温度(瓶内)t=250C,计算有毒气体扩散半径: 液氯蒸发热Q:

Q = WC(t-t 0)

= 1000×0.98×[25-(-34)] = 56640(kj)

蒸发量 W: W = Q/q

= 56640/2.89×102 = 196(kg)

液氯沸点下蒸发气体体积 V g : V g = 22.4W/M r ×(273+t 0)/273

= 22.4×196/71×[273+(-34)]/ 273 = 54.14(m 3)

氯气在致死的浓度C 1的体积V 1和有毒气体的扩散半径R 1: V 1 = V g × 100/C 1

= 54.14×100/0.09 = 60155(m 3

) R 1 = (V 1/2.0944)1/3 = 30.62(m)

氯气在致死的浓度c 2时的体积V 2和有毒气体的扩散半径R 2: V 2 = V g ×100/c 2

= 54.14×100/0.00425 = 1273882 (m 3) R 2 = (V 2/2.0944)1/3 = 84.73(m)

氯气在致重病的浓度c 3时的体积v 3和有毒气体的扩散半径R 3

V 3 = V g ×100/C 3

= 54.14×100/0.00175 = 3093714(m 3)

R 3 = (V 3/2.0944)1/3

= 113.89(m)

氯气泄漏静风状态毒害区域:

= 30.62m

注:①吸入5~10mim浓度0.09%的致死半径:R

1

②吸入0.5~l h浓度0.00425%的致死半径:R

= 84.73m

2

③吸入0.5~1 h浓度0.00175%的致重病半径:R

= 113.89m

3

7.3 事故后果模拟分析及建议

以上是以氯钢瓶严重泄漏造成的事故后果的模拟,其危害是相当严重的。

由于该建设项目在用氯过程中,涉及用氯的设备设施有液氯钢瓶、液氯汽化器、氯管线、反应釜等,因此都可能存在氯的泄漏。风向决定毒气云团的扩散方向,风速决定毒气云团的下风向的扩散范围,气压和地形影响毒气对人的危害程度,如果空气流动性小、温度大,毒气在低洼处停留不易扩散,可造成人畜中毒,甚至死亡。

氯气泄漏后,在有风的条件下,氯气通常呈60°左右的夹角向下风向扩散,在扩散的过程中由于空气的补充,浓度会逐渐降低,但相应下风向的防护距离增加。一般在小泄漏状态下(泄漏量≤200L),首次隔离距离为30m,下风向撤离范围白天为0.3km,夜间为1.1km。在大量泄漏状态下(泄漏量>200L),首次隔离距离为275m,下风向撤离范围白天为2.7km,夜间为6.8km。污染范围不明时先按上述方法确定防护距离,然后分段测试氯气浓度再调整防护距离。

建议企业应制定针对氯泄漏的事故应急救援预案,如发生氯泄漏应立即启动预案,在日常过程中,加强氯设备设施的安全管理,严防氯的泄漏。

常备抢修器材表和常备防护用品表如下:

第七章劳动卫生预评价

根据危险、有害因素分析本工程劳动卫生方面主要危害因素是毒物危害、噪声危害和生产性粉尘危害。本工程劳动卫生预评价采用某些企业类似生产装置检测数据作为类比值进行评价。

7.1 毒物危害评价

7.1.1 评价方法

按照《职业性接触毒物危害程度分级》(GB5044-85)将职业性接触的毒物危害程度分为Ⅰ级(极度危害)、Ⅱ级(高度危害)、Ⅲ级(中度危害)、Ⅳ级(轻度危害)。

根据《有毒作业分级》(GB12331-90)规定,以有毒作业分级指数法对本工程的有毒作业岗位进行评价。

有毒作业分级指数法是根据毒物危害程度级别、有毒作业劳动时间及毒物浓度超标倍数三项指标,分别用D、L、B表示。依据三项指标求得指数,根据指数范围进行分级。具体做法是按照GB12331-90求出分级指数C。

C=D·L·B

式中:C—分级指数

D—毒物危害程度级别权数

L—有毒作业劳动实时间权数

B—毒物浓度超标倍数

(1)有毒作业危害分级级别

表7.1.1 有毒作业分级级别

表7.1.2 毒物危害程度级别权数

(3)有毒作业劳动时间权数

表7.1.3 有毒作业劳动时间权数

B=Mc/Ms-1

式中:Mc—测定毒物浓度均值(mg/m3)

Ms—该种毒物最高容许浓度(mg/m3)

(5)有毒作业分级级别表

根据有毒作业的毒物浓度超标倍数、毒物危害程度级别、有毒作业劳动时间三项指标,综合评价,制定出有毒作业分级级别表。

当有毒作业工作地点空气中存在多种毒物中,应分别进行毒物作业的分级,以最严重的级别定级,同时注明其他生产性毒物作业的级别。

表7.1.4 有毒作业分级表(不懂)

7.1.2 毒物危害评价结果

本项目中主要有毒物质有溴素、氯丙烯等,主要在相关生产岗位和储存岗位使用,可能形成有毒作业场所。以上毒性物质具体危害情况见危险化学品危险有害性分析。

7.2 噪声危害评价

7.2.1 评价内容

本工程项目的主要噪声声源为物料输送的泵、压缩机、风机、粉碎机等。

7.2.2 评价方法

对原厂区装置噪声的类比数据进行分析计算,作为对本工程噪声危害程度的参考,在综合分析的基础上,与国家卫生标准进行比较分析做出评价,提出相应的对策措施。

(1)噪声作业分级

依据噪声作业危害程度级别进行噪声危害评价。噪声作业危害程度分级见表7.2.1。

表7.2.1 噪声作业分级级别

表7.2.2 工业地点噪声声级卫生限值(GBZ1-2002)

(3)噪声作业分级查表法

为了简化噪声危害指数的计算过程,便于实际操作而采用此方法(见表7.2.3)

~2

~4 0级Ⅰ级Ⅱ级Ⅲ级Ⅳ级

~6

~8

第八章事故后果模拟分析

事故后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量的描述一个可能发生的重大事故对工厂、对厂内职工、对厂外居民甚至对环境造成危害的严重程度。华通化学最常见的事故是火灾、爆炸和中毒,本工程产品是精细化工产品,使用的危险化学品数量不大,而使用的有毒气体比较多,故本评价对有毒气体毒害区进行模拟分析,选择液氯和液氨液化气体容器破裂时毒害区进行估算,由于缺乏氟化氢的相关数据,故未作模拟分析。

(1)液氯气瓶破裂时毒害区估算

液氯是剧毒物质,使用气瓶包装,现对液氯气瓶破裂毒害区域进行分析估算。

设有液氯气瓶中存有液氯1000kg,容器破裂前罐内液氯温度t为25℃,液氯的比热c为0.96kj/kg·℃,当容器破裂时器内压力降至大气压,处于过热状态的液氯温度迅速降到标准沸点t0为-34℃,此时全部液体所放出的热量为:

设这些热量全部用于容器内液体的蒸发,汽化热Q为2.89×102

(kj/kg),则蒸发量为:

液氯分子量为M=71,则在沸点下蒸发的体积Vg:

据查氯在浓度达到目前为0.09%浓度时,吸入5~10min可致死,则Vg氯气可以产生令人致死的有害空气体积为

V= Vg×100/0.09

=33.74×100/0.09

=74988.89 m3

假设这些有毒气体以半球型向地面扩散,则可求出氯气扩散半径为:

由此液氯气瓶发生破裂事故引发有毒气体扩散,其毒害区半径为32.96 m。

(2)液氨气瓶破裂时毒害区估算

烟磺酰胺生产中使用液氨气瓶,如果发生意外液氨气瓶破裂可能发生蒸汽爆炸。液氨是有毒物质,爆炸后若不燃烧,便会造成大面积的毒害区域。一般情况液氨在补充时易发生事故,现对液氨气瓶毒害区域进行分析估算。

液氨气瓶中存有液氨1000kg,容器破裂前罐内液氨温度t为25℃,液氨的比热c为4.6kj/kg·℃,当容器破裂时器内压力降至大气压,处于过热状态的液氨温度迅速降到标准沸点t0为-33℃,此时全部液体所放出的热量为:

Q=W·c(t-t0)=

=500×4.6×[25-(-33)]

=133400kj

设这些热量全部用于容器内液体的蒸发,汽化热Q为1.37×103

(kj/kg),则蒸发量为:

液氨分子量为M=17,则在沸点下蒸发的体积Vg:

据查氨在浓度达到目前为0.5%浓度时,吸入5~10min可致死,则Vg氨气可以产生令人致死的有害空气体积为

V= Vg×100/0.5

=140.05×100/0.5

=28031.63 m3

假设这些有毒气体以半球型向地面扩散,则可求出氨气扩散半径为:

由此液氨气瓶发生爆炸事故引发有毒气体扩散,其毒害区半径为30.38 m。

第四节事故树分析评价

由于本项目为电解项目,涉及较多电气设备,发生人员触电的危险性较大,故采用事故树分析对用电系统进行专门评价。

一、评价方法简介

事故树分析(FaultTreeAnalysis,所写FTA)又称故障树分析,时一种演绎的系统安全分析方法。它时从要分析的特定事故或故障开始,层层分析其发生原因,一直分析到不能再分解为止;将特定的事故和各层原因(危险因素)之间用逻辑门符号连接起来,得到形象、简洁地表达其逻辑关系(因果关系)地逻辑树图形,即事故树。通过对事故树简化、计算达到分析、评价地目的。

事故树分析方法可用于各种复杂系统和广阔范围的各类系统的可靠性及安全性分析、各种生产装置可靠性分析和伤亡事故分析等。

二、事故树分析基本步骤

1.确定分析对象系统和要分析的个对象事件(顶上事件)

通过经验分析、事故树分析和故障类型和影响分析确定顶上事件(何时、何地、何类);明确对象系统的边界、分析深度、初始条件、前提条件何不考虑条件,熟悉系统、收集相关资料(工艺、设备、操作、环境、事故等方面的情况何资料)。

2.确定系统是个发生概率、事故损失的安全目标值

3.调查原因事件

调查与事故有关的所有直接原因和各种因素(设备故障、人的失误和环境不良因素)。

4.编制事故树

从顶上事件起,一级一级往下找出所有原因事件直到最基本的原因事件为止,按其逻辑关系画出事故树。每个顶上事件对应一株事故树。

5.定性分析

按事故树结果进行简化,求出最小割集和最小径集,确定各基本事

件的结构重要度。

6.定量分析

找出各基本事件的发生概率,计算出顶上事件的发生概率,求出概率重要度和结构重要度。

7.结论

当事故发生概率超过预定目标值时,从最小割集着手研究降低事故发生概率的所有可能方案,利用最小径集找出消除事故的最佳方案;通过重要度(重要系数)分析确定采取对策措施的重点和先后顺序;从而得出分析、评价的结论。具体分析时,要根据分析的目的、人力物力的条件、分析人员的能力选择上述步骤的全部或部分内容实施分析、评价。对事故树规模很大的复杂系统进行分析时,可应用事故树分析软件包,利用计算机进行定性、定量分析。

三、触电事故树分析

1.概述

将“触电发生伤亡事故”作为顶上事件,在计算、分析同类事故案例的基础上,作事故树,见图6-1

2.事故树

事故树分析如图6-1

图6-1 触电事故树

图中:T-顶上事件;A,B-中间事件了;X-基本事件。

T-触电伤亡事故;

A1-设备漏电, A2-人体接触带电体;

B1-绝缘损坏, B2-绝缘老化;

B3-保护接地、接零不当, B4-保护开关失灵;

X1-缺乏用电安全知识, X2-电气设备漏电;

X3-电气设备外壳带电, X4-违章作业;

X5-防护用品使用不当, X6-电工违章作业,非电工操作;X7-开关漏电, X8-接触开关的带电体。

图6-2 防止触电成功树

3.计算事故树的最先割集、最小径集

该事故树的结构函数为:

T=A1A2

=(B1+B2)(B3+B4)

=[(X1+X2)+(X3+X4)][(X5+X6)+(X7·X8)]

=[X1+X2+X3+X4][X5+X6+X7·X8]

=X1X5+X1X6+X1X7X8+X2X5+X2X6+X2X7X8+X3X+X3X6+X3X7X8+X4

X5+X4X6+X4X7X8……………………………………………………

(1)

在事故树分析中,如果所有的基本事件都发生则顶上事件必然发生,但是在很多情况下往往只要部分基本事件发生则顶上事件就能发生。因此,了解哪些基本事件的组合对顶上事件发生具有较大影响,这对有效地、经济地预防事故发生是非常重要地。

事故树分析中地割集就是系统发生事故地模式。引起顶上事件发生地最小限度地割集称最小割集。每一个最小割集即表示顶上事件发生地每一种可能性。事故树中最小割集越多,顶上事件发生地可能性就越大,系统就越危险。

式(1)为事故树地最小割集表达式,共有12个最小割集,即:

K1=X1X5

K2=X1X6

K3=X1X7X8

…………

K12=X4X7X8

该事故树额达最小径集为:

T=A1+A2

=B1B2+B3B4

=(X1X2)(X3X4)+(X5X6)(X7+X8)

=X1X2X3X4+X5X6X7+X5X6X8

4.重要度分析

如何辨别各基本事件地发生对顶上事件发生额影响就必须对事故树进行基本事件地主要度分析。重要度分析方法有多种,其中不考虑基本事件发生地概率,仅从事故树结构上分析各基本事件额发生对顶上事件发生地重要度地方法称“基本事件地结构重要度分析”,精确计算各基本事件结构重要度系数工作量很大,常用地式通过估算求得系数。

通过计算得:

I(X1)=I(X2)=I(X3)=I(X4)=I(X5)=I(X6)>=I(X7)=I(X8)

可见各基本事件对顶上事件发生得影响程度是相同的。

从事故树结构上看,要避免顶上事件发生,最佳的方法是根据基本事件结构重要度大小依次采取措施。如果各基本事件的发生概率有差别,则需要作概率重要度分析和临界重要度分析。

5.预防事故模式

如前所述,事故树表达式中的每一个最小径集就是系统有效防止事故的一种模式。最小经济中集中基本事件较少的,则预防最为有效。

从对同类事故案例分析汇总可得出预防触电事故最主要途径为:保持电气设备处于安全状态、确保电工按章操作和杜绝非电工进行电作业。

(1)保持电气设备处于安全状态

对应的基本事件有:X1,X2,X3,X4,X7,X8

(2)确保按章操作

对应的基本事件有:X5,X6

6.结果分析即安全对策

(1)“触电事故”事故树的最小径集有12个,说明在检测作业中有发生伤亡事故的可能性。如果不采取必要的安全措施,这样的系统是可能造成人员和设备伤害的。该事故树的最小径集有2个,说明要预防伤亡事故就必须从这2个方面进行考虑。

(2)个基本事件对顶上事件发生的影响程度是相同的。

(3)预防触电事故最主要途径:保持检测设备处于安全状态、确保操作工按章操作和杜绝违章操作。具体措施为:

①为防止触电伤害事故的发生,必须提高工作人员的安全素质、责任心,要求具有一定的专业知识,并按国家有关规定,电工为特种作业,必须经过培训、考核、持证上岗,非操作人员严禁从事该项作业;

②应采用不同方式、不同用途的接地措施。安全接地主要有保护接地、重复接地等;

③采用保护接地时,接地电阻必须符合要求;

④对电气设备要定期进行维护、检修,发现故障(缺陷)要及时处理,保证各类电气设备、线路在无故障的情况下运行,确保安全;在进行电气作业时,要严格按照安全操作规程进行操作。

第七章典型事故案例及重大事故原因分析事故原因及后果分析过程,是根据评价对象的特点着重了解同类行业的事故类型、典型事故案例,并对此进行对照、类比、分析、总结,将有效地帮助我们采取预防措施,避免同类事故的发生。

第一节重大事故原因分析

根据统计资料,按事故原因进行分析,则得出表7-1所列结果:

表7-1 按事故原因分类的事故频率分布表

从事故发生频率的分布来看,由于阀门、管线的泄漏而引起的特大火灾爆炸事故所占比重很大,占35.2%;由于泵、设备故障及仪表、电气失控比重也不小,占30.6%;对于管理问题,完全可以避免的人为损失失误亦达到15.6%;而装置内物料突沸和反应失控的比例占了10.4%;不可忽视的雷击、静电、自然灾害引发事故也占到8.2%,因此,除设备质量、工艺控制、作业管理外,防雪、避雷、防静电也必须应予以相当的重视。

此外,在100起特大火灾爆炸事故中,报警及消防不力也是事态扩大的一个重要因素,其中竟有12起是因消防水泵无法启动而造成灾难性后果。值得注意的是易燃、易爆蒸汽等飘逸扩散的蒸汽云团以及易燃、易爆蒸汽积聚,或弥漫在建筑物内产生的爆炸不仅所占事故比例高达至43%,而且这种爆炸是最具毁灭性的,其爆炸产生的冲击波、热辐射以及飞散抛掷物等还会造成二次事故。

据统计分析,国内40余年间石油化工企业发生的事故,经济损失在10万元以上的有204起,其中经济损失超过100万元的有7起。按事故原因分类可得出表7-2所列结果:

表7-2 国内40年间经济损失10万元以上的事故原因分析表

由上述列表数据分析可知,违章动火(包括措施不当)及误操作竟占

到65%的事故率,比例之大,令人触目惊心,对此采取应对策措施以杜绝违章动火、避免误操作十分重要,有举足轻重的作用;设备损坏、仪表失灵、腐蚀引起的事故也占到20%,在现代化连续化生产工艺普遍使用并依赖集散控制系统控制的今天,仪表、设备的选择(包括材质)及其安装、维护、保养,对保证安全生产正常运行极为重要,其对策措施需要特别加强;雷电、静电、电气火灾、爆炸所占比例甚大,防雷、防电气引起的火灾、爆炸是石油、化工行业的一个重要方面,马虎不得,应有严密的对策措施。

第二节典型事故案例

本节通过一些事故案例,分析事故发生的原因,总结经验,引以为鉴。

[案例1] 广西桂平县磷肥厂硫酸灼伤事故重伤1人、轻伤2人

1.事故经过和危害

1990年5月31日,广西壮族自治区桂平县磷肥厂从柳州锌品厂发至贵港森工站储木场的运硫酸槽车于5月30日到站,厂部组织5人到贵港装酸泵,准备从运酸槽车上卸硫酸。5月30日10分,他们将酸泵装上本厂汽车,运至贵港。5月31日17时,安装好电机、电线与酸泵后,进行空载试机3次,每次交流接触器都跳闸,酸泵密封处冒烟,不能使用。20时,厂又派3人前往贵港,22时30分到达现场修理。修理工用手扳动泵轴,发现有一方向偏紧,认为没有问题,即叫电工改用闸刀开关直接起动。2名工人用14#铁丝扎2圈套在软塑料管与泵出口铁管接头上扎好,抬酸泵装进槽车内,安装完毕后,4人离开现场,6名电工在闸刀开关处,2人在槽车上。听到试泵命令后,电工合上电源开关,不到半分钟,1人从槽车上跳下,边走边用地面积水洗伤处。另1人也从槽

车上跳下,其头部、面部、上肢、胸部、下肢等多处被出口管喷出的硫酸烧伤,后被送入医院抢救,造成烧伤面积35%,深Ⅲ度烧伤,双目失明,预计经济损失3万元。另外2名轻伤也送入医院治疗。

2.事故原因分析

①酸泵附件有缺陷,空载试机3次交流接触器都跳闸,仍然冒险运转。

②酸泵出口铁管与软塑料管没有接好,致使软塑料管与铁管脱开,使硫酸喷到操作人员身上。

③操作人员没有穿戴耐酸的工作服、工作帽、防护靴、耐酸手套、防护眼镜,违章作业。

④工作环境恶劣,现场照明差,操作人员在试泵时也未远离现场。

⑤缺乏急救常识,没有用清水在现场先冲洗处理,使受伤人员伤势加重。

3.防止同类事故发生的措施

①不穿戴齐全个人防护用品者,不准上岗。

②加强领导、车间主任、安全员、工人的安全职责,杜绝违章指挥、违章作业,严禁设备带病、冒险运转。

③加强运酸槽车的管理,配备良好的酸泵和其他设备,输送酸之前,先用水试压无问题再打酸并配合安全意识好的人员进行操作和管理。

④电器设备、闸刀、线路严格按照电器管理规程进行操作,不准随意拆除和更改。

[案例2] 哈尔滨亚麻厂“3.15”特大亚麻粉尘爆炸事故

1.事故经过和危害

1987年3月15日凌晨2时39分,该厂正在生产的梳麻、前纺、准备3个车间的联合厂房,突然发生亚麻粉尘爆炸起火。一瞬间,停电停

氯气泄漏事故案例

致9人死亡的重庆4-16氯气泄漏事故责任人受查处https://www.wendangku.net/doc/864329763.html, 2004年10月23日15:29 中国新闻网 中新网10月23日电经重庆天原化工总厂“4·16”事故调查组调查确认,造成死亡失踪9人,15万人撤离的重庆“4·16”氯气泄漏事故是一起责任事故。 重庆晨报消息,按照有关规定,经重庆市委、市政府批准,市纪委、监察局决定对事故有关责任人给予以下处分: 给予对事故发生负有重要领导责任的化医控股集团公司董事长、党委书记缪光奎党内警告处分; 给予对事故发生负有重要领导责任的化医控股集团公司经济运行部部长李华夏行政记过处分; 给予对事故发生负有主要领导责任的重庆天原化工总厂厂长张定禄撤消重庆天原化工总厂厂长、党委委员职务处分; 给予对事故发生负有重要领导责任的重庆天原化工总厂党委书记兼副厂长陈德国党内警告处分; 给予对事故发生负有主要领导责任的重庆天原化工总厂副厂长吴照华行政记大过处分; 给予对事故发生负有直接责任的重庆天原化工总厂动力分厂代理副主任王为民撤消重庆天原化工总厂动力分厂代理副主任职务处分; 给予对事故发生负有直接责任的重庆化工节能计量压力容器监测所所长助理兼压力容器监测科科长、技术负责人、检验师周军撤消重庆化工节能计量压力容器检测所所长助理和压力容器检测科科长职务处分;

给予对事故发生负有重要领导责任的重庆化工节能计量压力容器检测所副所长吴明中(主持工作)行政记大过处分。 重庆天原化工总厂氯气泄漏事故责任人受查处 https://www.wendangku.net/doc/864329763.html, 2004年10月24日11:53 新华网 新华网重庆10月24日电(记者李永文)经重庆天原化工总厂“4·16”事故调查组调查确认,“4·16”事故是一起责任事故。按照有关规定,经重庆市委、市政府批准,重庆市纪委、监察局日前决定对事故有关责任人分别给予处分。 给予对事故发生负有重要领导责任的化医控股集团公司董事长、党委书记缪光奎党内警告处分,化医控股集团公司经济运行部部长李华夏行政记过处分;给予对事故发生负有 主要领导责任的重庆天原化工总厂厂长张定禄撤销重庆天原化工总厂厂长、党委委员职务处分;给予对事故发生负有重要领导责任的重庆天原化工总厂党委书记兼副厂长陈德国党内警告处分;给予对事故发生负有主要领导责任的重庆天原化工总厂副厂长吴照华行政记大过处分;给予对事故发生负有直接责任的重庆天原化工总厂动力分厂代理副主任王为民撤销重庆天原化工总厂动力分厂代理副主任职务处分;给予对事故发生负有直接责任的重庆化工节能计量压力容器检测所所长助理兼压力容器检测科科长、技术负责人、检验师周军撤销重庆化工节能计量压力容器检测所所长助理和压力容器检测科科长职务处分;给予对事故发生负有重要领导责任的重庆化工节能计量压力容器检测所副所长吴明中(主持工作)行政记大过处分。 今年4月15日下午,处于重庆主城区的重庆天原化工总厂氯氢分厂2号氯冷凝器出现穿孔,有氯气泄漏,厂方随即进行处置。16日1时左右,列管发生爆炸;凌晨4时左右,再次发生局部爆炸,大量氯气向周围弥漫。由于附近民居和单位较多,重庆市连夜组织人员疏散居民。16日17时57分,5个装有液氯的氯罐在抢险处置过程中突然发生爆炸,当场造成9人死亡。事故发生后,重庆市消防特勤队员昼夜用高压水网(碱液)进行高空稀释,在较短

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT 当量 通常,以TNT 当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT 炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT 当量。 蒸气云爆炸的TNT 当量W TNT 计算式如下: W TNT =×α×W f ×Q f /Q TNT 式中,W TNT —蒸气云的TNT 当量(kg) α—蒸气云的TNT 当量系数,正己烷取α=; W f —蒸气云爆炸中烧掉的总质量(kg) Q f —物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg ,参与爆炸的正己烷按最大使用量792kg 计算,则爆炸能量为×109J 将爆炸能量换算成TNT 当量q ,一般取平均爆破能量为×106J/kg ,因此 W TNT = ×α×W f ×Q f /q TNT + =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R 1,外径记为R 2,代表该处 0.37 0.37 1420.4313.613.610001000TNT W R ?? ??== ? ??? ??

人员因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa 。冲击波超压P ?按下式计算: P ?=++式中: P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R 2,外径R 3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值 超压为17000Pa 。冲击波超压P ?按下式计算: P ?=++P ?——冲击波超压,Pa ; Z ——中间因子,等于; E ——蒸气云爆炸能量值,J ; P0——大气压,Pa ,取101325 得R 3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R 3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m 。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K ——取值为5. 6 6 /121/3TNT 431751??? ???? ?? ?????+= TNT W KW R 0440********.434 101325P P ?===2 1 3 0R Z E P =?? ? ?? 01700017000 0.168101325P P ?===313 0R Z E P =?? ???

某410T锅炉重大事故后果模拟分析-唐开永

XX发电总厂410t/h pyrofow CFB锅炉重大事故后果模拟分析 唐开永 (注册安全工程师,一级安全评价师) XX发电总厂410t/h pyrofow CFB锅炉以及自动控制和主要辅助设备,是1992年5月,四川省电力工业局与芬兰Foster Whecler能源公司(当时为芬兰Ahlstrom公司)签定合同购买的。于1996年9月建设安装完毕并投运,至今运行良好。 XX发电总厂410t/h pyrofow CFB锅炉主蒸汽蒸发量为410t/h,主蒸汽压力为9.8MPa。锅炉汽包工作压力为10.75 MPa,设计压力为12.10 MPa,汽包总容积约30 m3。根据国家安监部门《关于开展重大危险源监督管理工作的指导意见》,已经构成为蒸汽锅炉类重大危险源。 大型蒸汽锅炉重大事故类型主要是因操作失误或压力容器制造质量缺陷、维护不当、腐蚀等原因引起的压力容器破裂而导致的锅炉汽包物理爆炸。进而引发锅炉本体炉膛及相关压力管道(容器)物理爆炸,酿成锅炉爆炸恶性重大事故。现对其进行重大事故后果模拟分析。 ⒈锅炉汽包爆破能量计算 ①锅炉汽包爆破机理及爆破能量计算公式 锅炉汽包爆破事故的性质是饱和水容器物理爆炸。在锅炉汽包中水介质以气、液两态存在,工作介质的压力大于大气压,介质温度高于其在大气压下的沸点。当容器破裂时,气体迅速膨胀,液体迅速沸腾,剧烈蒸发,产生暴沸或水蒸气爆炸。其爆破能量可按下式计算: Ew=CwV 式中: Ew—饱和水容器的爆破能量,kJ; Cw—饱和水爆破能量系数kJ/ m3; V—容器内饱和水所占容积,m3。 ②410t/h pyrofow CFB锅炉汽包爆破能量 设410t/h pyrofow CFB锅炉汽包爆破时最大压力为12.10 MPa,根据有关资料,以《常用压力下饱和水容器的爆破能量系数表》为参照,用插入法求得该压力下饱和水爆破能量系数Cw为:1.978×106。则根据上式计算可得410t/h pyrofow CFB锅炉汽包爆破能量为 Ew=1.978×106×30=5.934×107(kJ)

CNG储气瓶泄漏事故后果模拟分析评价

CNG储气瓶泄漏事故后果模拟分析评价 摘要:CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸。本文即对CNG储气瓶泄漏后导致爆炸事故进行事故后果模拟分析,计算其爆炸冲击波的伤害范围。 关键词:CNG储气瓶泄漏事故后果 一、引言 随着天然气在汽车能源中所占比重的增大,越来越多的加气站被建立,压缩天然气(CompressedNaturalGas,简称CNG)加气站是常见的一类,在各种CNG 加气站里,通过压缩机加压压缩,强行将天然气储存在特制容器内,专供汽车加气的备用装置或系统,称为储气装置或储气技术[1]。CNG储气瓶是加气站常用的储气装置,该装置一般具有25~30MPa的高压,其储存的压缩天然气的主要成分是甲烷,属一级可燃气体,甲类火灾危险性,爆炸极限为5%~15%,最小点火能量仅为0.28mJ,燃烧速度快,燃烧热值高,对空气的比重为0.55,扩散系数为0.196,极易燃烧,爆炸,并且扩散能力强,火势蔓延迅速,一旦发生事故,难以控制[2]。 CNG储气瓶由于高压和介质可燃爆两大事故因素,无论发生何种事故,都可能引发泄漏,火灾,化学爆炸和物理爆炸,如果事故得不到有效控制,还可相互作用,相互影响,促使事故扩大蔓延及至产生巨大的冲击波危害,因此,对其危害后果做出合理评价具有重大意义[1]。 二、泄漏事故后果模拟分析 假设某一加气子站内有3支4m3大容积储气瓶,其中一支储气瓶的瓶口处发生天然气泄漏,模拟分析如下: 1.泄漏量计算 1.1 泄漏类型判断 P-储气瓶组内介质压力,取25MPa P0 -环境压力,取0.1 MPa,则P0 / P = 0.004 k-介质的绝热指数,取1.316 ,则介质流动属音速流动。 1.2泄漏孔面积和喷射孔等价直径

事故后果模拟计算

事故后果模拟 中毒 有毒物质泄漏后生成有毒蒸气云,它在空气中飘移、扩散,直接影响现场人员,并可能波及居民区。大量剧毒物质泄漏可能带来严重的人员伤亡和环境污染。 毒物对人员的危害程度取决于毒物的性质、毒物的浓度和人员与毒物接触时间等因素。有毒物质泄漏初期,其毒气形成气团密集在泄漏源周围,随后由于环境温度、地形、风力和湍流等影响气团飘移、扩散,扩散范围变大,浓度减小。在后果分析中,往往不考虑毒物泄漏的初期情况,即工厂范围内的现场情况,主要计算毒气气团在空气中飘移、扩散的范围、浓度、接触毒物的人数等。 有毒液化气体容器破裂时的毒害区估算 液化介质在容器破裂时会发生蒸气爆炸。当液化介质为有毒物质,如液氯、液氨、二氧化硫、硫化氢、氢氰酸等,爆炸后若不燃烧,会造成大面积的毒害区域。 设有毒液化气体质量为W(单位:kg),容器破裂前器内介质温度为t(单位:℃),液体介质比热为C[单位:kJ/(kg·℃)。当容器破裂时,器内压力降至大气压,处于过热状态的液化气温度迅速降至标准沸点t0(单位:℃),此时全部液体所放出的热量为:Q=W·C(t—t0) 设这些热量全部用于器内液体的蒸发,如它的气化热为g(单位:kJ/kg),则其蒸发量:

q t t C W q Q W )(0-?==' 如介质的分子量为M ,则在沸点下蒸发蒸气的体积Vg(单位:m 3)为: 273273)(4.222732734.22000t M t t C W t M W V q g +?-?=+?= 为便于计算,现将压力容器最常用的液氨、液氯、氢氰酸等的有关物理化学性能列于表2-3中。关于一些有毒气体的危险浓度见表2-4。 若已知某种有毒物质的危险浓度,则可求出其危险浓度下的有毒空气体积。如二氧化硫在空气中的浓度达到0.05%时,人吸入5~10min 即致死,则Vg 的二氧化硫可以产生令人致死的有毒空气体积为: V=Vg ×100/0.05=2000 Vg 。 假设这些有毒空气以半球形向地面扩散,则可求出该有毒气体扩散半径为: R=33 421/π?c Vg =30944.2/c Vg 式中 R ——有毒气体的半径,m ; Vg ——有毒介质的蒸气体积,m 3; C ——有毒介质在空气中的危险浓度值,%。 表2-3 一些有毒物质的有关物化性能

事故后果模拟分析

2.2 事故后果模拟分析法火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设的前提下按理想的情况建立的,有递增模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。2.2.1 泄漏由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生,因此,后果分析由泄漏分析开始。 2.2.1.1 泄漏情况分析 2.1.1.1.1 泄漏的主要设备根据各种设备泄漏情况分析,可将工厂(特别是化工厂) 中易发生泄漏的设备 归纳为以下10 类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器,火炬燃烧装置或放散管等。 ⑴管道。它包括管道、法兰和接头,其典型情况和裂口尺寸分别取管径 的20%- 100% 20 痢20%- 100% ⑵挠性连接器。它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为: ①连接器本体破裂泄漏,裂口尺寸取管径的20%- 100% ②接头处的泄漏,裂口尺寸取管径的20% ③连接装置损坏泄漏,裂口尺寸取管径的100% ⑶过滤器。它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%- 100%和20%。 ⑷阀。其典型泄漏情况和裂口尺寸为: ①阀壳体泄漏,裂口尺寸取管径的20%- 100% ②阀盖泄漏,裂口尺寸取管径的20%

③阀杆损坏泄漏,裂口尺寸取管径的20% ⑸压力容器或反应器。包括化工生产中常用的分离器、气体洗涤器、反应釜、热交换器、各种罐和容器等。其常见的此类泄漏情况和裂口尺寸为: ①容器破裂而泄漏,裂口尺寸取容器本身尺寸; ②容器本体泄漏,裂口尺寸取与其连接的粗管道管径的100% ③孔盖泄漏,裂口尺寸取管径的20% ④喷嘴断裂而泄漏,裂口尺寸取管径的100% ⑤仪表管路破裂泄漏,裂口尺寸取管径的20%- 100% ⑥容器内部爆炸,全部破裂。 ⑹泵。其典型泄漏情况和裂口尺寸为: ①泵体损坏泄漏,裂口尺寸取与其连接管径的20%-100% ②密封压盖处泄漏,裂口尺寸取管径的20% ⑺压缩机。包括离心式、轴流式和往复式压缩机,其典型泄漏情况和裂口尺寸为: ①压缩机机壳损坏而泄漏,裂口尺寸取与其连接管道管径的20%-100% ②压缩机密封套泄漏,裂口尺寸取管径的20% ⑻储罐。露天储存危险物质的容器或压力容器,也包括与其连接的管道和辅助设备,其典型泄漏情况和裂口尺寸为: ①罐体损坏而泄漏,裂口尺寸为本体尺寸; ②接头泄漏,裂口尺寸为与其连接管道管径的20%-100% ③辅助设备泄漏,酌情确定裂口尺寸。 ⑼加压或冷冻气体容器。包括露天或埋地放置的储存器、压力容器或运输槽车等,其典型泄漏情况和裂口尺寸为:

氯气泄漏重大事故后果模拟分汇总

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

Q=WC(t-t0) 设这些热量全部用于液氯蒸发,如汽化热为q(kj/kg),则其蒸发量W为: W=Q/q=WC(t-t0)/q 氯的相对分子质量为M r,则在沸点下蒸发的液氯体积V g(m3)为: V g =22.4W/M r273+t0/273 V g =22.4WC(t-t0)/ M r q273+t0 /273 氯的有关理化数据和有毒气体的危险浓度如下: 相对分子质量:71 沸点: -34℃ 液体平均此热:0.98kj/kg.℃ 汽化热: 2.89×102kj/kg 吸入5-10mim致死浓度:0.09% 吸入0.5-1h致死浓度: 0.0035-0.005% 吸入0.5-1h致重病浓度:0.0014-0.0021% 已知氯的危险浓度,则可求出其危险浓度下的有毒空气体积: 氯在空气中的浓度达到0.09%时,人吸入5~10min即致死。则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V1 = V g×100/0.09 = 1111V g(m3) 氯在空气中的浓度达到0.00425(0.0035~0.005)%时,人吸入0.5~1h,则V g(m3)的液氯可以产生令人致死的有毒空气体积为: V2=V g×100/0.00425=23529V g(m3) 氯在空气中的浓度达到0.00175(0.0014~0.0021)%时,人吸入0.5~1 h,则

(生产管理知识)生产装置重大泄漏事故原因分析及灾害后果模拟计算

生产装置重大泄漏事故原因分析及灾害后果模拟计算 1、泄漏事故原因统计分析 根据建国以来化工系统所发生的59起重大及典型泄漏事故的实际情况,从五方面对事故原因进行了分类,见表1。 表1 重大及典型泄漏事故原因分类 (1)工艺技术 工艺路线设计不合理,操作中关键参数控制要求不严格。 (2)设备、材料本身原因 设备本身缺陷,材料及安装质量未达到标准要求;生产、制造过程中不按照有关规定进行;材料选择不符合标准。 (3)人为因素 违章操作、误操作、缺少必要的安全生产和岗位技能知识;工作责任心不强。 (4)外来因素 外来物体的打击、碰撞。 (5)其他因素 不属于以上四种原因之一。 从以上统计可以看出,泄漏事故的发生主要是因为设备等产品的质量不过关,职工不按操作规程进行操作和安全生产意识不强等主要原因造成的。针对这些原因,企业应加强产品质量的检查和验收,积极开展安全生产及岗位操作技能教育,真正做到岗前培训,持证上岗。 2、典型事故案例分析

本节通过列举案例,分析类似事故,找出可能造成系统故障、物质损失和人员伤害的危险因素,防患于未然。 【案例一】1000m3气柜爆炸 发生日期:1979年7月9日 发生单元:河北省大城化肥厂 经济损失:14万元 (1)事故经过: 7月9日中午12时许,全厂断电,造气停车。当时造气工段1号炉正作吹风,2号炉作下吹,气柜存半水煤气400m3。停车前作最后一次半水煤气分析成分合格。此时发现1号煤气炉有倒气现象,为防止发生炉口爆炸,于下午2时左右,将气柜出口水封放空阀打开,将气柜内半水煤气放掉,下午4时气柜钟罩已落底。这时操作工又将1号洗气塔放空阀打开,作进一步系统卸压,各工段均处于停车状态,各工段只留下1~2名工人值班,到下午6时55分气柜突然发生爆炸。气柜周边撕裂,顶盖升至高空约40m,落至距气柜中心14m远处,将围墙砸塌10m多长。气柜爆炸的同时,造气工段2号洗气塔顶盖亦被炸坏,打出33m。没有造成人身伤亡。 (2)原因分析:①可燃性气体存在:虽然气柜已放空,气柜钟罩已落底,但钟罩球形顶部尚残存60多M3水煤气,洗气塔及煤气管道中也残存40多M3的 可燃性气体;②空气的混半水煤气,在这100M3半水煤气中含有大量的CO与H 2 入:由于气柜出口水封放空阀与洗气塔放空阀均已打开,使系统与空气连通,当系统内有压力时,半水煤气自系统排向大气,但自9日中午起就连续下大雨,气温下降很快,容器管道内残存的半水煤气温度也明显下降,致使气柜形成负压,由放空阀将空气吸入气柜,酿成爆炸条件。③火源引入:因1号洗气塔排污闸阀密封不严,较长时间的停车使水泄漏较多,水封失去作用,使造气炉与洗气塔、管道、气柜成为连通体,炉体火源引入气柜,引起爆炸。 (3)教训:①停车时必须由造气工段长负责检查设备(包括各种阀门)、工艺情况;②放空阀卸压后要及时关闭,避免空气混入;③防止停车后气柜煤气倒回、炉口爆炸,可使气柜进口水封加水和洗气塔、洗气箱水保持溢流。

十三起氯气中毒实例及案例分析

十三起氯气中毒实例及案例分析 氯气,Cl2,是一种黄绿色、有强烈刺激性的气体。可溶于水和碱溶液,易溶于二硫化碳和四氯化碳等有机溶剂。氯气遇水后生成次氯酸和盐酸,再分解为新生态氧。在高压下氯气液化成液氯。氯气有强烈腐蚀性,设备及容器极易被腐蚀而泄漏。工业上接触氯的机会有:氯的制造或使用过程中若设备管道密闭不严或检修时均可接触到氯。液氯灌注、运输和贮存时,若钢瓶密封不良或有故障,亦可发生大量氯气逸散。主要见于电解食盐,制造各种含氯化合物、造纸、印染及自来水消毒等工业。 氯气对人体的作用有急性中毒和慢性损害两种。急性中毒临床上又可分为刺激反应、轻度、中度、重度中毒。其表现为: (1)氯气刺激反应:出现一过性的眼及上呼吸道刺激症状; (2)轻度中毒:主要表现为支气管炎和支气管周围炎,有咳嗽,可有少量痰、胸闷等,两肺有干罗音或哮鸣音,可有少量湿罗音; (3)中度中毒:主要表现为支气管肺炎、间质性肺水肿或局限的肺泡性肺水肿。咳嗽、咳痰、气短、胸闷或胸痛,可有轻度发绀,两肺有干性或湿性罗音; (4)重度中毒:临床上表现为①咳嗽、咯大量白色或粉红色泡沫痰,呼吸困难,胸部紧束感,明显发绀,两肺有弥漫性湿罗音;②严重窒息;③中、重度昏迷;④卒死;⑤出现严重并发症,如气胸、纵隔气肿等,只要具有其中一项即为重度氯气中毒。氯气对人体的慢性影响主要表现为上呼吸道、眼结膜、皮肤方面的刺激症状及神经衰弱综合证、氯痤疮,牙齿酸蚀症等 凡有明显的呼吸系统慢性疾病,明显的心血管系统疾病的患者不宜从事氯气作业。 氯气中毒的防治要点有: ①严格遵守安全操作规程,防止跑、冒、滴、漏,保持管道负压; ②含氯废气需经石灰净化处理再排放,也可设氨水储槽和喷雾器,在跑氯时和中和氯气; ③检修时或现场抢救时必须佩戴防毒面具; ④执行预防性体格检查。 实例1 某区镇办水厂,加氯消毒工艺较为原始,即用液氯钢瓶置于水泵吸水口滴加消毒。1984年12月9日下午6时许赵某(男,34岁)当班抄表时,嗅及氯气间有氯气味,查见钢瓶接头处橡胶管破裂,遂戴防毒口罩去关钢瓶,未成,即上门通知有关同事请求帮助时,因胸闷、咳嗽、心悸继而昏倒在同事家里,即由同事送往医院救治。当日下午7时许,同

蒸汽云爆炸事故后果模拟分析法

蒸汽云爆炸事故后果模 拟分析法 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

蒸汽云爆炸事故后果模拟分析法 超压: 1)TNT当量 通常,以TNT当量法来预测蒸气云爆炸的威力。如某次事故造成的破坏状况与kgTNT炸药爆炸所造成的破坏相当,则称此次爆炸的威力为kgTNT当量。 蒸气云爆炸的TNT当量W TNT计算式如下: W TNT=×α×W f×Q f/Q TNT 式中,W TNT—蒸气云的TNT当量(kg) α—蒸气云的TNT当量系数,正己烷取α=; W f—蒸气云爆炸中烧掉的总质量(kg) Q f—物质的燃烧热值(kJ/kg), 正己烷的燃烧热值按×106J/kg,参与爆炸的正己烷按最大使用量 792kg计算,则爆炸能量为×109J 将爆炸能量换算成TNT当量q,一般取平均爆破能量为×106J/kg,因此 W TNT= ×α×W f×Q f /q TNT+ =××792××106/×106 =609kg 2)危害半径 为了估计爆炸所造成的人员伤亡情况,一种简单但较为合理的预测程序是将危险源周围划分为死亡区、重伤区、轻伤区和安全区。 死亡区内的人员如缺少防护,则被认为将无例外的蒙受重伤或死亡,其内径为0,外径为R ,表示外周围处人员因冲击波作用导致肺出血而死亡的概率为,它与爆炸量之间的关系为: = m 重伤区的人员如缺少防护,则绝大多数将遭受严重伤害,极少数人可能死亡或受伤。其内径就是死亡半径R1,外径记为R2,代表该处人员

因冲击波作用耳膜破损的概率为,它要求的冲击波峰值超压为44000Pa。 ?按下式计算: 冲击波超压P ?=++式中: P ?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R2= 轻伤区的人员如缺少防护,则绝大多数将遭受轻微伤害,少数人将受重伤或者平安无事。轻伤区的内径为重伤区的外径R2,外径R3,表示外边界处耳膜因冲击波作用破裂的概率为,它要求的冲击波峰值超压为17000Pa。冲击波超压P?按下式计算: ?=++P?——冲击波超压,Pa; P Z——中间因子,等于; E——蒸气云爆炸能量值,J; P0——大气压,Pa,取101325 得R3= m 安全区内人员即使无防护,绝大多数也不会受伤,安全区内径为轻伤区的外径R3,外径无穷大。 财产损失半径,指在冲击波的作用下建筑物发生三级破坏的半径,单位为m。按照英国建筑物破坏等级的划分标准规定,建筑物的三级破坏是指房屋不能居住、屋基部分或全部破坏、外墙1 ~ 2面部分破损,承重墙破损严重。财产损失半径可由下式确定。 式中: K——取值为5. 6 正常泄露: 从原料危险性及最大储存使用量两方面综合考虑,选取甲醇的存储为研究对象进行蒸汽云爆炸事故后果模拟分析。

事故后果模拟分析举例

压力容器物理爆炸 本节按照安全评价事故最大化原则,对该项目可能发生的重大事故进行模拟计算对可能发生的事故作出如下模拟评价。 介质为压缩空气的实验压力容器基本数据: 体积:V=250L=0.25m 3,绝对压力:P=8.1 Mpa 1. 计算发生爆炸时释放的爆破能量:E g =C g ·V ; 32857 .010]1013.01[5.2?? ?? ? ??-=p pV C g 式中:E g —气体的爆破能,kJ ; C g ——压缩气体爆破能量系数,kJ/m 3; V ——容器的容积,m 3; p-容器内气体的绝对压力,MPa ; 根据公式:代入数据得:C g =14458.73 kJ/m 3, E g =3614.68 kJ 2.将爆破能量E g 换成TNT 当量q ,代入数据: q=E g /q TNT =E g /4500则:q=0.80 3.爆炸的模拟比a ,即: a=(q/q 0)1/3=(q/1000)1/3=0.1q 1/3则: a=0.0928 4.在1000kgTNT 爆炸试验中相当的距离R 0,则 R 0 = R/a 或R = R 0·a 式中,R —目标与爆炸中心的距离,m ;

R0—目标与基准爆炸中心的相当距离,m。 △p(R)=△p0(R/α) 或△p(R0·a)=△p0(R0) 附表1 1000kgTNT爆炸时的冲击波超压 5.根据附表1给出的相关数据,在距离爆炸中心不同半径处的超压,见附表2。 附表2距离爆炸中心不同半径处的超压 6.离爆炸中心不同半径处冲击波超压对建筑物的破坏作用 附表3 冲击波超压对建筑物的破坏作用

由附表2和见附表3可知,离爆炸中心不同半径处冲击波超压对建筑物的破坏作用见附表4。 附表3-4 不同半径处冲击波超压对建筑物的破坏作用 7. 不同半径处冲击波超压对人体的伤害作用 附表5 冲击波超压对人体的伤害作用

氯气泄漏中毒事故案例_

氯气泄漏中毒事故案例1)事故经过 2007年11月8日下午5点20分左右,位于石景山苹果园东口处的首钢日电电子有限公司一车间发生氯气泄漏事件,导致15名工作人员中毒。事发车间是生产集成电路的前工序车间,出事时,工人突然听到氯气泄漏的报警声音,一名技术人员和两名工人进入车间查看。在未配备安全装置的情况下,3人对报警的氯气瓶开关进行检验,并未发现异常,但闻到气味。3人出来后,突然感觉不适,后被急救车送到朝阳医院京西院区检查。3人被送走后,该公司又派技术人员进入事发车间用仪器进行检测,仍未发现异常。晚饭后,12名工人进入车间继续工作,不久便出现了头晕等症状,被立即送到医院治疗。就诊的15人均被确诊为氯气中毒,其中3人在心内科治疗,3人在呼吸科,其余患者在耳鼻喉科。因该公司装有泄漏报警装置,报警后自动关闭阀门,所以泄漏的氯气量不大。 2)事故原因 (1)直接原因 供应端气瓶柜发生泄漏,由于气瓶在报警后已经启动关闭功能,所以初步认定原因为气瓶柜阀门或管路出现泄漏。 (2)间接原因 ①首钢NEC氯气供应采用的是单层管,增加了事故发生的概率; ②没有相应的紧急应变程序或该程序没有得到应有的训练和演练,造成发生事故时没有正确的流程予以指挥控制,导致事故扩大; ③员工的安全意识薄弱,未能组织有效的培训,应急救援人员进入处理时竟然没有佩戴必要的防护器具,导致人员受伤;

④公司高层安全意识不足,在事故原因没有查明之前就安排员工进入生产,导致后续大批员工受伤的原因; ⑤应急救援人员没有按照应有的紧急应变流程,穿戴必要的防护设备进入处理紧急应变。训练不到位,安全意识和能力极差。 3)防范措施 (1)提高人员的操作技能和紧急应变技能 ①加强对相关特种岗位员工的操作技能,学习安全操作的标准操作流程,并严格按照标准操作流程的要求操作。操作人员工必须熟悉所使用的化学品的特性及紧急处理方法。定期对重大危险场所进行由针对性的应变演练,提高紧急应变技能。 ②针对特殊成员需加强训练,譬如应急救援人员,使得在灾害发生时能及时有效的处理事故,避免事态扩大。 ③公司高层的安全意识需加强,需熟悉紧急应变流程,系统特点,气体特性等相关安全知识,在事故发生时能准确有效的指挥抢险救灾。 (2)加强对设备、管道及安全系统的日常维护 ①加强对现场的日常巡检,确保设备、管路的安全运行;必须定期对安全系统进行检测,确保安全系统有效的运行。 ②对迎击救援人员使用的侦测仪器需要定期校验,避免事故发生时未能准确测出导致误判,造成不必要的人员二次伤害。 ③在建设时尽量采用符合标准的管材阀件,保证安全系数。

氯气泄漏重大事故后果模拟分析经典

氯气泄漏重大事故后果模拟分析(经典)

————————————————————————————————作者: ————————————————————————————————日期: ?

国内外统计资料显示,因防爆装置不作用而造成焊缝爆裂或大裂纹泄漏的重大事故概率仅约为6.9×10-7~6.9×10-8/年左右,一般发生的泄漏事故多为进出料管道连接处的泄漏。据我国不完全统计,设备容器一般破裂泄漏的事故概率在1×10-5/年。此外,据储罐事故分析报道,储存系统发生火灾爆炸等重大事故概率小于1×10-6,随着近年来防灾技术水平的提高,呈下降趋势。 第七章氯气泄漏重大事故后果模拟分析 7.1危险区域的确定 概述: 泄漏类型分为连续泄漏(小量泄漏)和瞬间泄漏(大量泄漏),前者是指容器或管道破裂、阀门损坏、单个包装的单处泄漏,特点是连续释放但流速不变,使连续少量泄漏形成有毒气体呈扇形向下风扩散;后者是指化学容器爆炸解体瞬间、大包装容器的泄漏、许多小包装的多处泄漏,使大量泄漏物形成一定高度的毒气云团呈扇形向下风扩散。 氯泄漏后虽不燃烧,但是会造成大面积的毒害区域,会在较大范围內对环境造成破坏,致人中毒,甚至死亡。根据不同的事故类型、氯气泄漏扩散模型,危害区域会有所不同。氯设备泄漏、爆炸事故概率低,一旦发生可造成严重的后果。 以下液氯钢瓶中的液氯泄漏作为事故模型进行危险区域分析。 毒害区域的计算方法: (1)设液氯重量为W(kg),破裂前液氯温度为t(℃),液氯比热为C(kj/kg .℃),当钢瓶破裂时瓶内压力降至大气压,处于过热状态的液氯迅速降至标准沸点t0(℃),此时全部液氯放出的热量为:

氯气泄漏事故的原因分析及防范措施

编号:SM-ZD-44364 氯气泄漏事故的原因分析 及防范措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

氯气泄漏事故的原因分析及防范措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 氯气是制造农药、橡胶、塑料和合成纤维的重要原料,在有机、无机化工生产中有着广泛的用途。氯气本身又是一种漂白剂和消毒剂,在日常生活中也被普遍应用。氯气是一种有刺激性的有毒气体,吸入一定量的氯气会引起中毒,引发各类呼吸道疾病,因此,一旦发生泄漏,所造成的后果是十分严重的。近年来,氯气泄漏中毒事故时有发生,不仅给国家财产和人们的生命安全造成巨大的损失和威胁,而且直接影响正常的生产、生活秩序和社会安全。如何在实际工作中采取有效的措施成功处置各类氯气泄漏事故,已成为摆在我们面前的一项重要课题。本文以近年来发生的氯气泄漏事故为例,对如何处置氯气泄漏事故作一探讨,以期起到抛砖引玉的作用。 一、典型氯气泄漏中毒事故介绍

事故后果模拟分析

2.2事故后果模拟分析法 火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设的前提下按理想的情况建立的,有递增模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。 2.2.1 泄漏 由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生,因此,后果分析由泄漏分析开始。 2.2.1.1 泄漏情况分析 2.1.1.1.1泄漏的主要设备 根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器,火炬燃烧装置或放散管等。 ⑴管道。它包括管道、法兰和接头,其典型情况和裂口尺寸分别取管径的20%~100%、20%和20%~100%。 ⑵挠性连接器。它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为: ①连接器本体破裂泄漏,裂口尺寸取管径的20%~100%; ②接头处的泄漏,裂口尺寸取管径的20%; ③连接装置损坏泄漏,裂口尺寸取管径的100%。 ⑶过滤器。它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%~100%和20%。 ⑷阀。其典型泄漏情况和裂口尺寸为:

①阀壳体泄漏,裂口尺寸取管径的20%~100%; ②阀盖泄漏,裂口尺寸取管径的20%; ③阀杆损坏泄漏,裂口尺寸取管径的20%。 ⑸压力容器或反应器。包括化工生产中常用的分离器、气体洗涤器、反应釜、热交换器、各种罐和容器等。其常见的此类泄漏情况和裂口尺寸为: ①容器破裂而泄漏,裂口尺寸取容器本身尺寸; ②容器本体泄漏,裂口尺寸取与其连接的粗管道管径的100%; ③孔盖泄漏,裂口尺寸取管径的20%; ④喷嘴断裂而泄漏,裂口尺寸取管径的100%; ⑤仪表管路破裂泄漏,裂口尺寸取管径的20%~100%; ⑥容器内部爆炸,全部破裂。 ⑹泵。其典型泄漏情况和裂口尺寸为: ①泵体损坏泄漏,裂口尺寸取与其连接管径的20%~100%; ②密封压盖处泄漏,裂口尺寸取管径的20%; ⑺压缩机。包括离心式、轴流式和往复式压缩机,其典型泄漏情况和裂口尺寸为: ①压缩机机壳损坏而泄漏,裂口尺寸取与其连接管道管径的20%~100%; ②压缩机密封套泄漏,裂口尺寸取管径的20%。 ⑻储罐。露天储存危险物质的容器或压力容器,也包括与其连接的管道和辅助设备,其典型泄漏情况和裂口尺寸为: ①罐体损坏而泄漏,裂口尺寸为本体尺寸; ②接头泄漏,裂口尺寸为与其连接管道管径的20%~100%; ③辅助设备泄漏,酌情确定裂口尺寸。 ⑼加压或冷冻气体容器。包括露天或埋地放置的储存器、压力容器或运输槽车等,其典型泄漏情况和裂口尺寸为: ①露天容器内部气体爆炸使容器完全破裂,裂口尺寸取本体尺寸;

事故后果模拟分析

事故后果模拟分析 (1)物理爆炸能量计算 液化气体和高温饱和水一般在容器内以气液两态存在,当容器破裂发生爆炸时,除了气体的急剧膨胀做功外,还有过热液体激烈的蒸发过程。在大多数情况下,这类容器内的饱和液体占有容器介质重量的绝大部分,它的爆破能量比饱和气体大得多,一般计算时考虑气体膨胀做的功。过热状态下液体在容器破裂时释放出爆破能量可按下式计算: [] W T )S S ()H H (E 12121---= 式中,E ——过热状态液体的爆破能量,kJ ; H 1——爆炸前饱和液体的焓,kJ/kg ; H 2——在大气压力下饱和液体的焓,kJ/kg ; S 1——爆炸前饱和液体的熵,kJ/(kg ·℃); S 2——在大气压力下饱和液体的熵,KJ/(kg ·℃); T 1——介质在大气压力下的沸点,℃; W ——饱和液体的质量,kg 。 (2)物理爆炸冲击波的伤害范围(危险性区域)估算 冲击波对人体造成的伤害是由于其超压引起的,显然,超压越大,伤害作用就越大。对爆炸的冲击波超压,采用比

例法则模拟标准TNT炸药爆炸之冲击波超压进行估算,即两个爆炸源若在某一地点形成同样的冲击波超压,则此超压点与两爆炸源距离之比,等于两爆炸源爆炸药量之比的三次方根。也就是说,当 R/ R0= ( Q /Q 0 )1/ 3= α 时,有 ΔP= ΔP0 式中:R ——实际爆炸源至超压点的距离,m; R0——标准炸药爆炸源至超压点的距离,m; q ——实际爆炸物的TNT当量,TNT,kg; q0——标准TNT炸药量,TNT,kg; α——爆炸模拟比; ΔP ——实际爆炸源至超压点的超压,MPa; ΔP0——标准炸药爆炸源至超压点的超压,MPa。

氯气中毒事故案例

氯气中毒事故案例 氯气,Cl2,是一种黄绿色、有强烈刺激性的气体。可溶于水和碱溶液,易溶于二硫化碳和四氯化碳等有机溶剂。氯气遇水后生成次氯酸和盐酸,再分解为新生态氧。在高压下氯气液化成液氯。氯气有强烈腐蚀性,设备及容器极易被腐蚀而泄漏。工业上接触氯的机会有:氯的制造或使用过程中若设备管道密闭不严或检修时均可接触到氯。液氯灌注、运输和贮存时,若钢瓶密封不良或有故障,亦可发生大量氯气逸散。主要见于电解食盐,制造各种含氯化合物、造纸、印染及自来水消毒等工业。(安全管理交流https://www.wendangku.net/doc/864329763.html,) 氯气对人体的作用有急性中毒和慢性损害两种。急性中毒临床上又可分为刺激反应、轻度、中度、重度中毒。其表现为:(1)氯气刺激反应:出现一过性的眼及上呼吸道刺激症状;(2)轻度中毒:主要表现为支气管炎和支气管周围炎,有咳嗽,可有少量痰、胸闷等,两肺有干罗音或哮鸣音,可有少量湿罗音;(3)中度中毒:主要表现为支气管肺炎、间质性肺水肿或局限的肺泡性肺水肿。咳嗽、咳痰、气短、胸闷或胸痛,可有轻度发绀,两肺有干性或湿性罗音;(4)重度中毒:临床上表现为①咳嗽、咯大量白色或粉红色泡沫痰,呼吸困难,胸部紧束感,明显发绀,两肺有弥漫性湿罗音;②严重窒息;③中、重度昏迷;④卒死;⑤出现严重并发症,如气胸、纵隔气肿等,只要具有其中一项即为重度氯气中毒。氯气对人体的慢性影响主要表现为上呼吸道、眼结膜、皮肤方面的刺激症状及神经衰弱综合证、氯痤疮,牙齿酸蚀症等。 凡有明显的呼吸系统慢性疾病,明显的心血管系统疾病的患者不宜从事氯气作业。 氯气中毒的防治要点有: ① 严格遵守安全操作规程,防止跑、冒、滴、漏,保持管道负压; ② 含氯废气需经石灰净化处理再排放,也可设氨水储槽和喷雾器,在跑氯时和中和氯气; ③ 检修时或现场抢救时必须佩戴防毒面具;

氯气泄漏事故的应急处置

编订:__________________ 单位:__________________ 时间:__________________ 氯气泄漏事故的应急处置 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5333-23 氯气泄漏事故的应急处置 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 随着石油化学工业的发展,氯气作为一种化工基本原料,在冶金、纺织、造纸等工业中得到了日益广泛的应用。与此同时,氯气的储存和运输事故却屡屡发生。20xx年8月26日,广西维尼纶集团有限责任公司出现巨量氯气泄漏,6个液氯罐(1t/罐)发生爆炸,导致有机厂原料罐场、聚合醇解工段和合成工段等3个部位燃烧,进而引发其他分厂的连续爆炸。事故共造成20人死亡,60人受伤;20xx年7月8日,山东省聊城市莘县化肥厂液氯冲装软管爆裂,造成液氯泄漏事故,共有13人死亡;20xx年3月29日,一辆载有35t液氯的山东槽罐车与一辆货车相撞,致使槽罐车液氯大面积泄漏。氯气扩散,造成公路旁边3个乡镇村民重大伤亡。 从上述事故中可以看到,加强正确使用、储存氯

相关文档
相关文档 最新文档