文档库 最新最全的文档下载
当前位置:文档库 › 变压器调压

变压器调压

变压器调压
变压器调压

主变调档总结,欢迎大家指正

关于变压器调挡,首先应该明确一点:当你改变高压侧分接开关档位时,并没有改变高压侧的电压!高压侧的电压是系统电源的电压,这个电压只能随负荷等参数波动,是不受你变压器高压侧分接开关档位控制的!!当你改变高压侧分接开关档位时,实际上是改变了高压绕组的匝数。高压绕组的匝数一旦改变了,它与中、低压侧之间的变比也就改变了,从而达到了改变中、低压侧电压的目的。知道了这些,怎么调整中、低压侧的电压就简单了:当你只想改变中压侧电压而保持低压侧电压不变时,只调整中压侧分头就可以了——这样,高、中压之间的变比改变了,中压侧的电压也改变了。而高、低压侧的变比保持原样,所以低压侧的电压没有改变。当你只想改变低压侧电压而保持中压侧电压不变时,就麻烦些,需要高压侧分头和中压侧分头都作调整:如高压侧分头升一挡,那么中压侧分头也升一挡,保持两者之间的变比不变,这样中压侧也不变。而此时高、低压侧之间的变比已经改变,所以,低压侧的电压也改变了。

一般主变调档抽头在高压侧,主变铭牌上很清楚的标出每一档的额定电压及电流,当然也可以通过主变的额定电压来算,如一台主变额定电压为(110±8×1.25%)/10.5,!那么可以看出分接开关在高压侧,一共有2×8+1=17个档位,每一档分接头额定电压可以通过110(1±n×1.25%)公式计算,n为1~8内的数字(一般1档电压最高,17档最低)。分接头额定电压是根据低压侧额定电压推算的,可以得出变压器在1档的时候变比最大,17档的时候变比最小。

变压器的变比关系: Ku=U1/U2=N1/N2,需要调压时都是调节高压线圈的匝数,所以要提高U2,需要降低N1,减小变压器变比,才能将低压侧电压调整上去,变比等于一次侧额定电压与二次侧的比值,一次电压不变,二次电压等于一次侧电压除以变比,而一次侧电压不变,所以档位朝高档方向调节,减小变压器变比,才能将低压侧电压调整上去,即原来是3档就要往4档调,

对高压侧调压的降压变压器而言,当低压侧电压偏低时,分接开关档位要向低调整(1 ----- 17),减小变压器变比,抬高二次侧电压;当低压侧电压偏高时,分接开关档位要向高调整(17 ------ 1),增大变压器变比,降低二次侧电压,这就是老工人常说的“低了低调,高了高调”。

P=U2/R,Q=U2/X,其P:有功功率,Q:无功功率,U:系统电压,R:系统电阻,X:系统电抗。升档时,高压侧匝数是减少的(高档的分接头额定电压要小),而K= N1/N2,K就变小,那么低压侧U2=U1/K 会变大,当系统内负载(R、X)不变时,根据上式,Q2 也变大,主变本身的无功损耗会增大许多,也就是说所需要的无功更多,这些无功功率都要从系统中吸收,肯定就扩大了系统的无功缺额,从而导致整个系统的电压水平更加下降。如系统中都采用这种调压方式,而不设法增加系统的无功功率,最终会导致电压崩溃。因此,无功不足时,应避免采用改变变压器分接头的方法来调压。

变压器有载调压的原理

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压;高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时;

(5)调压装置发生异常时。 500kV变压器也是用的有载调压?厉害! 单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV 过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变);第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 6.1??110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 6.2 有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 6.3 检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构

变压器复习试题

《变压器》复习题 一、单项选择题 1.变压器是一种(D)的电气设备,它利用电磁感应原理将一种电压等级的交流电转变成同频率的另一种电压等级的交流电。 A.滚动 B.运动 C.旋转 D.静止 3.电力变压器按冷却介质可分为(A)和干式两种。 A.油浸式 B.风冷式 C.自冷式 D.水冷式 4.变压器的铁芯是(A)部分。 A.磁路 B.电路 C.开路 D.短路 5.变压器铁芯的结构一般分为(C)和壳式两类。 A.圆式 B.角式 C.心式 D.球式 6.变压器(C)铁芯的特点是铁轭靠着绕组的顶面和底面,但不包围绕组的侧面。 A.圆式 B.壳式 C.心式 D.球式 7.变压器的铁芯一般采用(C)叠制而成。 A.铜钢片 B.铁(硅)钢片 C.硅钢片 D.磁钢片 9.变压器的铁芯硅钢片(A)。 A.片厚则涡流损耗大,片薄则涡流损耗小 B.片厚则涡流损耗大,片薄则涡流损耗大 C.片厚则涡流损耗小,片薄则涡流损耗小 D.片厚则涡流损耗小,片薄则涡流损耗大 10.电力变压器利用电磁感应原理将(A)。 A.一种电压等级的交流电转变为同频率的另一种电压等级的交流电 B.一种电压等级的交流电转变为另一种频率的另一种电压等级的交流电 C.一种电压等级的交流电转变为另一种频率的同一电压等级的交流电 D.一种电压等级的交流电转变为同一种频率的同一电压等级的交流电 11.关于电力变压器能否转变直流电的电压,下列说法中正确的是(B)。 A.变压器可以转变直流电的电压 B.变压器不能转变直流电的电压 C.变压器可以转变直流电的电压,但转变效果不如交流电好 D.以上答案皆不对12.绕组是变压器的(A)部分,一般用绝缘纸包的铜线绕制而成。 A.电路 B.磁路 C.油路 D.气路 13.根据高、低压绕组排列方式的不同,绕组分为(A)和交叠式两种。 A.同心式 B.混合式 C.交叉式 D.异心式 14.对于(A)变压器绕组,为了便于绕组和铁芯绝缘,通常将低压绕组靠近铁芯柱。 A.同心式 B.混合式 C.交叉式 D.异心式 15.对于(D)变压器绕组,为了减小绝缘距离,通常将低压绕组靠近铁轭。 A.同心式 B.混合式 C.交叉式 D.交叠式 18.从变压器绕组中抽出分接以供调压的电路,称为(B)。 A.调频电路 B.调压电路 C.调流电路 D.调功电路 19.变压器中,变换分接以进行调压所采用的开关,称为(A)。 A.分接开关 B.分段开关 C.负荷开关 D.分列开关 20.变压器二次(D),一次也与电网断开(无电源励磁)的调压,称为无励磁调压。 A.带100%负载 B.带80%负载 C.带10%负载 D.不带负载 21.变压器二次带负载进行变换绕组分接的调压,称为(B)。 A.无励磁调压, B.有载调压 C.常用调压 D.无载调压 22.变压器的冷却装置是起(B)的装置,根据变压器容量大小不同,采用不同的冷却装置。 A.绝缘作用 B.散热作用 C.导电作用 D.保护作用 25.(B)位于变压器油箱上方,通过气体继电器与油箱相通。 A.冷却装置 B.储油柜 C.防爆管 D.吸湿器 26.(C)位于变压器的顶盖上,其出口用玻璃防爆膜封住。 A.冷却装置 B.储油柜 C.安全气道 D.吸湿器 27.(B)内装有用氯化钙或氯化钴浸渍过的硅胶,它能吸收空气中的水分。 A.冷却装置 B.吸湿器 C.安全气道 D.储油柜 28.(D)位于储油柜与箱盖的联管之间。 A.冷却装置 B.吸湿器 C.安全气道 D.气体(瓦斯)继电器 29.变压器内部的高、低压引线是经绝缘套管引到油箱外部的,它起着固定引线和(A)的作用。 A.对地绝缘 B.对高压引线绝缘 C.对低压引线绝缘 D.对绝缘套管绝缘 30.在闭合的变压器铁芯上,绕有两个互相(A)的绕组,其中,接入电源的一侧叫一次侧绕组,输出电能的一侧为二次侧绕组。 A.绝缘 B.导通 C.导体 D.半绝缘

有载调压变压器工作原理及注意事项

有载调压变压器工作原理及注意事项 北极星电力网技术频道作者: 2012-1-16 15:00:59 (阅572次) 所属频道: 电网关键词: 有载调压变压器 有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另 一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和 Q2都接到所选定的分接头位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组 放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回 路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应 运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位, 说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。电工之家 在变压器有载分接开关操作过程中,应遵守如下规定:

ABB主变有载调压开关机构 二次 原理的研究与分析

ABB主变有载调压开关机构二次 原理的研究与分析 ABB主变有载调压开关机构二次原理图大多数都为英文版,且大多 设计图纸仅对其升降停回路进行简单注释,本文对该原理进行研究和阐述,并对控制部分进行较详的分析,提出分配的观点,对具体的应用具有参考的价值。 1有载调压开关的相关说明 ABB有载调压开关共分为17档,中间档为9B档。9A至9C档为触头换向时滑过的档位,中间档只停留在9B档而不会停留在9A和9C档。ABB将从1档滑行向 17档称为降档(或?档),反之,称为升档(或?档)。 有载调压开关档位触头滑行时不希望停留在两档中间,ABB图纸将这种情况称为滑档不到位(滑档运转中),并通过凸轮开关的行程接点识别有载开关处于哪种状态:滑档运转中或滑档到位。 有载调压开关允许由于某种原因暂时停留在滑档不到位的状态,但当处于滑档不到位有载调压开关重新获取电源时,电动机构将向着到位的方向自保持进行滑档,这种自保持的驱动力来自凸轮开关的行程接点,是不依赖于电磁的自保持。 有载调压开关不允许同时接受升降两个方向的调档任务。因为这种情况将有可能造成电机回路的相间短路。调档回路中必须设计有升降档的互排斥接点。 有载调压开关电机电源空开配有脱扣线圈。就地急停、远方急停、超时急停都接到该脱扣线圈使电机电源空开脱扣,从而切断电机电动回路,但不切断调档的控制回路。 有载调压开关不允许同时连续进行调档任务,调档必须一级一级的进行。因为调档把手的意外粘死或调档命令未返回造成的连续误调档,导致电压过调节。. 主变过负荷时将闭锁有载调压。闭锁接点取自主变保护的常闭接点。该闭锁接点只闭锁调档的启动回路,即闭锁远方及就地调档,而不会去闭锁调档的保持回路。2机构二次元件 F2:控制回路电源开关。可切断控制回路远方就地启动电源、零线端及自保持电源。启动电源和自保持电源可以是不同来源的交流电源。 K2:降档接触器。 K3:升档接触器。 K1:步控接触器。控制档位调节时一档一档的进行,防止因就地或远方的接点粘

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器; 按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱内部。

1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构 。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

【精品】第一章变压器的基本知识

第一章变压器的基本知识 变压器是一种电能转换装置,它以相同的频率,但往往是不同的电压和电流把能量从一个或多个电路转换到另一个或多个电路中去,它由一个硅钢片叠成的铁芯和围绕着铁芯的绝缘铜线或铝线绕组所组成。 在电力系统中变压器是一种重要的设备, (1)用升压变压器可以将电源端的电压升高到几十万伏(目前最高的电压为交流1000KV),以降低输送电流,减少输电线路上的电能 损耗,将电能进行远距离输送。 (2)用降压变压器可以将高电压降低到适合不同用户用电设备的不同电压等级的电压,以满足各类用户的用电需求。 变压器的最基本型式,包括两组绕有导线的线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率的交流电压,而感应的电压大小取决于两线圈耦合及磁交链的程度。

一般指连接交流电源的线圈称之为“一次线圈”;而跨于此线圈的电压称之为“一次电压”.在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的“匝数比”所决定的.

因此,变压器区分为升压与降压变压器两种.大部份的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份 磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度 的磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其 一次与二次电压的比值几乎与二者的线圈匝数比相同。因此,变 压器的匝数比,一般可作为变压器升压或降压的参考指标。由于此 项升压与降压的功能,使得变压器已成为现代化电力系统之一重 要附属物,提升输电电压使得长途输送电力更为经济,至于降压变 压器,它使得电力运用方面更加多元化。 第一节变压器的种类 变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等等,变压器的规格和品种繁多,分类的方法不尽相同; 变压器按用途可以分为:升压变压器、降压变压器、配电变压器、联络变压器、全密封变压器、组合式变压器、干式变压器、单相变压器、电炉变压器、整流变压器、抗干扰变压器、防雷变压器、箱式变压器试验变压器转角变压器大电流变压器励磁变压器等; 按冷却方式分:

常用配电网调压方式

常用配电网调压方式? (1)发电机调压 发电机端电压的可调范围一般在其额定电压的15%以内。系统 中根据系统设计满足系统基本负荷需要的主力电厂,运行方式固定,负荷率变化小,因此可根据发电机调压维持机端电压,靠近这些电厂的负荷和由这些电厂直送的负荷,可以得到比较稳定的电压供给。其他远区负荷,依靠发电机调压则不可能都得到稳定的电压供给。 (2)同步补偿机、电容器组、并联电抗器和静止补偿器的调压 当系统因为无功功率的分配引起电压的波动,除挖掘发电机的无功潜力外,可采用同步补偿机(包括同步电动机)、电容器、并联电抗器和静止补偿器来调节和补偿系统的无功,达到稳定系统电压的目的。 (3)变压器调压 这是系统中采用最多、最普遍的一种调压手段。变压器调压分为无励磁调压和有载调压两种。 ①无励磁调压 无励磁调压的优点是:开关结构简单易制,变压器结构较有载调压简单,但它的调压范围较小,一般在10%,而且调压必须停电,且停电时间较长(数分钟或数十分钟),既影响生产,又没有随时可调性,这是它的主要缺点。

一台无励磁调压变压器,如需调压,首先必须选择系统允许停电的时机,若这台变压器供给多个用户的电力,则此时机难于得到,因此大部分无励磁调压变压器投入运行之后,直到故障退出运行,都没有调过压。此外,无励磁开关的结构简单,对大型产品,调压后还需测量绕组电阻,以判断开关接触是否良好,致使调压和停电过程长,这也是运行管理部门不愿调压的一个原因。因此系统中运行的无励磁调压变压器,除非不得己时,一般都不调换分接改变电压比。这样绝大多数无励磁调压变压器,在系统上根本不能发挥调压作用,这也是电力系统的电压质量、无功和有功潮流分配均不易满足运行要求的主要原因之一。 目前系统中无励磁调压变压器大多数不调换分接头,并不是说明系统不需调压,而是无励磁调压方式本身缺陷所致。 ②有载调压 有载调压的优点是:能带负载调压;调压速度快,每调换一级电压约3-6s;开关可手动、电动操作,也能远方电动操作,便于实现自动化管理;调压范围较大一般为15%以上。但有载调压的开关和变压器结构比无励磁调压的复杂,制造工时和材料增多,成本较高。

变压器基本工作原理

第1章 变压器的基本知识和结构 1.1变压器的基本原理和分类 一、变压器的基本工作原理 变压器是利用电磁感应定律把一种电压等级的交流电能转换成同频率的另一种电压等级的交流电能。 变压器工作原理图 当原边绕组接到交流电源时,绕组中便有交流电流流过,并在铁心中产生与外加电压频率相同的磁通,这个交变磁通同时交链着原边绕组和副边绕组。原、副绕组的感应分别表示为 dt d N e Φ-=1 1 dt d N e Φ -=22 则 k N N e e u u ==≈2 12121 变比k :表示原、副绕组的匝数比,也等于原边一相绕组的感应电势与副边一相绕组的感应电势之比。 改变变压器的变比,就能改变输出电压。但应注意,变压器不能改变电能的频率。 二、电力变压器的分类 变压器的种类很多,可按其用途、相数、结构、调压方式、冷却方式等不同来进行分类。 按用途分类:升压变压器、降压变压器; 按相数分类:单相变压器和三相变压器; 按线圈数分类:双绕组变压器、三绕组变压器和自耦变压器; 按铁心结构分类:心式变压器和壳式变压器;

按调压方式分类:无载(无励磁)调压变压器、有载调压变压器; 按冷却介质和冷却方式分类:油浸式变压器和干式变压器等; 按容量大小分类:小型变压器、中型变压器、大型变压器和特大型变压器。 三相油浸式电力变压器的外形,见图1,铁心和绕组是变压器的主要部件,称为器身见图2,器身放在油箱部。 1.2电力变压器的结构 一、铁心 1.铁心的材料 采用高磁导率的铁磁材料—0.35~0.5mm厚的硅钢片叠成。 为了提高磁路的导磁性能,减小铁心中的磁滞、涡流损耗。变压器用的硅钢片其含硅量比较高。硅钢片的两面均涂以绝缘漆,这样可使叠装在一起的硅钢片相互之间绝缘。 2.铁心形式 铁心是变压器的主磁路,电力变压器的铁心主要采用心式结构。 二、绕组 1.绕组的材料 铜或铝导线包绕绝缘纸以后绕制而成。 2.形式

变压器的基本结构

变压器的用途与分类 变压器是变控电源电压的一种电气设备,为适应不同的使用目的和工作条件,变压器的类型很多,通常安变压器的不同用途、不同容量、绕组个数、相数、调压方式、冷却介质、冷却方式、铁心形式等等进行分类,以满足不同行业对变压器的需求。 一、按用途分类 ①电力变压器 ②电炉变压器 ③整流变压器 ④工频试验变压器 ⑤矿用变压器 ⑥电抗器 ⑦调压变压器 ⑧互感器 ⑨其他特种变压器 二、按容量分类 ①中小型变压器:电压在35KV以下,容量在10-6300KVA ②大型变压器:电压在63-110KV,容量在6300-63000KVA ③特大型变压器:电压在220KV以上,容量在31500-360000KVA 三、按相数分类 变压器按相数分类可分为单相变压器和三相变压器 四、按绕组数量分类 ①双绕组变压器 有高压绕组和低压绕组的变压器 ②三绕组变压器 有高压绕组、中压绕组和低压绕组的变压器 ③自耦电力变压器 自耦电力变压器的特点在于一、二绕组之间不仅有磁耦联系而且还有电的直接联系。采用自耦变压器比采用普通变压器能节省材料、降低成本、缩小变压器体积和减轻重量,有利于大型变压器的运输和安装。 五、按变压器的调压方式分类 按调压方式可分为无载调压变压器和有载调压变压器 六、按变压器的冷却介质分类 按冷却介质可分为油浸式变压器、干式变压器、充气式变压器、充胶式变压器和填砂式变压器等 七、按变压器的冷却方式分类 ①油浸自冷式变压器 ②油浸风冷式变压器 ③油浸强迫油循环风冷却式变压器 ④油浸强迫油循环水冷却式变压器 ⑤干式变压器 八、按铁心结构分类 ①心式变压器 ②壳式变压器

九、其他分类 ①按导线材料分类 有铜导线变压器和铝导线变压器 ②按中性绝缘水平分类 有全绝缘变压器和半绝缘变压器 ③按所连接发电机的台数分类 可分为双分裂与多分裂式变压器,双分列式变压器又可分为沿轴向分裂与沿辐向分裂变压器 ④按高压绕组有无电的联系分类 可分为普通电力变压器和自耦变压器

有载调压变压器工作原理注意事项

有载调压变压器工作原理 有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和Q2都接到所选定的分接头位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位,说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。电工之家 在变压器有载分接开关操作过程中,应遵守如下规定: 1、应逐级调压,同时监视分接位置及电压电流变化(每次调压一档后应间隔lmin以上,才能进行下一档调节)。

变压器调压

主变调档总结,欢迎大家指正 关于变压器调挡,首先应该明确一点:当你改变高压侧分接开关档位时,并没有改变高压侧的电压!高压侧的电压是系统电源的电压,这个电压只能随负荷等参数波动,是不受你变压器高压侧分接开关档位控制的!!当你改变高压侧分接开关档位时,实际上是改变了高压绕组的匝数。高压绕组的匝数一旦改变了,它与中、低压侧之间的变比也就改变了,从而达到了改变中、低压侧电压的目的。知道了这些,怎么调整中、低压侧的电压就简单了:当你只想改变中压侧电压而保持低压侧电压不变时,只调整中压侧分头就可以了——这样,高、中压之间的变比改变了,中压侧的电压也改变了。而高、低压侧的变比保持原样,所以低压侧的电压没有改变。当你只想改变低压侧电压而保持中压侧电压不变时,就麻烦些,需要高压侧分头和中压侧分头都作调整:如高压侧分头升一挡,那么中压侧分头也升一挡,保持两者之间的变比不变,这样中压侧也不变。而此时高、低压侧之间的变比已经改变,所以,低压侧的电压也改变了。 一般主变调档抽头在高压侧,主变铭牌上很清楚的标出每一档的额定电压及电流,当然也可以通过主变的额定电压来算,如一台主变额定电压为(110±8×1.25%)/10.5,!那么可以看出分接开关在高压侧,一共有2×8+1=17个档位,每一档分接头额定电压可以通过110(1±n×1.25%)公式计算,n为1~8内的数字(一般1档电压最高,17档最低)。分接头额定电压是根据低压侧额定电压推算的,可以得出变压器在1档的时候变比最大,17档的时候变比最小。 变压器的变比关系: Ku=U1/U2=N1/N2,需要调压时都是调节高压线圈的匝数,所以要提高U2,需要降低N1,减小变压器变比,才能将低压侧电压调整上去,变比等于一次侧额定电压与二次侧的比值,一次电压不变,二次电压等于一次侧电压除以变比,而一次侧电压不变,所以档位朝高档方向调节,减小变压器变比,才能将低压侧电压调整上去,即原来是3档就要往4档调, 对高压侧调压的降压变压器而言,当低压侧电压偏低时,分接开关档位要向低调整(1 ----- 17),减小变压器变比,抬高二次侧电压;当低压侧电压偏高时,分接开关档位要向高调整(17 ------ 1),增大变压器变比,降低二次侧电压,这就是老工人常说的“低了低调,高了高调”。 P=U2/R,Q=U2/X,其P:有功功率,Q:无功功率,U:系统电压,R:系统电阻,X:系统电抗。升档时,高压侧匝数是减少的(高档的分接头额定电压要小),而K= N1/N2,K就变小,那么低压侧U2=U1/K 会变大,当系统内负载(R、X)不变时,根据上式,Q2 也变大,主变本身的无功损耗会增大许多,也就是说所需要的无功更多,这些无功功率都要从系统中吸收,肯定就扩大了系统的无功缺额,从而导致整个系统的电压水平更加下降。如系统中都采用这种调压方式,而不设法增加系统的无功功率,最终会导致电压崩溃。因此,无功不足时,应避免采用改变变压器分接头的方法来调压。

变压器的有载调压方法

(1)穿靴式改造方法: 所谓穿靴是将主变压器高配电柜压三相线圈的中性点打开,分别串联补偿器的调压线圈,并 将主变压器低压侧与补偿变压器的励磁线圈并联,实现有载调压。其调压是根据电压叠加原理,由调压补偿器借助于有载调压开关,维持主变高压侧线圈的电压在额定电压范围以内。 在这种调压方式中,补偿器运行时仅承受中性点或N级调压Σ△U1的电压,绝缘水平要求低, 当变压器中性点处于大电流接地方式运行时,其绝缘水平仅为35kV就够了(我们按40kV设计 制造),也可按运行方式设计更高的绝缘水平。此方法只要单独制造一台中性点调压变压器, 改造费用低,对主变压器中性点引出的现场改造仅需一个工作日便可完工,如果结合主变压 器大修同时进行,基本上不增加大修工期。 穿靴方式适用于电压波动范围已超出无励磁调压的范围,亦即无励磁调压开关档位在最高档 或最低档时也不能达到电压合格的要求。我们采用的中性点有载调压变压器,可实现±12%U1N 的宽范围调压,若与主变原无励磁开关配合,可更方便地上下移动调压区间(无励磁调压范围),以满足实际调压需要,并提高主变压器的出力。同时,根据实际情况确定调压范围来配置中 性点有载调压变压器,其容量配置如表1所示,各种电压等级的变压器均适合改造。我们完 成了4台主变的改造任务,所列各项都已改造过。但此方法要增加一台变压器的占地面积, 一次接线稍微复杂一些,但从整个改造工期及节约投资来看,不失为一种比较经济合理的改 造方案。 (2)背包式改造方法: 所谓背包是在变压器无励磁调压范围能够满足本地区供电电压波动需要的情况下,更经济适 用的一种改造方法。即解除原无励磁分接开关上的分接引线,拆除开关,加装一台跨接式的 或线性的有载调压开关,将原分接引线引至有载调压开关上,实现有载调压这种改造方法也 只需1个大修周期,本体改造(揭罩或吊芯)只需1天,与芯体检查同步进行,钟罩(桶壳)或 油箱也同时改造完毕。其改造关键是必须在一天时间内,保证芯体不受潮的情况下完成改造 工作,否则就会延长停电时间,增加改造费用。同时由于原变压器不可能留出改造时的引线 通道,所以还要采取相应措施来保证各种类型变压器绝缘距离以符合要求,并且还要注意方 便今后的检修工作(即吊罩、吊芯方式不变)。对此我们做了大量工作,配备了相应的设备, 对改造的每一环节进行研究,制定出了一整套切实可行的施工方案。用此方法我们已改造了 5台次,均达到预期目的,确实是一种经济简便的改造方法。 武汉中试高测电气有限公司,国家电网指定品牌—官方网站:https://www.wendangku.net/doc/814530213.html, https://www.wendangku.net/doc/814530213.html,

变压器调压档位选择的简易计算(详解)

变压器调压档位选择的简易计算(详解)电力系统即使在正常运行时,由于负载的变动,电压也是经常变化的。电网各点的实际电压一般不能恰好与额定电压相等,实际电压与额定电压之差为电压偏移。电压偏移的存在时不可避免的,但要求这种偏移不能太大,否则就不能保证供电质量,作为两个电网之间的联络变压器,经常需要调节该变压器的电压来调整网络之间的负载分配;有些对电压质量要求严格的用户,也经常要求连续调节变压器的电压,以保证电压偏移始终在规定范围内。因此,对变压器进行调压(改变变压器的电压比)是变压器正常运行的方式。 变压器调压方式分为无载调压和有载调压两种。为了改变变压器的电压比来调压,变压器必须使一次绕组具有几种分接抽头,以便改变该绕组的匝数,从而改变变压器的电压比。连续及切换分接头的装置,通常称为分接开关。如果需要换分接头必须将变压器从网路中切除,即不带电切换,称为无载(无励磁)调压,这种分接开关称为无励磁分接开关。如果切换分接头不须将变压器从网路中切除,即可带负载切换,称为有载调压,这种分接开关称为有载分接开关。 本文介绍通过简易计算选择变压器调压分接头档位的 方法。 一、计算基础知识简述 1、电压损耗简易公式△U=(PR+QX)/ Un 的推导

U1、U2分别是线路首端和末端电压,I为电流。 在电力系统里,图中ad线叫做电压降落,是个矢量;而od-oa (就是ac的长度)即U1、U2的有效值之差叫做电压损耗,这是个数值;对应的ab、db则被称之为横向压降和纵向压降。 一般来说,在电力系统中U1、U2的相角相差比较小,也就是说ab≈ac,所以我们一般就近似用ab的长度(横向压降)作为U1、U2的电压损耗(工程上这么干是完全没有问题的)。那么,在这个问题就是个纯数学问题了: 由于: 代入得:

电力变压器基本型及参数知识

电力变压器基本型号及参数知识 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压,0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。(2)相数,涵义分:单相(D);三相(S)。(3)

绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。(4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。(6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。(7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。(8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。(10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 变压器型号 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么?

变压器有载调压的原理

变压器有载调压的原理集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

变压器有载调压的原理: 变压器的高压绕组终端区隔一些线匝就抽出一个接头,电源接在不同的抽头上,高压绕组的实际线匝数就不同,而低压绕组的线匝数是固定的,这样,变化的高压绕组匝数和不变的低压绕组匝数就构成了不同的变比,根据变压器变压的原理,低压绕组就可以随高压绕组接不同的抽头而变出不同的电压; 高压绕组的抽头可以在线圈的电源侧,也可以在中心点侧,这都能不能改变其基本原理。所以220KV以下的变压器抽头一般设在电源侧,更高电压的变压器抽头就设在高压绕组的中心点侧了; 变压器一般都带抽头,以便现场根据实际电压来调整电压值。但是无载调压占多数,主要是一般地区的电压变化不是那么频繁和幅度那么大,可以不用时时调整;但是有些地方对于电压要求比较严,有些地方的电压常常变化,就得使用有载调压了。 有载调压就是将上述绕组抽头都接在有灭弧能力的开关上,在外部通过远方控制手的或自动调节电源好这些抽头的连接,从而达到随时调整低压绕组输出电压的目的。调整时,这些开关先与需要的那个抽头接上,然后断开原来接通的抽头,因为有电压好运行电流的存在,所以跳开的开关与我们使用的其他电源开关一样,要灭弧后断开。 什么情况下不允许调整变压器有载调压装置的分接头? (1)变压器过负荷运行时(特殊情况除外); (2)有载调压装置的轻瓦斯动作报警时; (3)有载调压装置的油耐压不合格或油标中无油时; (4)调压次数超过规定时; (5)调压装置发生异常时。 500kV变压器也是用的有载调压厉害!

单从有功潮流方向还不能确切判断如何调整,还得看无功方向,我仅凭经验简单说明一下,但还得进行深层分析,以500kV侧CT为参考点: 第一相限:即有功、无功由500kV流向220kV,500侧电压高说明500kV侧无功过剩,可根据电网运行数据计算需方的无功需量,这种情况一般来讲,调底有载开关档位起不到多大作用,应降低500kV侧系统(发电机无功出力)或投电抗器来实现; 第二相限:即有功由220流向500,无功由500流向220,500侧电压高还是说明500kV 侧无功过剩,调节方式同上; 第三相限:即有功、无功均由220流向500,这种情况一般不会导致500kV过压,除非220侧电压超得太多,也可以调高有载开关档位(类似升压变); 第四相限:即有功由500流向220,无功由220流向500,说明220侧无功过剩,也可以调高有载开关档位,或投电抗器或降低220侧系统无功; 有载开关调节都很困难,500kV一般都由电容、电抗器来调节或调发电机AVR,很方便。 以上内容仅为鄙人观点,若有错误,尽请谅解,能力有限,请多指教。 主变压器的有载调压开关操作规程 110kV主变使用的ZY-I-III300/110-±8有载调压分接开关是镶入型的,具有单独油箱和小油枕的开关。 ??有载分接开关的油温不得高于100℃,不低于-25℃。触头中各单触头的接触电阻不大于 500μΩ。 ??检修后及新安装的有载调压开关投入使用前,必须进行下述程序进行操作试验检查。 1. 投入使用前必须熟悉使用说明书的各项要求,先手动操作后电动操作。 2. 操作试验:在电动机控制回路施加电压之前,检查供给电源的额定值是否与所要求的数值一致。检查电动机的电源相序是否正确,若电源相序错,则断路器跳闸后再扣不上,或者断路器再扣后机构退回原始位置。 3. 逐级操作的检查:按动按钮S1(1→m级)或S2(n→1级),保持按钮在操作位置直至电动机停止,电动机构应只进行一次分接变换操作,且电动机应是自动断开。 4. 做机械限位装置操作试验和电气限位开关操作试验 ??有载分接开关的操作,允许当值人员在变压器85%额定电流(用该档位的一次电流计算)下进行分接变换操作,超过额定电流的85%调压时,需经车间技术人员同意。 ??有载分接开关每进行一次调压操作一个档位的变换操作完毕,须间隔一分钟方可进行第二次的调

变压器调压的方法

变压器调压的方法 2011-10-01 10:23:10 电力系统即使在正常运行时,由于负载的变动,电压也是经常变化的。电网各点的实际电压一般不能恰好与额定电压相等,实际电压与额定电压之差为电压偏移。电压偏移的存在时不可避免的,但要求这种偏移不能太大,否则就不能保证供电质量,作为两个电网之间的联络变压器,经常需要调节该变压器的电压来调整网络之间的负载分配;有些对电压质量要求严格的用户,也经常要求连续调节变压器的电压,以保证电压偏移始终在规定范围内。因此,对变压器进行调压(改变变压器的电压比)是变压器正常运行的方式。 无励磁(无载)调压 为了改变变压器的电压比来调压,变压器必须使一次绕组具有几种分接抽头,以便改变该绕组的匝数,从而改变变压器的电压比。连续及切换分接头的装置,通常称为分接开关。如果七日换分接头必须将变压器从网路中切除,即不带电切换,称为无励磁(过去称无载)调压,这种分接开关称为无励磁分接开关。 有载调压 如果切换分接头不须将变压器从网路中切除,即可带负载切换,称为有载调压,这种分接开关称为有载分接开关。随着人们对供电质量要求的提高,在许多场合停电调压不仅停工停产,而且会影响生产和生活,有时甚至是不允许的。因此,目前日益广泛使用装有有载分接开关的电力变压器,以便在带负载情况下能够调压。通常这种控制是自动控制器或电压无功综合控制装置通过驱动机构来实现自动操作的,也可以通过电动来实现半自动操作,在特殊情况下,也可用手柄来操作(较小容量的中小型变压器所配置的简易式复合式有载分接开关运行时不能手动操作)。 无励磁(又称无载)调压操作,先将变压器退出运行,然后按实际需要将分接开关转换到所需的档位上,注意分接头位置的正确性,手感应该和档位指示正确对准。为了使分接开关触头与绕组分接头接触良好,调压时可前后反复转动3—5次,以去除触头表面氧化膜。变换分接头以后,用电桥测量各回路的直流电阻,三相应平衡,相差不得超过三相平均值的2%或4%。 电网电压时随着运行方式和负载的大小变化而变化的。电网电压过高和过低,将会直接影响变压器的正常运行和用电设备的出力及使用寿命。为了使变压器能够有一个额定的输出电压,大多数是通过改变一次绕组分接头的位置即改变变压器绕组接入的匝数多少,来改变变压器的输出端电压。

变压器的基本工作原理(正式版)

文件编号:TP-AR-L5642 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 变压器的基本工作原理 (正式版)

变压器的基本工作原理(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、变压器的种类: 1.按冷却方式分类:干式(自冷)变压器、油浸 (自冷)变压器、氟化物(蒸发冷却)变压器。 2.按防潮方式分类:开放式变压器、灌封式变压 器、密封式变压器。 3.按铁芯或线圈结构分类:芯式变压器(插片铁 芯、C型铁芯、铁氧体铁芯)、壳式变压器(插片铁 芯、C型铁芯、铁氧体铁芯)、环型变压器、金属箔 变压器。 4.按电源相数分类:单相变压器、三相变压器、 多相变压器。

5.按用途分类:电源变压器、调压变压器、音频变压器、中频变压器、高频变压器、脉冲变压器 二、变压器工作原理: 变压器的基本工作原理是:变压器是由一次绕组、二次绕组和铁心组成,当一次绕组加上交流电压时,铁心中产生交变磁通,交变磁通在一次、二次绕组中感应电动势与在单匝上感应电动势的大小是相同的,但一次、二次侧绕组的匝数不同,一次、二次侧感应电动势的大小就不同,从而实现了变压的目的,一次、二次侧感应电动势之比等于一次、二次侧匝数之比。 当二次侧接上负载时,二次侧电流也产生磁动势,而主磁通由于外加电压不变而趋于不变,随之在一次侧增加电流,使磁动势达到平衡,这样,一次侧和二次侧通过电磁感应而实现了能量的传递。

变压器有载调压注意问题

变压器有载调压注意问题 一、在变压器有载分接开关操作过程中,应遵守如下规定:1、应逐级调压,同时监视分接位置及电压电流变化(每次调压一档后应间隔lmin以上,才能进行下一档调节)。2、单相变压器组和三相变压器分相安装的有载分接开关,应三相同步电动操作,一般不允许分相操作。3、两台有载调压变压器并联运行时,其调压操作应轮流逐级进行;4、有载调压变压器与无载调压变压器并联运行时,有载调压变压器的分接应尽量靠近无载调压变压器的分接位置。有载分接开关切换时产生火花,主要是分接开关在严重过负荷或系统短路时进行切换时触头调整中接触不良;绝缘油介电强度降低;操作等原因。应按照规程要求,进行检修和试验。 二、有载调压原理: (一)有载调压变压器可根据系统运行情况,在带负荷的条件下随时切换分接头开关,保证电压质量,而且分接头数目多、调节范围比较大,采用有载调压变压器时,可以根据最大负荷和最小负荷时分接头电压来分别选择各自合适的分接头。这样就能缩小二次(侧)电压的变化幅度,甚至改变电压变化的趋势。 (二)为了防止可动触头在切换过程中产生电弧使变压器绝缘油劣化,甚至烧毁有载分接开关,调压绕组通过并联触头Q1、Q2与高压主绕组串联。可在带负荷的情况下进行分接头的切换。在可动触头Q1、Q2回路接入接触器KM1、KM2的工作触头并放在单独的油箱里。在调节分接头时,先断开接触器KM1,将可动触头Q1切换到另一分接头上,然后接通KM1。另一可动触头Q2也采用同样的步骤,移到这个相邻的分接头上,这样进行移动,直到Q1和Q2都接到所选定的分接头

位置为止。当切换过程中Q1、Q2分别接在相邻的两个分接头位置时,电抗器L 限制了回路中流过的环流大小。110kV及以上电压等级变压器的调压绕组放在中性点侧,使调节装置处于较低电位。 1、有载分接开关运行一年或切换2000~4000次后,应取切换开关油箱中的抽样进行工频耐压试验(不低于30KV),试验应合格,否则更换合格变压器绝缘油。 2、新投入的分接开关,在切换5000次后,应将切换开关吊出检查,以后可按实际情况确定检查周期。 3、运行中的分接开关动作5000次后或绝缘油的击穿电压低于25kV时,应更换切换开关油箱的绝缘油。 4、为了防止分接开关在严重过负荷或系统短路时进行切换,宜在有载分接开关控制回路中加装电流闭锁装置,其整定值不超过变压器额定电流的1.5倍。 5、电动操作机构应经常保持良好状态,有载分接开关配备的瓦斯保护及防爆装置均应运行正常。当保护装置动作时应查明原因。 6、分接开关的切换开关箱应严格密封,不得渗漏。如发现其油位升高异常或满油位,说明变压器与有载分接开关切换箱窜油。应保持变压器油位高于分接开关的油位,防止开关箱体油渗入变压器本体,影响其绝缘油质,并及时安排停电处理。(三)1、正常情况下,一般使用远方电气控制;2、分接变换操作必须在一个分接变换完成后方可进行第二次分接变换,也就是逐级调整;3、两台有载调压变压器并联运行时,允许在85%变压器额定负荷电流及以下的情况下进行分接变换操作,不得在单台变压器上连续进行2个分接变换操作,必须一台变压器的分接变换完成后,再进行另一台变压器的分接变换操作。每进行1次分接交换后,都要检查电压和电流的变化情况,防止误操作和过负荷。升压操作,应先操作负荷电流相对较少的一台,再操作负荷电流相对较大的一台,以防止过大的环流。降压操作时与此相反。操作完毕,应再次检查并联的两台变压器的电流大小与分配情况。

相关文档