文档库 最新最全的文档下载
当前位置:文档库 › 事故树分析

事故树分析

事故树分析
事故树分析

第5章 事故树分析

5.5 结构重要度分析

5.5.2 根据最小割集或最小径集判断结构重要度顺序

根据最小割集或最小径集判断结构重要度顺序,是进行结构重要度分析的简化方法,具有足够的精度,又不至于过分复杂。

采用最小割集或最小径集进行结构重要度分析,主要是依据如下几条原则来判断基本事件结构重要系数的大小,并排列出各基本事件的结构重要度顺序,而不求结构重要系数的精确值。

1)单事件最小割(径)集中的基本事件的结构重要系数最大

例如,若某事故树共有如下3个最小割集:

{}11x K =,{}2234,,x x x K =,{}35678,,,x x x x K =

由于最小割集K 1由单个基本事件1x 组成,所以1x 的结构重要系数最大,即

(1)()i ??I >I i=2,3,·

··,8 这里,()i ?I 是基本事件i x (i=1,2,…8)的结构重要系数。

2)仅在同一最小割(径)集中出现的所有基本事件的结构重要系数相等

我们仍用上例进行分析。由于基本事件2x , 3x , 4x 仅在同一最小割集K 2中出现,所以

(2)(3)(4)???I =I =I

同理,

(5)(6)(7)(8)????I =I =I =I

3)两基本事件仅出现在基本事件个数相等的若干最小割(径)集中 在不同最小割(径)集中出现次数相等的各个基本事件,其结构重要

系数相等;出现次数多的基本事件的结构重要系数大,出现次数少的结构重要系数小。

例如,若某事故树共有如下4个最小割集:

{}1124,,x x x K = {}2125,,x x x K =

{}3136,,x x x K = {}4137,,x x x K =

由于各最小割集所包含的基本事件个数相等,所以应按本原则进行判断。由于基本事件4x , 5x , 6x , 7x 在这4个事件个数相等的最小割集中出现的次数相等,都为1次,所以

(4)(5)(6)(7)????I =I =I =I

同理,由于2x ,3x 都出现了2次,则:

(2)(3)??I =I

由于1x 在4个最小割集中重复出现了4次,所以其结构重要系数大于重复出现2次的2x ,3x ,而2x ,3x 的结构重要系数又大于只出现1次的 4x ,5x ,6x ,7x ,即

(1)(2)(3)(4)(5)(6)(7)???????I >I =I >I =I =I =I

4)两个事件仅出现在基本事件个数不等的若干最小割(径)集中 这种情况下,基本事件结构重要系数大小的判定原则为:

(1)若它们重复在各最小割(径)集中出现的次数相等,则在少事件最小割(径)集中出现的基本事件的结构重要系数大;

(2)在少事件最小割(径)集中出现次数少的与多事件最小割(径)集中出现次数多的基本事件比较,一般前者的结构重要系数大于后者。此时,亦可采用如下公式近似判断各基本事件的结构重要系数大小。

近似判别式1:

11()2j j r n x k j -∈I =

∑ (5.4)

式中 ()j I ——基本事件j x 结构重要系数大小的近似判别值;

j r x k ∈——基本事件j x 属于最小割集r k (或最小径集r p )

; j n ——基本事件j x 所在的最小割(径)集中包含的基本事件个数。

近似判别式2:

111()()k j i i i j x k k n =I =∈∑ (5.5)

式中 k ——最小割集(或最小径集)总数;

j i x k ∈——基本事件j x 属于最小割集i k (或最小径集i p )

; i n ——最小割集i k (或最小径集i p )中包含的基本事件个数。

近似判别式3:

11()1(1)2j j r n x k j -∈I =--

∏ (5.6)

[例5.11] 某事故树共有如下4个最小径集,试对其进行结构重要度分析:

112{,}p x x =,213{,}p x x =

3456{,,}p x x x =,44578{,,,}p x x x x =

由于基本事件1x 分别在两个基本事件的最小径集1p ,2p 中各出现1次(共2次),而4x 分别在3个基本事件的最小径集3p 和4个事件的最小径集4p 中各出现1次(共2次),根据第4条第(1)项原则判断,1x 的结构重要系数大于4x 的结构重要系数,即

(1)(4)??I >I

基本事件2x 只在2个基本事件的最小径集1p 中出现了1次,基本事

件4x 分别在3个和4个事件的最小径集3p ,4p 中各出现了1次

(共2次),根据第4条第(2)项原则判断,2x 的结构重要系数可能大于4x 的结构重要系数。为更准确地分析,我们再根据近似判别式(5.4),计算它们的近似判别值:

121111(2)22

2j j r n x p I --∈=

==∑ 3141113(4)228

I --=+= (2)(4)I >I ,所以(2)(4)??I >I

根据其它判别原则,不难判断其余各基本事件的结构重要度顺序。该事故树中全部基本事件的结构重要度顺序如下:

(1)(2)(3)(4)(5)(6)(7)(8)????????I >I =I >I =I >I >I =I

采用最小割集或最小径集进行结构重要度分析,需要注意如下几点:

(1)对于结构重要度分析来说,采用最小割集和最小径集的效果是相同的。因此,若事故树的最小割集和最小径集都求出来的话,可以用两种方法进行判断,以验证结果的正确性。

(2)采用上述4条原则判断基本事件结构重要系数大小时,必须从第一条到第四条顺序进行判断,而不能只采用其中的某一条或近似判别式。因近似判别式尚有不完善之处,不能完全据其进行判断。

(3)近似判别式的计算结果可能出现误差。一般说来,若最小割(径)集中的基本事件个数相同时,利用3个近似判别式均可得到正确的排序;若最小割(径)集中的基本事件个数相差较大时,式(5.4)和式(5.6)可以保证排列顺序的正确;若最小割(径)集中的基本事件个数仅相差1到2个时,式(5.5)和式(5.4)可能产生较大的误差。3个近似判别式中,式(5.6)的判断精度最高。

5.6 顶上事件的发生概率

5.6.3顶上事件的发生概率

事故树定量分析的主要工作,是计算顶上事件的发生概率,并以顶上

事件的发生概率为依据,综合考察事故的风险率,进行安全评价。

顶上事件的发生概率有多种计算方法,本书只选择介绍几种常用的方法。需要说明的是,这里介绍的几种计算方法,都是以各个基本事件相互独立为基础的,如果基本事件不是相互独立事件,则不能直接应用这些方法。

5.6.3.3 用最小割集计算顶上事件发生概率

我们知道,利用最小割集,可以做出原事故树的等效事故树,其结构形式是:顶上事件与各最小割集用或门连接,每个最小割集与其包含的基本事件用与门连接。根据用最小割集等效表示原事故树的方式可知,如果各个最小割集间没有重复的基本事件,则可按照直接分步算法的原则,先计算各个最小割集内各基本事件的概率积,再计算各个最小割集的概率和,从而求出顶上事件的发生概率。即,如果事故树的各个最小割集中彼此无重复事件,就可以按照下式计算顶上事件的发生概率:

1i r k i

x k r g q ∈==∏ (5.25) 式中 x i ——第i 个基本事件;

k r ——第r 个最小割集,即r 是最小割集的序号;

k ——最小割集的个数;

x i ∈k r ——第i 个基本事件属于第r 个最小割集。

[例5.14] 若某事故树有如下3个最小割集,求其顶上事件的发生概率。

113{,}K x x =,224{,}K x x =,356{,}K x x =。

由式(5.25),其顶上事件的发生概率为

123311(1)(1)(1)i r i i i i x k r i i i x k x k x k g q

q q q ∈=∈∈∈==----∏∏∏∏

其中

1

23132456i i i i x k i

x k i

x k q

q q q q q q q q ∈∈∈===∏∏∏

所以

1324561(1)(1)(1)g q q q q q q =----

如果各个最小割集中彼此有重复事件,则式(5.25)不成立。我们看下例:

某事故树有3个最小割集:

113{,}K x x =,223{,}K x x =,3245{,,}K x x x =

则其顶上事件的发生概率为各个最小割集的概率和

3

1

1231231213

231231(1)(1)(1)

()()kr

r k k k k k k k k k k k k k k k g q q q q q q q q q q q q q q q q ===----=++-+++

式中的12k k q q 是最小割集12,k k 的交集概率。

由于323121x x x x k k ?=

而3213231x x x x x x x =?

所以,12123k k q q q q q =

同理

1312345

232345

12312345

k k k k k k k q q q q q q q q q q q q q q q q q q q q q ===

所以,顶上事件的发生概率为 132324512312345234512345()()

g q q q q q q q q q q q q q q q q q q q q q q q q =++-+++

由此例可以看出,若事故树的各个最小割集中彼此有重复事件时,其顶上事件的发生概率可以用如下公式计算。这一公式可以通过理论推证求得。

∏∑∏∑∏=-≤≤?∈=∈-++-=

k r i

k k s r ks k x i k r k x i r i r i q q q g 1111)1(

(5.26)

式中 r,s ——最小割集的序号;

i r s x k k ∈?——第i 个基本事件属于最小割集k r 和k s 的并集。即,

或属于第r 个最小割集,或属于第s 个最小割集。

这一公式是(5.25)式的一般形式。即,当最小割集中彼此有重复事件时,就必须将式(5.25)展开,消去各个概率积中出现的重复因子。

[例5.15]某事故树有3个最小割集:K 1={x 1,x 3},K 2={x 2,x 3},K 3={x 3,x 4},各基本事件的发生概率分别为:q 1=0.01,q 2=0.02,q 3=0.03,q 4=0.04,求其顶上事件的发生概率。

由于各个最小割集中彼此有重复事件,根据公式(5.26)计算顶上事件的发生概率:

5.6.3.4 用最小径集计算顶上事件发生概率

用最小径集作事故树的等效图时,其结构为:顶上事件与各个最小径集用与门连接,每个最小径集与其包含的各个基本事件用或门连接。因此,若各最小径集中彼此间没有重复的基本事件,则可根据前述原则,先求最小径集内各基本事件的概率和,再求各最小径集的概率积,从而求出顶上事件的发生概率。即

1i r p

i r x p g q =∈=∏ (5.27)

式中 p r ——第r 个最小径集,即r 是最小径集的序号;

p ——最小径集的个数。

[例5.16] 某事故树共有如下3个最小径集,求其顶上事件的发生概率。

112{,}p x x =,2347{,,}p x x x =,356{,}p x x =。

根据公式(5.27),其顶上事件的发生概率为

00205824

.000000024

.0000042.00021.004

.003.002.001.0)

04.003.002.004.003.001.003.002.001.0()

04.003.003.002.003.001.0()()(4321432431321433231=+-=???+??+??+??-?+?+?=+++-++=q q q q q q q q q q q q q q q q q q q g

123311234756[(1(1)(1)][1(1)(1)(1)][1(1)(1)]i r i i i i r x p i i i

x p x p x p g q

q q q q q q q q q q =∈∈∈∈==??=---?----?---∏

如果事故树的各最小径集中彼此有重复事件,则式(5.27)不成立。这与最小割集中有重复事件时的情况相仿,读者可试着自己分析。

各最小径集彼此有重复事件时,须将式(5.27)展开,消去可能出现的重复因子。通过理论推证,可以用下式计算顶上事件的发生概率: 1111(1)(1)(1)(1)i r i r s i r p p

p i i i

r r x p r s p x p p x p g q q q ==∈≤<≤∈?∈=--+

--+--∑∏∑∏∏ (5.28) 式中 r,s ——最小径集的序号;

i r s x p p ∈?——第i 个基本事件属于最小径集p r 和p s 的并集。

[例5.17] 某事故树共有如下3个最小径集,求其顶上事件的发生概率。

114{,}p x x =,224{,}p x x =,335{,}p x x =

由于各最小径集中有重复事件,则根据公式(5.28)计算:

14243512413452345123451[(1)(1)(1)(1)(1)(1)]

[(1)(1)(1)(1)(1)(1)(1)

(1)(1)(1)(1)]

[(1)(1)(1)(1)(1)]

g q q q q q q q q q q q q q q q q q q q q q q =---+--+--+---+----+----------

上述各个计算顶上事件发生概率的公式中,以式(5.26)和式(5.28)最为实用,式(5.25)和式(5.27)分别是它们的特例。一般来讲,事故树的最小割集数目较少时,应用式(5.25)和式(5.26);最小径集数目较少时,应用式(5.27)和式(5.28)。

另外还应注意,根据最小割集计算顶上事件发生概率的两个公式,计算精度分别高于由最小径集计算顶上事件发生概率的两个公式。因此,实际应用中,应尽量采用最小割集计算顶上事件的发生概率。

5.7 概率重要度分析和临界重要度分析

5.7.1 概率重要度分析

为了考察基本事件概率的增减对顶上事件发生概率的影响程度,需要应用概率重要度分析。其方法是将顶上事件发生概率函数g 对自变量q i (i=1,2,……n)求一次偏导,所得数值为该基本事件的概率重要系数:

()q g i

g I i ?=? (5.34) 式中 I g (i)——基本事件x i 的概率重要系数。

概率重要系数I g (i)也就是顶上事件发生概率对基本事件x i 发生概率的变化率,据此即可评定各基本事件的概率重要度。通过各基个事件概率重要系数的大小,就可以知道,降低哪个基本事件的发生概率,能够迅速、有效地降低项上事件的发生概率。

[例5.20] 某事故树有4个最小割集:K 1={x 1,x 3},K 2={x 1,x 5},K 3={x 3,x 4},K 4={x 2,x 4,x 5}。各基本事件发生概率分别为:q 1=0.01,q 2=0.02,q 3=0.03,q 4=0.04,q 5=0.05。试进行概率重要度分析。

由式(5.26),顶上事件发生概率函数g 为:

根据上式,即可由式(5.34)求出各基本事件的概率重要系数:

13153424513513412345134512452345134512345123451234512345

()

()()

g q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q =+++-+++++++++-131534245135134

1245234512345

g q q q q q q q q q q q q q q q q q q q q q q q q q q q q =+++----+

然后,根据概率重要系数的大小,排列出个基本事件的概率重要度顺序如下:

(1)(3)(4)(5)(2)g g g g g I >I >I >I >I

由上述顺序可知,缩小基本事件x 1的发生概率能使顶上事件的发生概率下降速度较快,比以同样数值减少其它任何基本事件的发生概率效果都好。其次依次是x 3,x 4,x 5,最不敏感的是x 2。

分析上例还可以看到:—个基本事件的概率重要系数大小,并不取决于它本身概率值的大小,而取决于它所在最小割集中其它基本事件的概率大小。

5.7.2 临界重要度分析

[例5.21] 按照[例5.20]的条件,进行临界重要度分析。

由[例5.20]求出:

代入各基本事件的发生概率值,得

由式(5.37),有:

35353424523451

4514534513452

14151424512453

3251312523512354

(1)0.0773

(2)0.0019

(3)0.049(4)0.031g g g g g g I q q q q q q q q q q q q q q g I q q q q q q q q q q q q q g I q q q q q q q q q q q q q q g I q q q q q q q q q q q q q q q q I ?==+---+?=?==--+?=?==+---+?=?==+---+?=1241312423412345(5)0.010

g q q q q q q q q q q q q q q q q ?=

=+---+?=131534245135134

1245234512345

g q q q q q q q q q q q q q q q q q q q q q q q q q q q q =+++----+0.002011412

g =

10.01(1)(1)0.07730.38430.002011412

g g q CI I g ==?≈ 同样,可求得其他各基本事件的临界重要系数为:

(2)0.0189,(3)0.7308,

(4)0.6165,(5)0.2486

g g g g CI CI CI CI ≈≈≈≈

各基本事件的临界重要度顺序如下: (3)(4)(1)(5)(2)g g g g g C C C C C I >I >I >I >I

对照[例5.20],与概率重要度相比,基本事件x 1的重要性下降了,这是因为它的概率值最小;基本事件x 3的重要性提高了,这不仅是因为它对顶上事件发生概率影响较大,而且它本身的发生概率值也较x 1大。

事故树分析范例

事故树分析案例 起重作业事故树分析 一、概述 在工矿企业发生的各种类型的工伤事故中,起重伤害所占的比例是比较高的,所以,起重设备被列为特种设备,每二年需强制检测一次。本工程在施工安装、生产检修中使用起重设备。伤害事故的因素很多,在众多的因素中,找出问题的关键,采取最有效的安全技术措施来防止此类事故的发生,最好的方法是对起重机事故采取事故树分析方法,现对“起吊物坠落伤人”进行事故树分析。 二、起重作业事故树分析 1、事故树图 图6-2 起吊物坠落伤人事故树 T——起重物坠落伤人;

A1——人与起吊物位置不当;A2——起吊物坠落; B1——人在起吊物下方;B2——人距离起吊物太近; B3——吊索物的挂吊部位缺陷;B4——吊索、吊具断裂; B5——起吊物的挂吊部位缺陷;B6——司机、挂吊工配合缺陷; B7——起升机构失效;B8——起升绳断裂; B9——吊钩断裂; C1——吊索有滑出吊钩的趋势;C2——吊索、吊具损坏; C3——司机误解挂吊工手势; D1——挂吊不符合要求;D2——起吊中起吊物受严重碰撞; X1——起吊物从人头经过;X2——人从起吊下方经过; X3——挂吊工未离开就起吊;X4——起吊物靠近人经过; X5——吊钩无防吊索脱出装置;X6——捆绑缺陷; X7——挂吊不对称;X8——挂吊物不对; X9——运行位置太低;X10——没有走规定的通道; X11——斜吊;X12——运行时没有鸣铃; X13——司机操作技能缺陷;X14——制动器间隙调整不当; X15——吊索吊具超载;X16——起吊物的尖锐处无衬垫; X17——吊索没有夹紧;X18——起吊物的挂吊部位脱落; X19——挂吊部位结构缺陷;X20——挂吊工看错指挥手势; X21——司机操作错误;X22——行车工看错指挥手势; X23——现场环境照明不良;X24——制动器失效;

事故树分析法

事故树分析法(FTA) 事故树分析法就是一种既能定性又能定量的逻辑演绎评价方法,就是从结果到原因描绘事故发生的有向逻辑树,在逻辑树中相关原因事件之间用逻辑门连接,构成逻辑树图,为判明事故发生的途径及损害间关系提供一种最形象、最简洁的表达方式。 事故树法又称为故障树分析法,就是一种逻辑演绎的系统评价方法,就是安全系统工程中重要的分析方法之一。它能对各种系统的危险性进行识别评估,既适用于定性分析,又能进行定量分析。具有简明、形象的特点。其分析方法就是从要分析的特定事故或故障顶上事件开始,层层分析其发生原因(中间事件),一直分析到不能再分解或没有必要分析时为止,即分析至基本原因事件为止,用逻辑门符号将各层中间事件与基本原因事件连接起来,得到形象、简洁地表达其因果关系的逻辑树图形即故障树。通过对其简化计算得到分析评价目的的方法。 故障树分析法的主要功能 1、对导致事故的各种因素及其逻辑关系作出全面的描述 2、便于发现与查明系统内固有的或者潜在的危险因素,为安全设计、制定技术措施及 采取管理对策提供依据 3、使作业人员全面了解与掌握各项防灾要点 4、对已发生的事故进行原因分析 故障树的分析步骤 1、确定所分析的系统 2、熟悉所分析的系统 3、调查系统发生的事故 4、确定事故的顶上事件 5、调查与顶上事件有关的所有原因事件 6、故障树作图 7、故障树的定性分析 8、故障树的定量分析 9、安全性评价

事故树的主要符号 事件符号 逻辑符号 顶上事件、中间事件符号,需要进一步的分析 基本事件符号,不能进一步往下分析 正常事件,正常情况下存在的事件 省略事件,不能或者不需要分析

事故树分析程序(正式)

编订:__________________ 单位:__________________ 时间:__________________ 事故树分析程序(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8023-30 事故树分析程序(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 事故树分析虽然根据对象系统的性质、分析目的的不同,分析的程序也不同。但是,一般都有下面的十个基本程序。有时,使用者还可根据实际需要和要求,来确定分析程序。 熟悉系统。要求要确实了解系统情况,包括工作程序、各种重要参数、作业情况。必要时画出工艺流程图和布置图。 调查事故。要求在过去事故实例、有关事故统计基础上,尽量广泛地调查所能预想到的事故,即包括已发生的事故和可能发生的事故。 确定顶上事件。所谓顶上事件,就是我们所要分

析的对象事件。分析系统发生事故的损失和频率大小,从中找出后果严重,且较容易发生的事故,作为分析的顶上事件。 确定目标。根据以往的事故记录和同类系统的事故资料,进行统计分析,求出事故发生的概率(或频率),然后根据这一事故的严重程度,确定我们要控制的事故发生概率的目标值。 调查原因事件。调查与事故有关的所有原因事件和各种因素,包括设备故障、机械故障、操作者的失误、管理和指挥错误、环境因素等等,尽量详细查清原因和影响。 画出事故树。根据上述资料,从顶上事件起进行演绎分析,一级一级地找出所有直接原因事件,直到所要分析的深度,按照其逻辑关系,画出事故树。

事故树分析

2.3事故树分析法 2.3.1 方法概述 事故树(Fault Tree Analysis, FTA)也称故障树,是一种描述事故因果关系的有向逻辑“树”,是安全系统工程中重要的分析方法之一。该法尤其适用于对工艺设备系统进行危险识别和评价,既适用于定性分析,又能进行定量分析。具有简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。FTA作为安全分析评价、事故预测的一种先进的科学方法,已得到国内外的公认和广泛采用。 1962年,美国贝尔电话实验室的维森(Watson)提出此法。该法最早用于民兵式导弹发射控制系统的可靠性研究,从而为解决导弹系统偶然事件的预测问题作出了贡献。随之波音公司的科研人员进一步发展了FTA方法,使之在航空航天工业方面得到应用。20世纪60年代期,FTA由航空航天工业发展到以原子能工业为中心的其他产业部门。1974年美国原子能委员会发表了关于核电站灾害性危险性评价报告(拉斯姆逊报告),对FTA作了大量和有效的应用,引起了全世界广泛的关注。目前此法已在国内外许多工业部门得到运用。 从1978年起,我国开始了FTA的研究和运用工作。FTA不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程或设备的设计阶段、在事故查询或编制新的操作方法时,都可以使用FTA对它们的安全性作出评价。实践证明FTA适合我国国情,适合普遍推广使用。 2.3.2 FTA方法的分析步骤 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系。它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判明灾害、伤害的发生途径及与灾害、伤害之间的关系提供一种最为形象、简洁的表达形式。 事故树分析的基本程序如下: 1)熟悉系统。要详细了解系统状态、工艺过程及各种参数,以及作业情况、环境状况等,绘出工艺流程图及布置图。 2)调查事故。广泛收集同类系统的事故安全,进行事故统计(包括未遂事故),设想给定系统可能要发生的事故。 3)确定顶上事件。要分析的对象事件即为顶上事件。对所调查的事故进行全面分析,分析其损失大小和发生的频率,从中找出后果严重且较易发生的事故作为顶上事件。 4)确定目标值。根据经验教训和事故案例,经统计分析后,求出事故发生的概率(频率),作为要控制的事故目标值,计算事故的损失率,采取措施,使之达到可以接受的安全指标。 5)调查原因事件。全面分析、调查与事故有关的所有原因事件和各种因素,如设备、设施、人为失误、安全管理、环境等。 6)画出事故树。从顶上事件起,按演绎分析的方法,逐级找出直接原因事件,到所要分析的深度,按其逻辑关系,用逻辑门将上下层连结,画出事故树。 7)定性分析。按事故树结构运用布尔代数,进行简化,求出最小割(径)集,确定各基本事件的结构重要度。 8)求出顶上事件发生概率。确定所有原因发生概率,标在事故树上,并进而求出顶上事件(事故)发生概率。

机械伤害-事故树案例大全

机械伤害- 事故树案例大全

1) 用布尔代数简化事故树,求其最小割集。事故树的函数表达式为: T=A1+A2 = B1B2+ A2 =( X1+X2+X3+X)4 ( X5+X6+X7)+(X8+ X9+X10+ X11) =X1X5+ X2X5+ X3X5+ X4X5+ X1X6+ X2X6+ X3X6+ X4X6+ X1X7+ X2X7+ X3X7+ X4X7 + X8+ X9+X10+ X11 得到机械伤害事故树最小割集,即: K1={ X1X5} ;K2={ X2X5} ;K3={ X3X5} ; K4={ X4X5} ;K5={ X1X6} ;K6={ X2X6} ; K7={ X3X6} ;K8={ X4X6} ;K9={ X1X7} ;

K10={ X2X7} ;K11={ X3X7} ;K12={ X4X7} ; K13={ X8};K14={ X9};K15={ X10};K16={ X11}。2)结构重要度分析 1Xi 1 KjNj 式中:N—最小割集数;用公式求出各基本事件结构重要度系数:I φ(i )= N Kj —含有基本事件Xi 的最小割集;Nj —Kj 中的基本事件数 I φ(1)= I φ(2)= I φ(3)= I φ(4) =1/16 ×3/2=0.094 I φ(5)= I φ(6)= I φ (7)=1/16 ×4/2=0.125 I φ(8)= I φ(9)= I φ(10)= I φ(11) =1/16 × 1/1=0.0625 所以各基本事件结构重要度分析排序为: I φ(8)= I φ(9)= I φ(10)= I φ(11)>I φ(5)= I φ(6)= I φ(7)>I φ(1)= I φ(2)= I φ(3)= I φ(4) 3)结果分析由以上分析过程可见,“人员配合不当”、“设备未断电”、“无连锁保护装置”、“检修时设备误启动”这些单事件因素的结构重要度最大,应重点防范;“人员接触设备”的事件因素结构重要度也较高,人员接触设备是构成机械伤害的必要条

事故树分析案例

事故树的编制程序 第一步:确定顶上事件 顶上事件就是所要分析的事故。选择顶上事件,一定要在详细占有系统情况、有关事故的发生情况和发生可能、以及事故的严重程度和事故发生概率等资料的情况下进行,而且事先要仔细寻找造成事故的直接原因和间接原因。然后,根据事故的严重程度和发生概率确定要分析的顶上事件,将其扼要地填写在矩形框内。 顶上事件也可以是在运输生产中已经发生过的事故。如车辆追尾、道口火车与汽车相撞事故等事故。通过编制事故树,找出事故原因,制定具体措施,防止事故再次发生。 第二步:调查或分析造成顶上事件的各种原因 顶上事件确定之后,为了编制好事故树,必须将造成顶上事件的所有直接原因事件找出来,尽可能不要漏掉。直接原因事件可以是机械故障、人的因素或环境原因等。 要找出直接原因可以采取对造成顶上事件的原因进行调查,召开有关人员座谈会,也可根据以往的一些经验进行分析,确定造成顶上事件的原因。 第三步:绘事故树 在找出造成顶上事件的和各种原因之后,就可以用相应事件符号和适当的逻辑门把它们从上到下分层连接起来,层层向下,直到最基本的原因事件,这样就构成一个事故树。 在用逻辑门连接上下层之间的事件原因时,若下层事件必须全部同时发生,上层事件才会发生时,就用“与门”连接。逻辑门的连接问题在事故树中是非常重要的,含糊不得,它涉及到各种事件之间的逻辑关系,直接影响着以后的定性分析和定量分析。 第四步:认真审定事故树 画成的事故树图是逻辑模型事件的表达。既然是逻辑模型,那么各个事件之间的逻辑关系就应该相当严密、合理。否则在计算过程中将会出现许多意想不到的问题。因此,对事故树的绘制要十分慎重。在制作过程中,一般要进行反复推敲、修改,除局部更改外,有的甚至要推倒重来,有时还要反复进行多次,直到符合实际情况,比较严密为止。 第五章定性、定量评价 5.1 对重大危险、有害因素的危险度评价 XXX矿井的重大危险、有害因素有:矿井瓦斯危害、矿井火灾危害、矿压危害和水危害,

事故树分析法

事故树分析法 事故树分析法 概述事故树分析法(Accident Tree Analysis,简称ATA)起源于故障树分析法(简称FTA),就是安全系统工程的重要分析方法之一,它能对各种系统的危险性进行辨识与评价,不仅能分析出事故的直接原因,而且能深入地揭示出事故的潜在原因。用它描述事故的因果关系直观、明了,思路清晰,逻辑性强,既可定性分析,又可定量分析。 “树”的分析技术就是属于系统工程的图论范畴。“树”就是其网络分析技术中的概念,要明确什么就是“树”,首先要弄清什么就是“图”,什么就是“圈”,什么就是连通图等。 图论中的图就是指由若干个点及连接这些点的连线组 成的图形。图中的点称为节点,线称为边或弧。节点表示某一个体事物,边表示事物之间的某种特定的关系。比如,用点可以表示电话机,用边表示电话线;用点表示各个生产任务,用边表示完成任务所需的时间等。一个图中,若任何两点之间至少有一条边则称这个图就是连通图。若图中某一点、边顺序衔接,序列中始点与终点重合,则称之为圈(或回路)。 树就就是一个无圈(或无回路)的连通图。 20世纪60年代初期,很多高新产品在研制过程中,因对系统的可靠性、安全性研究不够,新产品在没有确保安全的情况下就投入市场,造成大量使用事故的发生,用户纷纷要求厂家

进行经济赔偿,从而迫使企业寻找一种科学方法确保安全。 事故树分析首先由美国贝尔电话研究所于1961为研究民兵式导弹发射控制系统时提出来,1974年美国原子能委员会运用FTA对核电站事故进行了风险评价,发表了著名的《拉姆逊报告》。该报告对事故树分析作了大规模有效的应用。此后,在社会各界引起了极大的反响,受到了广泛的重视,从而迅速在许多国家与许多企业应用与推广。我国开展事故树分析方法的研究就是从1978年开始的。目前已有很多部门与企业正在进行普及与推广工作,并已取得一大批成果,促进了企业的安全生产。80年代末,铁路运输系统开始把事故树分析方法应用到安全生产与劳动保护上来,也已取得了较好的效果。 事故树分析法的基本符号事故树就是由各种符号与其连接的逻辑门组成的。最简单、最基本的符号有: 事件符号 事件符号 1、矩形符号。用它表示顶上事件或中间事件。将事件扼要记入矩形框内。必须注意,顶上事件一定要清楚明了,不要太笼统。例如“交通事故”,“爆炸着火事故”,对此人们无法下手分析,而应当选择具体事故。如“机动车追尾”、“机动车与自行车相撞”,“建筑工人从脚手架上坠落死亡”、“道口火车与汽车相撞”等具体事故。

液化气事故树案例分析

(—)典型事故分析 湖北襄樊某化工厂因企业破产需对3个50 1fl 卧式液化石油气储罐进行销爆处理。液化石油气属于易燃易爆物质,一旦泄漏,极易与周围空气混合形成具有爆炸性的混合物,如遇明火就会引起火灾或爆炸,其产生的爆炸冲击波及爆炸火球热辐射破坏强度和范围极大,极易导致次生灾害。国内外曾发生多起液化石油气火灾或爆炸事故。如1998年3月5日西安市液化石油气站曾发生过火灾事故_2 J,造成12人死亡,32人受伤,直接经济损失达400多万元。 液化石油气(LPG)主要成分[ 是丙烷、丁烷、丙烯和丁烯,均为易燃易爆气体。液化石油气与空气混合气的着火能量很低,为0.06~0.26 mJ。在常温常压下液化石油气极易挥发l4 J,遇空气后体积迅速扩大250-350倍,气态液化石油气微毒,高浓度时有麻痹作用。为了系统分析液化石油气罐在销爆处理过程中可能存在的潜在危险因素,建立了以发生火灾或爆炸事故为顶上事件的事故树,笔者运用事故树分析法对销爆过程中可能发生的火灾或爆炸事故进行安全评价,预先分析和判断设备和工人操作中可能发生的危险及可能导致燃烧爆炸灾害的条件。其目的是采取相应的管理手段和安全防范措施,最大限度地消除危险和限制事故的严重程度,把事故可能造成的人身安全和财产的损害减少到最低限度。事故树的建立 事故树分析程序按其目的和要求的精度不同而不同,一般采用以下分析程序:1)确定分析系统,即确定 系统所包括的内容及其边界范围;2)熟悉分析系统,熟悉系统的整个情况,包括系统性能、运行情况、操作步 骤及各种重要参数;3)调查系统发生事故的可能性,在收集过去事故实例和事故统计的基础上,估计系统可能发生的事故;4)估计事故的危险等级,确定事故树的顶上事件;5)调查与顶上事件有关的所有事件,这些原因事件包括:设备的元件故障,原材料、半成品、工具等的缺陷;生产管理,指挥、操作上的失误和错误;以及影响顶上事件发生的环境因素;6)绘制事故树图,按照演绎分析的原则,从顶上事件起,逐级分析各自的直接原因事件,根据彼此间的逻辑关系,用逻辑门的连接方法,上一层事件是下一层事件的必然结果,下一层事件是上一层事件的充分条件;7)事故树的定性分析,主要内容有:计算事故树的最小割集或最小径集;计算基本事件的结构重要度;分析各事故类型的危险性,确定防范措施;8)事故树的定量分析,主要内容有:确定引起事故发生的各基本事件的发生概率;计算事故树顶上事件的概率;计算基本事件的概率重要度和l临界重要度;9)安全评价,根据顶上事件可能发生的事故概率及系统严重度确定系统损失

事故树分析

事故树分析法 方法概述 事故树(Fault Tree Analysis, FTA)也称故障树,是一种描述事故因果关系的有向逻辑“树”,是安全系统工程中重要的分析方法之一。该法尤其适用于对工艺设备系统进行危险识别和评价,既适用于定性分析,又能进行定量分析。具有简明、形象化的特点,体现了以系统工程方法研究安全问题的系统性、准确性和预测性。FTA作为安全分析评价、事故预测的一种先进的科学方法,已得到国内外的公认和广泛采用。 1962年,美国贝尔电话实验室的维森(Watson)提出此法。该法最早用于民兵式导弹发射控制系统的可靠性研究,从而为解决导弹系统偶然事件的预测问题作出了贡献。随之波音公司的科研人员进一步发展了FTA方法,使之在航空航天工业方面得到应用。20世纪60年代期,FTA由航空航天工业发展到以原子能工业为中心的其他产业部门。1974年美国原子能委员会发表了关于核电站灾害性危险性评价报告(拉斯姆逊报告),对FTA作了大量和有效的应用,引起了全世界广泛的关注。目前此法已在国内外许多工业部门得到运用。 从1978年起,我国开始了FTA的研究和运用工作。FTA不仅能分析出事故的直接原因,而且能深入提示事故的潜在原因,因此在工程或设备的设计阶段、在事故查询或编制新的操作方法时,都可以使用FTA对它们的安全性作出评价。实践证明FTA适合我国国情,适合普遍推广使用。 FTA方法的分析步骤 事故树分析是对既定的生产系统或作业中可能出现的事故条件及可能导致的灾害后果,按工艺流程、先后次序和因果关系绘成程序方框图,表示导致灾害、伤害事故(不希望事件)的各种因素之间的逻辑关系。它由输入符号或关系符号组成,用以分析系统的安全问题或系统的运行功能问题,并为判明灾害、伤害的发生途径及与灾害、伤害之间的关系提供一种最为形象、简洁的表达形式。 事故树分析的基本程序如下: 1)熟悉系统。要详细了解系统状态、工艺过程及各种参数,以及作业情况、

触电事故树分析图

2)触电事故树分析 烧结系统电气设备比较多,公用工程中比较容易发生触电事故,因此运用事故树法对公用工程中触电事故进行评价。 (1)制作事故树图

(2)布尔代数计算 T3=X1A1A2=X1B1A2+X1B2A2+X1B3A2=X1X2X16+X1X2X17+X1X2X18+X1X3 X16+X1X3X17+X1X3X18+X1X4X5X16+X1X4X5X17+X1X4X5X18+X1X4X6X16+X1X X6X17+X1X4X6X18+X1X4X7X16+X1X4X7X17+X1X4X7X18+X1X8X11X16+X1X8X1 4 X17+X1X8X11X18+X1X9X11X l6+X1X9X11X l7+X1X9X11X l8+X1X10X11X16+X1X10X 1 X17+X1X10X11X18+X18X12X16+X1X8X12X17+X1X8X12X18+X1X9X12X16+X1X9X1 11 X17+X1X9X12X18+X1X10X12X16+X1X10X12X17+X1X10X12X18+X1X13X14X16+X1X 2 X14X17+X1X13X14X18+X1X13X15X16+X1X13X15X17+X1X13X15X18 13 该故障树共有最小割集39个(上式每一加项是一个最小割集)。 成功树分析计算: T3’=X1’+B1’B2’B3’+X16’X17’X18’=X1’+X2’X3’X4’X8’X9’X10’X13’+X2’X3’X ’X8’X9’X10’X14’X15’+X2’X3’X5’X6’X7’X8’X9’X l0’X13’+X2’X3’X5’X6’X7’X11’4 X12’X14’X15’+X16’X17’X18’ 该成功树共有最小径集6个(上式每一加项是一个最小径集)。 该故障树的基本原因事件的结构重要度系数关系为: Iφ(1)>Iφ(16)=Iφ(17)=Iφ(18)>Iφ(11)=Iφ(12)>Iφ(4)=Iφ(5)=Iφ(6)=Iφ(7)=I φ(13)=Iφ(1 4)=Iφ(15)Iφ(8)=Iφ(9)=Iφ(10) Iφ(2)=Iφ(3) (3)分析与措施 该公司使用的大部分是380/220V的低压交流电器线路和设备,均为低压触电事故,且多为单项触电的间接触电,应采取以下防范措施。 ①由持有效电工证人员进行电气设备,线路的安装、维修和检修。非电工人员不得从事从业。 ②严格遵照电气作业规程进行作业。作业时穿戴规定的合格的绝缘劳保护品和使用专用电工工具。 ③设备保护接零系统,所有电气设备内部结构均应进行保护接零,不

故障树分析实例

故障假设分析 1 目的 故障假设分析的目的是识别危险性、危险情况或可能产生的意想不到的结果的事故事件。通常由经验丰富的人员识别可能发生的事故的情况、结果,提出降低危险性的安全措施。(对识别出的潜在事故状况不进行分级,不能定量化) 该方法包括检查设计、安装、技改或操作过程中可能产生的偏差。要求评价人员对工艺规程熟知,并对可能导致事故的设计偏差进行整合。 2 评价的结果 故障假设分析很简单,它首先提出一系列问题,然后再回答这些问题。评价结果一般以表格的形式显示,主要内容包括:提出的问题,回答可能的后果、安全措施、降低或消除危险性的安全措施。 3 所需要的资料和条件要求 由于故障假设分析方法较为灵活,它可以用于工程、系统的任何阶段,因此与工艺过程有关的资料都有可能用到。对工艺的具体过程进行分析,一般有2至3名评价人员即可完成。对—个复杂工艺进行分析时,需尽可能的将复杂的工艺问题分解成若干个小块。 4 故障假设分析方法事例 以下故障假设分析方法是参考美国化学工程师学会(CCPS)《危害评价过程指南》中有关故障假设分析方法的事例。 1)工艺中风险问题的提出背景

下面是假定公司和装置的基本情况,并简单介绍了氯乙烯单体的生产工艺。 (1)公司和装置的基本情况。 某化工有限公司是美国一家大型联合化工企业,生产氯、烧碱、硫酸、盐酸等化学品。某公司享有极高的安全信誉,在过去的59年里,始终保持安全生产。某公司的许多技术人员都是国际上公认的化工产品生产和加工方面的专家。基于众多原因,某公司决定将氯乙烯单体的生产能力扩大。某公司决定在美国Anyuhere厂建一条工艺生产状况具有世界先进水平的VC朋生产线。公司专门成立一个职能部门(筹建处)负责这项带有风险的三年投资计划。作为公司安全生产管理的一部分,该公司将在适当的时间内,组织完成该装置的操作的安全评价研究工作。 安全评价业务小组的领导者决定,为进一步识别和评价安全危险性,必须对氯乙烯单体产品的生产进行安全评价。 (2)生产工艺简述。 某公司的职能部门对涉及氯乙烯单体生产技术的专利和有关参考文献进行了广泛的查询。通过对这些资料分析比较,它们决定采纳在高温下二氯乙烯蒸气脱除氯化氢的VCM 单体生产工艺(图1)。中间体EDC的生产采用乙烯催化氯化法(图1)。在该装置建成之后,某公司还决定扩建聚氯乙烯产品(PVC)。表1、表2列出了该工艺的主要原料、中间体和产品,以及它们的化学危险特性。

景区火灾事故事故树分析案例

景区重大火灾事故预测分析 1、建立事故树 重大火灾事故预测分析以重大火灾事故为顶上事件,逐级分析导致重大火灾事故发生的中间事件与基本事件,确定导致火灾事故的路径即事故原因,建立重大火灾事故事故树如图1。

图1 重大火灾事故树

由图1可知导致重大火灾事故的基本事件共有15项,根据经验对基本事件的概率进行赋值,基本事件概率分布见表1。 2、定性分析 (1)最小割集 最小割集表示当几种基本事件的组合中任意缺少其中一个事件时,顶上事件必然不会发生,表示可能导致事故发生的路径,描述事故发生的情形,根据图1可知,重大火灾事故事故树的最小割集情况如表2。

由上表可知导致重大火灾事故发生的路径共有42条,即重大火灾事故发生共有42种情形。 (2)最小径集 最小径集表示基本事件的组合,若该组合中的基本事件均不发生则顶上事件必然不发生,若该组合中的任意一个事件发生则顶上事件可能发生,因此最小径集表示预防事故发生的最短路径,提供防止事故发生的措施组合,本事故树的最小径集分布情况如表3所示: 由上表可知本事故树共有最小径集4个,即保证以上4个基本事件组合中任意一个组合的基本事件均不发生则顶上事件必然不发生。因此预防重大火灾事故措施应该依照消除此4个组合中的危险因素入手,组合中表示的危险有害因素应该作为重点管理的对象。

3、定量分析 (1)顶上事件概率 根据图1与表2可以计算顶上事件重大火灾事故发生的概率,顶上事件发生的概率: 经计算可知顶上事件发生的概率P(T)=,即景区现行情况下发生重大火灾事故的概率为。 (2)重要度分析 未确定每个基本事件,也即每个危险因素对导致重大火灾发生所产生的影响程度,因此对基本事件进行重要度分析,主要分析基本事件的结构重要度、概率重要度和临界重要度3个维度。从事故发生的角度考虑,重要度的数值越大,对于顶上事件发生与否或者发生概率的影响越大,表明该危害因素是导致事故发生的重要因素。从事故预防的角度的分析,对重要度数值较大的基本事件进行有效的控制能够有效的减少或减低顶上事件发生的频次或概率,因此此危险因素应该作为重点控制的方面。 1)结构重要度 结构重要度是指其他因素均不发生变化的情况的基本事件改变对顶上事件的影响程度,经计算本事故树的基本事件的结构重要度排序如下: I(X4)=I(X3)=I(X2)=I(X1)>I(X9)=I(X8)>I(X15)=I(X14)=I(X13 )=I(X12)=I(X11)=I(X10)>I(X7)=I(X6)=I(X5)

事故树分析

事故树分析 一、事故树分析的定义 事故树分析(Fault Tree Analysis,简称FTA)又称故障树分析,是安全系统工程最重要的分析方法。1961年,美国贝尔电话研究所的沃特森(Watson)在研究民兵式导弹反射控制系统的安全性评价时,首先提出了这个方法。1974年,美国原子能委员会应用FTA对商用核电站的灾害危险性进行评价,发表了拉斯姆森报告,引起世界各国的关注。此后,FTA从军工迅速推广到机械、电子、交通、化工、冶金等民用工业。 事故树是从结果到原因描绘事故发生的有向逻辑树。它形似倒立着的树,树中的节点具有逻辑判别性质。树的“根部”顶点节点表示系统的某一个事故,树的“梢”底部节点表示事故发生的基本原因,树的“树权”中间节点表示由基本原因促成的事故结果,又是系统事故的中间原因。事故因果关系的不同性质用不同逻辑门表示。这样画成的一个“树”用来描述某种事故发生的因果关系,称之为事故树。 事故树分析逻辑性强,灵活性高,适应范围广,既能找到引起事故的直接原因,又能揭示事故发生的潜在原因,既可定性分析,又可定量分析。事故树分析可用来分析事故,特别是重大恶性事故的因果关系。 二、事故树分析的步骤 (一)编制事故树编制步骤包括:1、确定所分析的系统,即确定系统所包括的内容及其边界范围。2、熟悉所分析的系统,是指熟悉系统的整体情况,必要时根据系统的工艺、操作内容画出工艺流程图及布置图。3、调查系统发生的各类事故,收集、调查所分析系统过去、现在以及将来可能发生的事故,同时还要收集、调查本单位与外单位、国内与国外同类系统曾发生的所有事故。4、确定事故树的顶上事件,即所要分析的对象事件。5、调查与顶上事件有关的所有原因事件,从人、机、环境和管理各方面调查与事故树顶上事件有关的所有事故原因。这些原因事件包括:机械设备的元件故障;原材料、能源供应、半成品、工具等的缺陷;生产管理、指挥、操作上的失误与错误;影响顶上事件发生的环境不良等。6、事故树作图,就是按照演绎分析的原则,从顶上事件起,一级一级往下分析各自的直接原因事件,根据彼此间的逻辑关系,用逻辑门连接上下层事件,直至所要求的分析深度,最后就形成一株倒置的逻辑树形图。 (二)事故树定性分析定性分析是事故树分析的核心内容。其目的是分析某类事故的发生规律及特点,找出控制该事故的可行方案,并从事故树结构上分析各基本原因事件的重要程度,以便按轻重缓急分别采取对策。事故树定性分析的主要内容有:利用布尔代数化简事故树;求取事故树的最小割集或最小径集;计算各基本事件的结构重要度;定性分析结论。根据分析结论并结合本企业的实际情况,订出具体、切实可行的预防措施。

交通事故事故树分析

易童翔 云南省邱北县“特大交通事故”事故树分析 1事故分析 事故说明 2004年1月26日中午12时30分,丘北县腻脚乡小塘子村村民刁克仕无证驾驶川路牌CGC150T型多功能运输拖拉机(车牌号为云南H09770)违章搭载80人从腻脚乡小塘子村沿七江公路驶往八道哨方向,当行至二道沟村路段时由于超载过重、刹车失灵,与同向行驶的一辆两轮摩托车发生追尾碰撞,失控后向右驶离路面翻入深约5米的路基下,造成20人当场死亡,7人在送往医院和抢救过程中死亡,53人受伤(其中3人重伤)的特大农机交通事故。事故现场一片狼籍,血溅四野,惨不忍睹。经查在死亡人员中,有男性20人、女性7人;汉族17人、苗族6人、壮族2人、彝族1人。年龄最大的57岁、最小的3岁。在这次事故死亡的27人中,涉及17户家庭,有3对是夫妻;一户死亡2人以上的共6户,其中有2户死3人,死伤波及该村38户家庭,造成4名事故孤儿。事故死亡人员中,除两人分别是砚山县人嘎乡和文山县新街乡农民外,其余25人都是小塘子村人。这是近年来云南省发生的一起最大的农机交通事故。 事故原因分析 事故的原因可以归结为道路原因、人员原因和车辆原因: 对于道路原因,据调查当地的入村公路为两米宽的土路,窄的地方一辆中巴车都过不去,路面质量也很差,大多数的农村公路都是通而不畅。同时事故发生地道路崎岖多急弯,发生事故时车辆无法有效避让。 对于人员原因,一是驾驶员无证驾驶。该肇事车辆是四川省公路机械厂生产的川路牌拖拉机,曾办理过新车落户登记,核发了云南H09770牌证,2003年3月参加年度检验合格。原车主为砚山县宏兴砖厂工人,于2003年12月11日将车转卖给刁克仕,尚未办理过户手续,而刁克仕本人尚未取得驾驶证,刁克仕(已死亡)系无证驾驶。二是驾乘人员安全意识、法律意识淡薄。“事故”的肇事机车可谓创造了一项“世界级”的载客纪录。该车车厢长为米,宽为米,面积为平

事故树分析实例

事故树分析法在消防安全管理中的运用 弱电学院---文章分类: 消防→其它推荐 ∧上一篇∨下一篇◎最新发布列表... 双击自动滚屏 发布者:弱电学院发布时间:2009-7-27 11:11:00 来源:互联网 总阅读:391次本周阅读:1次今日阅读:2次 事故树分析法是安全系统工程中常用的一种演绎推理分析方法,这种方法将系统可能发生的某种事故与导致事故发生的各种原因之间的逻辑关系用一种称为事故树的树形图表示,通过对事故树的定性与定量分析,找出事故发生的主要原因,为确定安全对策提供可靠依据,以达到预测与预防事故发生的目的。目前,事故树分析法已从宇航、核工业进入一般电力、化工、机械、交通等领域,它可以进行故障诊断、分析系统的薄弱环节,指导系统的安全运行,实现系统的优化设计。然而,在当前企业单位特别是消防安全重点单位日常安全管理中,仍然较多地停留在经验型管理阶段,消防安全监督管理中科技手段运用不足,科技含量欠缺,未能将企业中潜在的火灾危险定性或定量地表现出来。本文试用事故树分析法对镇江市某大型醋酸生产企业的消防安全重点部位——醋酸反应釜单元进行火灾爆炸危险性分析,并给出针对性的对策和思路。 一、事故树分析的步骤 (一)准备阶段:确定所要分析的系统以及所要分析系统的范围;熟悉系统并收集系统的有关资料与数据;收集、调查所分析系统曾经发生过的事故和将来有可能发生的事故。 (二)事故树的编制:确定事故树的顶事件;调查与顶事件有关的所有原因事件并进行影响分析;采用一些规定的符号按照一定的逻辑关系,将事故树顶事件与引起顶事件的原因事件绘制成反映因果关系的树形图。 (三)事故树定性分析:按照事故树结构,求取事故树的最小割集或最小径集,以及基本事件的结构重要度,根据定性分析的结果确定预防事故的安全保障措施。

事故树分析程序

事故树分析程序 事故树分析虽然根据对象系统的性质、分析目的的不同,分析的程序也不同。但是,一般都有下面的十个基本程序。有时,使用者还可根据实际需要和要求,来确定分析程序。 熟悉系统。要求要确实了解系统情况,包括工作程序、各种重要参数、作业情况。必要时画出工艺流程图和布置图。 调查事故。要求在过去事故实例、有关事故统计基础上,尽量广泛地调查所能预想到的事故,即包括已发生的事故和可能发生的事故。 确定顶上事件。所谓顶上事件,就是我们所要分析的对象事件。分析系统发生事故的损失和频率大小,从中找出后果严重,且较容易发生的事故,作为分析的顶上事件。 确定目标。根据以往的事故记录和同类系统的事故资料,进行统计分析,求出事故发生的概率(或频率),然后根据这一事故的严重程度,确定我们要控制的事故发生概率的目标值。 调查原因事件。调查与事故有关的所有原因事件和各种因素,包括设备故障、机械故障、操作者的失误、管理和指挥错误、环境因素等等,尽量详细查清原因和影响。 画出事故树。根据上述资料,从顶上事件起进行演绎分析,一级一级地找出所有直接原因事件,直到所要分析的深度,按照其逻辑关系,画出事故树。 定性分析。根据事故树结构进行化简,求出最小割集和最小径集,确定各基本事件的结构重要度排序。

计算顶上事件发生概率。首先根据所调查的情况和资料,确定所有原因事件的发生概率,并标在事故树上。根据这些基本数据,求出顶上事件(事故)发生概率。 进行比较。要根据可维修系统和不可维修系统分别考虑。对可维修系统,把求出的概率与通过统计分析得出的概率进行比较,如果二者不符,则必须重新研究,看原因事件是否齐全,事故树逻辑关系是否清楚,基本原因事件的数值是否设定得过高或过低等等。对不可维修系统,求出顶上事件发生概率即可。 定量分析。定量分析包括下列三个方面的内容:当事故发生概率超过预定的目标值时,要研究降低事故发生概率的所有可能途径,可从最小割集着手,从中选出最佳方案。 利用最小径集,找出根除事故的可能性,从中选出最佳方案。 求各基本原因事件的临界重要度系数,从而对需要治理的原因事件按临界重要度系数大小进行排队,或编出安全检查表,以求加强人为控制。 事故树分析方法原则上是这10个步骤。但在具体分析时,可以根据分析的目的、投入人力物力的多少、人的分析能力的高低、以及对基础数据的掌握程度等,分别进行到不同步骤。如果事故树规模很大,也可以借助电子计算机进行分析。

事故树分析案例

一、木工平刨伤手事故树分析 木工平刨伤手事故是发生较为频繁的事故,对其进行事故树分析具有典型意义。1.木工平刨伤手事故树 通过对木工平刨伤手事故的原因进行深入分析,编制出事故树,如图5-57所示。 D2 图5-57 木工平刨伤手事故树分析图 2.事故树定性分析 (1)最小割集与最小径集 经计算,割集为9个(最小割集亦为9个); 同样求得: 径集为3个(最小径集亦为3个)。 做出原事故树的成功树: 写出成功树的结构式,并化简,求取其最小割集: T’=A1’+X11’ =B1’X8’X9’X10’+X11’ =(C’+X1’)X8’X9’X10’+X11’ =(C’+X1’)X8’X9’X10’+X11’ =…… = X1’X8’X9’X10’+X2’X3’x4’X5 ’X6’X7’X8’X9’X10’+X11’

从而得到事故树的最小径集为: {}{}{} 11 310987654322109811,,,,,,,,,, ,,,x P x x x x x x x x x P x x x x P === 图5-58 木工平刨伤手事故树成功树 (2)结构重要度分析 I Φ(11)> I Φ(8)=I Φ(9)= I Φ(10)> I Φ(1)>I Φ(2)= I Φ(3)= I Φ(4)=I Φ(5) =I Φ(6)= I Φ(7) 结构重要度顺序说明:x11(安全装置故障失灵)是最重要的基本事件,x8,x9,x10是第二位的,x1是第三位的,x2,x3,x4 x5,x6 x7则是第四位的。也就是说, 提高木工平刨安全性的根本出路在于安全装置。 其次,在开机时测量加工件x9、修理x8刨机和清理碎屑、杂物x10,是极其危险的。 再次,直接用于推加工木料x1相当危险,一旦失手就可能接近旋转刀口。 第四位的事件较多,又都是人的操作失误,往往是难以避免的,只有加强技术培训和安全教育才能有所减少。如果把人作为系统的一个元件来处理,则这个元件的可靠性最低。 3.事故树定量分析 (1)基本事件发生概率估计值 为了定量分析计算,最重要的是确定基本事件发生概率。本例只能凭经验估计——主观概率法。 从理论上讲,事故发生概率应为任—瞬间发生的可能性,是一无量纲值。 但从工程实践出发,许多文献皆采用计算频率的办法代替概率的计算,即计算单位时间事故发生的次数。

事故树分析

事故树分析 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

油库静电火花造成油库火灾爆炸的事故树 上述事故树建立过程说明如下: (1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。 (4)调查“油气达到可燃浓度”的直接原因事件、事件的性质和逻辑关系,直接原因事件:“油气存在”和“库区内通风不良”。“油气存在”这是一个正常状态下的功能事件,因此,该事件用房形符号。“库区内通风不良”为基本事件。这两个事件只有同时发生,“油气达到可燃浓度”事件才会发生,故用“与”门连接(三层)。 (5)调查“油库静电放电”的直接原因事件、事件的性质同和逻辑关系。直接原因事件:“静电积聚”和“接地不良”。这两个事件必须同时发生,才会发生静电放电,故用“与”门连接(四层)。 (6)调查“人体静电放电”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“化纤品与人体摩擦”和“作业中与导体接近”。同样,这两个事件必须同时发生,才会发生静电放电,故用“与”门连接(四层)。 (7)调查“静电积聚”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油液流速高”、“管道内壁粗糙”、“高速抽水”、“油液冲击金属容器”、“飞溅油液与空气摩擦”、“油面有金属漂浮物”和“测量操作

事故树分析

事故树分析 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

油库静电火花造成油库火灾爆炸的事故树 上述事故树建立过程说明如下: (1)确定顶上事件——“油库静电火灾爆炸”(一层)。 (2)调查爆炸的直接原因事件、事件的性质和逻辑关系。直接原因事件:“静电火花”和“油气达到可燃浓度”。这两个事件不仅要同时发生,而且必须在“油气达到爆炸极限”时,爆炸事件才会发生,因此,用“条件与”门连接(二层)。 (3)调查“静电火花”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油库静电放电”和“人体静电放电”。这两个事件只要其中一个发生,则“静电火花”事件就会发生。因此,用“或”门连接(三层)。 (4)调查“油气达到可燃浓度”的直接原因事件、事件的性质和逻辑关系,直接原因事件:“油气存在”和“库区内通风不良”。“油气存在”这是一个正常状态下的功能事件,因此,该事件用房形符号。“库区内通风不良”为基本事件。这两个事件只有同时发生,“油气达到可燃浓度”事件才会发生,故用“与”门连接(三层)。 (5)调查“油库静电放电”的直接原因事件、事件的性质同和逻辑关系。直接原因事件:“静电积聚”和“接地不良”。这两个事件必须同时发生,才会发生静电放电,故用“与”门连接(四层)。 (6)调查“人体静电放电”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“化纤品与人体摩擦”和“作业

中与导体接近”。同样,这两个事件必须同时发生,才会发生静电放电,故用“与”门连接(四层)。 (7)调查“静电积聚”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“油液流速高”、“管道内壁粗糙”、“高速抽水”、“油液冲击金属容器”、“飞溅油液与空气摩擦”、“油面有金属漂浮物”和“测量操作失误”。这些事件只要其中一个发生,就会发生“静电积聚”。因此,用“或”门连接(五层)。 (8)调查“接地不良”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“未设防静电接地装置”、“接地电阻不符合要求”和“接地线损坏”。这3个事件只要其中1个发生,就会发生“接地不良”。因此,用“或”门连接(五层)。 (9)调查“测量操作失误”的直接原因事件、事件的性质和逻辑关系。直接原因事件:“器具不符合标准”和“静置时间不够”。这2个事件其中有1个发生,则“测量操作失误”就会发生。故用“或”门连接(六层)。 生产车间燃烧爆炸事故树模型图

相关文档