文档库 最新最全的文档下载
当前位置:文档库 › 脑电波信号采集及传输电路

脑电波信号采集及传输电路

脑电波信号采集及传输电路
脑电波信号采集及传输电路

线性光耦原理与电路设计,4-20mA模拟量隔离模块,PLC采集应用

1. 线形光耦介绍 光隔离是一种很常用的信号隔离形式。常用光耦器件及其外围电路组成。由于光耦电路简单,在数字隔离电路或数据传输电路中常常用到,如UART协议的20mA电流环。对于模拟信号,光耦因为输入输出的线形较差,并且随温度变化较大,限制了其在模拟信号隔离的应用。 对于高频交流模拟信号,变压器隔离是最常见的选择,但对于支流信号却不适用。一些厂家提供隔离放大器作为模拟信号隔离的解决方案,如ADI的AD202,能够提供从直流到几K的频率内提供0.025%的线性度,但这种隔离器件内部先进行电压-频率转换,对产生的交流信号进行变压器隔离,然后进行频率-电压转换得到隔离效果。集成的隔离放大器内部电路复杂,体积大,成本高,不适合大规模应用。 模拟信号隔离的一个比较好的选择是使用线形光耦。线性光耦的隔离原理与普通光耦没有差别,只是将普通光耦的单发单收模式稍加改变,增加一个用于反馈的光接受电路用于反馈。这样,虽然两个光接受电路都是非线性的,但两个光接受电路的非线性特性都是一样的,这样,就可以通过反馈通路的非线性来抵消直通通路的非线性,从而达到实现线性隔离的目的。 市场上的线性光耦有几中可选择的芯片,如Agilent公司的HCNR200/201,TI子公司TOAS的TIL300,CLARE的LOC111等。这里以HCNR200/201为例介绍2. 芯片介绍与原理说明 HCNR200/201的内部框图如下所示 其中1、2引作为隔离信号的输入,3、4引脚用于反馈,5、6引脚用于输出。 1、2引脚之间的电流记作IF,3、4引脚之间和5、6引脚之间的电流分别记作IPD1和IPD2。输入信号经过电压-电流转化,电压的变化体现在电流IF上,IPD1和IPD2基本与IF成线性关系,线性系数分别记为K1和 K2,即 K1与K2一般很小(HCNR200是0.50%),并且随温度变化较大(HCNR200的变化范围在0.25%到0.75%之间),但芯片的设计使得 K1和K2相等。在后面可以看到,在合理的外围电路设计中,真正影响输出/输入比值的是二者的比值K3,线性光耦正利用这种特性才能达到满意的线性度的。

脑电波及其采集方法

数字信号处理论文 题目:脑电波及其采集方法 学院:信息科学与技术学院 专业:电子信息科学与技术 姓名:彭娟 学号:0329 2014年11月4日

脑电波及其采集方法 彭娟 成都理工大学,成都,610059 摘要:脑电图(electroencephalogram, EEG)是通过电极记录下来的脑细胞群的自发性、节律性电活动,它包含了大量的生理与病理信息,是神经系统机能检查方法之一。脑电图反映了大脑组织的电活动及大脑的各种功能状态,其基本特征包括振幅、周期、相位等。工频干扰是脑电信号的主要干扰,传统的50hz工频干扰虽然有一定的作用,但存在耗费高和通用性差等缺点,50hz 陷波器可以解决这个问题。 关键词:脑电波;脑电信号分类;50Hz陷波器 中图分类号: Brain waves and its acquisition method Peng Juan Chengdu university of technology,Chengdu,610059 Abstract: EEG (electroencephalogram, EEG) was recorded by electrode group of spontaneity, rhythmic electrical activity of brain cells, it contains a large number of physiological and pathological information, is one of the nervous system function test method. Electroencephalogram (eeg) to reflect the electrical activity of brain tissue and the functions of brain state, its basic features include amplitude, phase and cycle, etc. Power frequency interference is the main point of brain electric signal interference, traditional 50 hz power frequency interference, although have certain effect, but the high cost and poor generality, 50 hz trap can solve this problem. Key words: Brain waves. Eeg classification; 50 hz trap 脑电波介绍 脑电图(electroencephalogram, EEG)是通过电极记录下来的脑细胞群的自发性、节律性电活动,它包含了大量的生理与病理信息,是神经系统机能检查方法之一。脑电图反映了大脑组织的电活动及大脑的各种功能状态,其基本特征包括振幅、周期、相位等。通过在头皮安放电极,经导线连接到脑电图机进行放大,可以把脑细胞活动产生的电位差所形成的波形描记下来,而成为脑电图。 量子医学观点 量子医学认为,世界万物都是由原子组成,各种生命形态的完成都离不开能量传递和电子的交换,当人体的某个部位出现异常时,其发出的波形和正常组织也有所区别。脑电图机正是利用放大的原理,搜集这些细胞发出的波形,然后进行分析,得出检测结论的。 脑电图分类及各种特征 脑电图的波形很不规则,其频率变化范围每秒约在1~30次之间,通常将此频率变化分为4个波段:①α波:频率8~13Hz,波幅10~100μV。大脑各区均有,但以枕部最明显。α节律是成人和较大儿童清醒闭目时主要的正常脑电活动,小儿的α波及节律随年龄增长而逐渐明显。 ②β波:频率14~30Hz,波幅约5~30/μV以额、颞和中央区较明显。在精神活动,情绪兴奋时增多。约有6%的正常人即使在精神安定和闭目时所记录的脑电图仍以β节律为主,称之为β型脑电图。 ③θ波:频率4~7Hz,波幅20~40μV。

心电信号采集电路实验报告.doc

心电放大电路实验报告 一概述 心脏是循环系统中重要的器官。由于心脏不断地进行有节奏的收缩和舒张活动,血液才能在闭锁的循环系统中不停地流动。心脏在机械性收缩之前,首先产生电激动。心肌激动所产生的微小电流可经过身体组织传导到体表,使体表不同部位产生不同的电位。如果在体表放置两个电极,分别用导线联接到心电图机(即精密的电流计)的两端,它会按照心脏激动的时间顺序,将体表两点间的电位差记录下来,形成一条连续的曲线,这就是心电图。 普通心电图有一下几点用途 1、对心律失常和传导障碍具有重要的诊断价值。 2、对心肌梗塞的诊断有很高的准确性,它不仅能确定有无心肌梗塞,而且还可确定梗塞的病变期部位范围以及演变过程。 3、对房室肌大、心肌炎、心肌病、冠状动脉供血不足和心包炎的诊断有较大的帮助。 4、能够帮助了解某些药物(如洋地黄、奎尼丁)和电解质紊乱对心肌的作用。 5、心电图作为一种电信息的时间标志,常为心音图、超声心动图、阻抗血流图等心功能测定以及其他心脏电生理研究同步描纪,以利于确定时间。 6、心电监护已广泛应用于手术、麻醉、用药观察、航天、体育等的心电监测以及危重病人的抢救。 二系统设计 心电信号十分微弱,频率一般在0.5HZ-100HZ之间,能量主要集中在17Hz附近,幅度大约在10uV-5mV之间,所需放大倍数大约为500-1000倍。而50hz工频信号,极化电压,高频电子仪器信号等等干扰要求心电信号在放大的过程中始终要做好噪声滤除的工作。下图为整体化框图。 三具体实现 电路图如下: 1 导联输入: 导联线又称输入电缆线。其作用是将电极板上获得的心电信号送到放大器的输入端。心脏

测控电路第六章答案

第六章信号转换电路 6-1 常用的信号转换电路有哪些种类?试举例说明其功能。 常用的信号转换电路有采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)转换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D (模/数)转换器、D/A(数/模)转换器等。 采样/保持(S/H)电路具有采集某一瞬间的模拟输入信号,根据需要保持并输出采集的电压数值的功能。这种电路多用于快速数据采集系统以及一切需要对输入信号瞬时采样和存储的场合,如自动补偿直流放大器的失调和漂移、模拟信号的延迟、瞬态变量的测量及模数转换等。 模拟电压比较电路是用来鉴别和比较两个模拟输入电压大小的电路。比较器的输出反映两个输入量之间相对大小的关系。比较器的输入量是模拟量,输出量是数字量,所以它兼有模拟电路和数字电路的某些属性,是模拟电路和数字电路之间联系的桥梁,是重要的接口电路。可用作鉴零器、整形电路,其中窗口比较电路的用途很广,如在产品的自动分选、质量鉴别等场合均用到它。 V/f(电压/频率)转换器能把输入信号电压转换成相应的频率信号,广泛地应用于调频、调相、模/数转换器、数字电压表、数据测量仪器及远距离遥测遥控设备中。f/V(电压/频率)转换器把频率变化信号线性地转换成电压变化信号。广泛地应用于调频、调相信号的解调等。 V/I(电压/电流)转换器的作用是将电压转换为电流信号。例如,在远距离监控系统中,必须把监控电压信号转换成电流信号进行传输,以减少传输导线阻抗对信号的影响。I/V (电流/电压)转换器进行电流、电压信号间的转换。例如,对电流进行数字测量时,首先需将电流转换成电压,然后再由数字电压表进行测量。在用光电池、光电阻作检测元件时,由于它们的输出电阻很高,因此可把他们看作电流源,通常情况下其电流的数值极小,所以是一种微电流的测量。随着激光、光纤技术在精密测量仪器中的普及应用,微电流放大器越来越占有重要的位置。 在以微型计算机为核心组成的数据采集及控制系统中,必须将传感器输出的模拟信号转换成数字信号,为此要使用模/数转换器(简称A/D转换器或ADC)。相反,经计算机处理后的信号常需反馈给模拟执行机构如执行电动机等,因此还需要数/模转换器(简称D/A转换器或DAC)将数字量转换成相应的模拟信号。 6-2 试述在S/H电路中对模拟开关、存储电容及运算放大器这三种主要元器件的选择有什么要求。 选择要求如下: 模拟开关:要求模拟开关的导通电阻小,漏电流小,极间电容小和切换速度快。 存储电容:要选用介质吸附效应小的和泄漏电阻大的电容。 运算放大器:选用输入偏置电流小、带宽宽及转换速率(上升速率)大的运算放大器;输入运放还应具有大的输出电流。

基于脑电波的便携式睡眠质量监测系统

基于脑电波的 便携式睡眠质量监测系统 金旭扬 导师:华东理工大学信息学院万永菁 上海中学信息学科组吴奕明

摘要 睡眠是人体重要的生理活动,睡眠质量近年来受到高度关注;本文从脑电波角度探寻睡眠监测的有效易行方法,从软硬件角度设计了便携式睡眠质量监测系统。研究分析便携式脑电采集设备采集的数据和CAP睡眠脑电数据库,用功率谱分析和BP神经网络探究了睡眠分期的有效算法。实验进行了初步的睡眠分期与质量评估,证明了便携式睡眠质量监测系统的准确性及利用脑电数据进行睡眠分期的有效性。本课题研究,提出了利用单导连脑电信号进行睡眠分期的可行性,为之后研究便携式、市场化的睡眠监测设备以及其他应用提供了重要的实验参考依据。 关键词:脑电;脑机接口;睡眠监测;睡眠分期;BP神经网络 一、引言 1.1 睡眠质量研究背景及意义 睡眠是一种重要的生理现象。从生到死,人类始终是在觉醒和睡眠中度过。人类通过高质量的睡眠,可以消除疲劳,更好地恢复精神和体力,使人在睡眠之后保持良好的觉醒状态,提高工作、学习效率。 人类用于睡眠的时间占人一生中的三分之一。然而迄今我们对这一重要的生理现象的认识还微乎其微,对睡眠进行科学的研究只有短短的几十年历史。1937年,Lomis、Harvey和Hobart注意到,睡眠不是处于一种稳定状态,而是要发生一系列非常有规律的周期性变化。[1] 1986年,Rechtschaffen等人重新肯定了Dement和Kleitman的分期标准,并根据十年来的经验作了一些必要的修改和补充,使之更趋完善。[2] 2007年,美国睡眠医学会基于上述标准进行改进,发布了新的睡眠分期专业标准,其中规定了各个指标具体的采集标准及判定方法。[3] 1.2 脑电信号分析方法综述 随着电子技术的发展,数字处理技术逐步应用到EEG的分析中来。经典的EEG分析方法有:以分析EEG波形的几何性质,如幅度、均值、峭度等为主的时域分析方法和以分析EEG 各频率功率、相干等为主的领域方法。早在70年代初,W.C.Yeo和J.P.Smith[4]就应用Walsh谱分析离线地研究了一个处于睡眠状态的男性的三段脑电图。https://www.wendangku.net/doc/844699409.html,rsen等[5]应用Walsh顺序的Walsh函数对EEG进行展开,并定义了双值自相关函数,尔后讨论了可以按双值自相关函数来显示各种睡眠EEG的特征。 1982年,美国物理学家Hopfield提出了HNN模型,从而有力地推动了应用神经网络方法解释许多复杂生命过程的进展。自八十年代末以来,人工神经网络的应用已涉及到了脑电分析的各个方面,其中包括自发脑电的睡眠分级及睡眠EEG分析。S.Roberts和L.Tarassenko[6,7]把人工神经网络应用于睡眠EEG的自动分析。他们采用无监督学习网络对大量没有经过人工判别的数据进行自组织分类,少量的经过人工判别的标准样本则用来自组织分类结果做解释和量化,从而在网络中形成了8个聚类区。根据EEG在8个聚类区之间随时间运动的轨迹可以对一夜的睡眠状况有定性的了解。[8] 1.3 脑电监测设备介绍 目前,脑电监测设备大致有二:

常用电流和电压采样电路

2常用采样电路设计方案比较 配电网静态同步补偿器(DSTATCOM )系统总体硬件结构框图如图2-1所示。由图2-1可知DSTATCOM 的系统硬件大致可以分成三部分,即主电路部分、控制电路部分、以及介于主电路和控制电路之间的检测与驱动电路。其中采样电路包括3路交流电压、6路交流电流、2路直流电压和2路直流电流、电网电压同步信号。3路交流电压采样电路即采样电网三相电压信号;6路交流电流采样电路分别为电网侧三相电流和补偿侧三相电流的电流采样信号;2路直流电压和2路直流电流的采样电路DSTATCOM 的桥式换流电路的直流侧电压信号和电流信号;电网电压同步信号采样电路即电网电压同步信号。 图2-1 DSTATCOM 系统总体硬件结构框图 2.2.11 常用电网电压同步采样电路及其特点 .1 常用电网电压采样电路1 从D-STATCOM 的工作原理可知,当逆变器的输出电压矢量与电网电压矢量幅值大小相等,方向相同时,连接电抗器内没有电流流动,而D-STATCOM 工作在感性或容性状态都可由调节以上两矢量的夹角来进行控制,因此,逆变器输出的电压矢量的幅值及方向的调节都是以电网电压的幅值和方向作为参考的,因此,系统电压与电网电压的同步问题就显得尤为重要。

图2-2 同步信号产生电路1 从图2-2所示同步电路由三部分组成,第一部分是由电阻、电容组成的RC 滤波环节,为减小系统与电网的相位误差,该滤波环节的时间常数应远小于系统的输出频率,即该误差可忽略不计。其中R 5=1K Ω,5pF,则时间常数错误!未 因此符合设计要求;第二部分由电压比较器LM311构成, 实现过零比较;第三部分为上拉箝位电路,之后再经过两个非门,以增强驱动能力,满足TMS320LF2407的输入信号要求。 C 4=1找到引用源。<

三相电信号采集电路设计方案

引言 当前,电力电子装置和非线性设备的广泛应用,使得电网中的电压、电流波形发生畸变,电能质量受到严重影响和威胁;同时,各种高性能家用电器、办公设备、精密试验仪器、精密生产过程的自动控制设备等对供电质量敏感的用电设备不断普及对电力系统供电质量 的要求越来越高,电能质量问题成为近年来各个方面关注的焦点,电能质量监测是当前国际上的一个研究热点[1],有必要对三相电信号进行高精度采集,便于进一步分析控制,提高电能质量。对电力参数的采样方法主要有两种,即直流采样法和交流采样法。直流采样法采样的是整流变换后的直流量,软件设计简单,计算方便,但测量精度受整流电路的影响,调整困难。交流采样法则是按一定规律对被测信号的瞬时值进行采样,再按一定算法进行数值处理,从而获得被测量,因而较之直流采样法更易获得高精度、高稳定性的测量结果[2]。 三相电信号采集电路设计 三相电信号采集电路框架 三相电信号采集电路的框架如图1所示。三相电压电流信号经过电压电流互感器转换为较低的电压信号。其中A相的电压信号经过波形调整成为频率与A相电压信号相同的方波信号,用于测量频率。同时将转换后方波频率信号进行频率的整数倍放大作为A/D转换的控

制信号。经过六路互感器降压后,将信号送入AD7656进行A/D转换,转换完的数字信号就可以供于DSP/MCU进行数据分析。 电压电流互感器的选用 电压/电流互感器均采用湖北天瑞电子有限公司TR系列检测用 电压输出型变换器。电压互感器采用检测用电压输出型电压变换器TR1102-1C,如图2为其结构图,规格为300V/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。电流互感器采用检测用电压输出型电流变换器TR0102-2C,规格为5A/7.07V,非线性度比差<+/-0.1%,角差<=+/-5分。 电源电路 AD7656共有两种模拟信号输入模式,一是模拟输入信号为二倍的参考电压(2.5V)即+/-5V之间,另一种是四倍的参考电压即+/-10V 之间。为提高采样的精度,本电路采用输入信号为+/-10V之间,因此需要+/-10V~+/-16.5V之间电源供电。AD7656同时需要5V的AVCC

电流信号转电压信号方法大全

电流信号转换为电压信号的方法 由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有: 为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。 尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生 的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

基于仪表放大的传感器信号采集电路

基于仪表放大器的传感器信号采集电路设计
2010-2-5 20:10:00 来源:中国自动化网

1 引言 传感器及其相关电路被用来测量各种不同的物理特性,例如温度、力、压力、流 量、 位置、 光强等。 这些特性对传感器起激励的作用。 传感器的输出经过调理和处理, 以对物理特性提供相应的测量。 数字信号处理是利用计算机或专用的处理设备, 以数值计算的方式对信号进行采 集、变换、估计与识别等加工处理,从而达到提取信息和便于应用的目的。仪表放大 器具有非常优越的特性,能将传感器非常微弱的信号不失真的放大以便于信号采集。 本文介绍在一个智能隔振系统中,传感器数据采集系统具有非常多的传感器,而且信 号类型都有很大的差别的情况下如何使用仪表放大器将传感器信号进行调理以符合 模数转换器件的工作范围。 2 仪表放大器在传感器信号调理电路中的应用 仪表放大器是一种高增益、直流耦合放大器,他具有差分输入、单端输出、高输 入阻抗和高共模抑制比等特点。差分放大器和仪表放大器所采用的基础部件(运算放 大器)基本相同,他们在性能上与标准运算放大器有很大的不同。标准运算放大器是 单端器件,其传输函数主要由反馈网络决定;而差分放大器和 仪表放大器在有共模信号条件下能够放大很微弱的差分信号, 因而具有很高的共模抑 制比(CMR)。他们通常不需要外部反馈网络。 仪表放大器是一种具有差分输入和其输出相对于参考端为单端输出的闭环增益 单元。输入阻抗呈现为对称阻抗且具有大的数值(通常为 109 或更大)。与由接在反 向输入端和输出端之间的外部电阻决定的闭环增益运算放大器不同, 仪表放大器使用 了一个与其信号输入端隔离的内部反馈电阻网络。 利用加到两个差分输入端的输入信 号,增益或是从内部预置,或是通过也与信号输入端隔离的内部或外部增益电阻器由 用户设置。典型仪表放大器的增益设置范围为 1~1000。 仪表放大器的特点: (1)高共模抑制比 共模抑制比 (CMRR) 则是差模增益 (Ad) 与共模增益 (Ac) 之比, CMRR=20lg 即: (Ad/Ac)dB;仪表放大器具有很高的共模抑制比,CMRR 典型值为 70~100 dB 以 上。 (2)高输入阻抗 要求仪表放大器必须具有极高的输入阻抗, 仪表放大器的同相和反相输入端的阻 抗都很高而且相互十分平衡, 其典型值为 109~1012 低噪声由于仪表放大器必须能 够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在 1 kHz 条件下,折合到输入端的输入噪声要求小于 10 nV/Hz。 (3)低线性误差 输入失调和比例系数误差能通过外部的调整来修正, 但是线性误差是器件固有缺 陷,他不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为 0.01%, 有的甚至低于 0.0001%。 (4)低失调电压和失调电压漂移 仪表放大器的失调漂移也由输入和输出两部分组成, 输入和输出失调电压典型值 分别为 100 uV 和 2 mV。

测控电路实验指导书(DOC)

《测控电路》实验指导书 王月娥编写 电子工程与自动化学院

目录 实验一典型放大器的设计 (5) 实验二精密检波和相敏检波实验 (8) 实验三信号转换电路实验 (12) 实验四细分电路实验 (14)

《测控电路》课程实验教学大纲 一、制定实验教学大纲的依据 根据本校《2011级本科指导性培养计划》和《测控电路》课程教学大纲制定。 二、本实验课在专业人才培养中的地位和作用 《测控电路》是测控技术与仪器专业专业任选课。电路实验技能是从事测控行业工作者的一项基本功。本实验课的教学目的就在于加强学生对《测控电路》课程有关理论知识的掌握以及测控电路实验技能和实验方法的训练。 三、本实验课讲授的基本实验理论 1、如何基于集成运算放大器设计模拟运算电路、电桥放大器以及仪用放大电路。 2、幅度调制与解调电路的原理。 3、信号转换电路原理。 4、电阻链细分电路的原理。 四、本实验课学生应达到的能力 1、培养学生独立分析电路的能力。 2、培养学生独立设计、搭接电路的动手能力。 3、培养学生使用典型电工电子学仪器的技能。 4、培养学生处理测量数据和撰写实验报告的能力。 五、学时、教学文件 学时:本课程总学时为32学时,其中实验为8学时,占总学时的25%。 六、实验考核办法与成绩评定 根据学生做实验的情况及实验报告,由指导教师给出成绩,成绩按优、良、中、及格、不及格五档给分。以15%的比例计入课程总成绩。 七、仪器设备及注意事项 注意事项:注意人身安全,保护设备。 八、实验项目的设置及学时分配 制定人: 审核人: 批准人:

注意事项 为了顺利完成实验任务,确保人身、设备的安全,培养学生严谨、踏实、实事求是的科学作风和爱护国家财产的优秀品质。要求每个学生在实验时,必须注意如下事项: 一、实验前必须充分预习,认真阅读实验指导书,明确实验任务及要求,弄清实验原理,拟定好实验方案,做好分工。 二、使用仪器设备前,必须熟悉其性能,预习操作方法及注意事项,并在使用时严格遵守操作规程。做到准确操作。 三、实验接线要认真检查,确定无误方可接通电源。初学或没有把握时,应请指导教师审查同意后再接通电源。使用过程中需要改线时,需先断开电源,才可拆、接线。 四、实验中应注意观察实验现象,认真记录实验结果(数据、波形及其它现象)。实验记录经指导教师审阅签字后,才可拆除实验线路。此记录应附在实验报告后,作为原始记录的依据。 五、实验过程中发生任何破坏性异常现象,(例如元器件冒烟、发烫有气味或仪器设备出现异常),应立即切断电源,保护现场,及时报告指导教师,不得自行处理。等待查明原因、排除故障、教师同意后,才能继续进行实验。如发生事故,应自觉填写事故报告单,总结经验,吸取教训。损坏仪器、器材,要服从实验室和指导教师对事故的处理。 六、实验结束后,关掉仪器设备的电源开关,再拉闸,并将工具、导线、仪器整理好,方可离开实验室。 七、遵守实验室纪律,注意保持实验室整洁、安静。不做与实验内容无关的事。 八、进行指定内容之外的实验,要经过指导教师的同意。不得乱动其他组的仪器设备、器材和工具。借用器材如有损坏、丢失,要按实验室规定赔偿。 九、实验后,应按要求认真书写实验报告,并按时交给教师。 十、每次实验结束,学生轮流协助实验室打扫卫生和整理仪器。以增强参与管理意识。

基于脑电波的注意力训练研究

交流 Experience Exchange D I G I T C W经验 272DIGITCW2019.04基于脑电波的注意力训练研究 张 政,张 瑞,聂民坤,班 岚 (北京科技大学天津学院,天津 301830) 摘要:注意力不集中将会直接降低学生的学习效率,以致其无法获得理想的学习成绩。以往教学过程中,教师了解学生注意情况仅通过表情、学习姿势等信号。随着穿戴设备的快速发展,人们为了更好的监测脑电信号,开始使用脑电生物反馈技术,并综合使用多种注意力训练方法,使学生集中注意力学习。本文分析了脑电波的特征,针对性的指出了脑电波注意力训练系统的设计方法,以期有效为提高学生的注意力提供更多的参考依据。 关键词:脑电波;注意力;训练 doi:10.3969/J.ISSN.1672-7274.2019.04.226 中图分类号:TN911.7;R338 文献标示码:A 文章编码:1672-7274(2019)04-0272-01 1 脑电波的特征 人的大脑由多种神经元组成,这些神经元之间产生的信号便是脑电波,且神经元之间的联系可以促使人类产生思维活动。大脑神经元在接受来自其他神经元信号到一定阈值时,脑电波便会产生。在检测脑电波信号时,人们主要在头皮上放置电极,完成电波信号的采集,之后在利用专业的设备做好脑电波信号的收集与处理工作。大脑产生的生物电信号便属于脑电波,且人体不同的思维活动会产生不同类型的脑电波信号,频率各不相同。同时,不同情绪与心理状态下的人,其脑电波也不相同,并随情绪改变。其中Delta波在人感到困乏时比较活跃,这也是青少年脑波的主要成分;Alpha波在人处于安静思考状态时比较明显,主要反映人不受外界刺激时的脑波状态;Beta波在人情绪激动以及精神亢奋的状态下比较明显;Gamma波反映了人的深层次思考,比如印象以及记忆等。 2 脑电信号采集方法 生理传感器可以采集脑电信号,之后经过降噪等处理后可以得到分析处理的信号。在收集脑电信号方面,当前使用最为广泛的则是系统标准电极放置法,其需要在人脑特定的位置放置电极。单极导联法与双极导联法均属于脑电图机的导联方式,其中单极导联法主要在人的头皮位置放置活动的电极,在耳垂上放置无关电极。双极导联法主要在头皮上放置两个活动的电极,期间不使用无关电极,从而可以采集两个电极信号之间的差值,减少干扰因素的影响。 3 脑电波注意力训练系统的设计 3.1 系统框架 脑电波注意力系统具备较多的信息量,包括信息获取、信息传输以及信息储存等过程,在设计系统时应构建动态变化且可扩展、可伸缩的逻辑架构。感知层、传输层、数据层以及应用层等均属于脑电波注意力系统的组成部分,学生佩戴的脑电传感设备以及体温传感设备等均属于感知层,可以获得有效信息。学校内部的蓝牙以及无线网均属于网络层,可以用于服务器中传输信息。数据库管理系统以及支撑平台等均属于数据层,可以有效储存与处理相关信息,以供用户进行调用与查阅。应用层可以开发多种应用系统,在可视化数据信息的同时为用户展示生理信息的反馈界面。用户登录模块、蓝牙通信模块、脑电注意力数据处理模块以及脑电集中放松度绘制等均属于本系统的主要功能。在进行脑电反馈注意力训练过程中包括两方面的主要信息,一是记录的历史数据,并将其存储于数据库中,在分析数据时无需使用任何连接设备。二是注意力训练系统,包括手机与桌面应用程序。 3.2 开发环境 一是软件环境,本系统利用C语言进行开发,并通过Socket 网络编程将数据存储于相关的数据库服务器中,通过蓝牙设备连接脑电设备与计算机。C语言属于更为简洁的语言程序,可以有效实现应用程序的开发工作,属于可以应用于桌面应用程序中的高级编程语言,且其可以被移植预其他版本的操作平台上,本次系统设计中使用的C语言开发系统具备一定的实用性,且可以使用Net平台的各个代码库。SQLSERVER数据库具备强大的应用功能,具备一定的易用性与保密性,被广泛应用中各行各业中,随着版本的不断更新,其安全与防渗透性能会愈加完善。输入用户指令后,系统会开始正常收集管理相关数据信息,开始相关工作,且其在客户端、数据存储以及数据传输期间提供了可靠保障。 3.3 硬件环境 系统设计主要采用BrainLink设备,其被放置于人脑的头皮上,对人体不存在较大影响。采集信号过程中,人体脑前额应与采集脑电的支臂进行接触,工作人员将参考电极夹于耳垂处,从而有效采集相关的脑电信号。不同于其他采集设备,BrainLink 设备只需要手机APP或者一台电脑便可以完成信号的收集,操作简单,且可以测量多种脑电波数据信息。同时,设备中的ThinkGear芯片可以完成心跳、呼吸以及肌肉等各种噪声的有效过滤,并完成多方的比较研究。Brainlink设备属于可穿戴产品,只需要一个节点便可以通过接口获得外界输出的参数信息与脑波信号,不需要使用额外的导电膏等材料。数据分析时应采用eSense}算法,并将信息的处理结果反馈至使用者,其中Attention eSense代表着测试者的注意力集中程度与做事情的感兴趣程度;Medition eSense代表了测试者的思维放松程度。本次系统设计中主要研究集中度参数,其范围在0至100内,当0至20时,则代表佩戴者注意力不集中,处于心烦的状态;当数值为20至40时,佩戴者的注意力轻度不集中,存在少许分心;当数值在40至60时,佩戴者处于一般集中状态;当数值在60至80时,佩戴者注意力很集中;当数值在80至100时,佩戴者注意力保持高度集中状态。 4 结束语 随着新课改的实行,对学生的综合素质水平提出了更高的要求,以往教育中教师仅通过学生的面部表情估计其学习情况,无法实时了解学生的注意力情况,降低了教学效果。随着教育信息技术的快速发展,穿戴设备也取得了较大进步,可以促进学生高效学习,使其更快适应这个快速发展的社会。本文针对此,对当前的脑电波注意力训练系统进行了深度分析,确保教师可以通过学生的注意力情况采取针对性的训练措施,有效提升其学习成绩。参考文献 [1] 李雪飞,许朝进. 脑电生物反馈对正常小学生注意力的影响[J].软件导刊(教 育技术),2015(04). [2] 龚志武,吴迪,陈阳键,苏宏,黄淑敏,陈木朝,吴杰锋,焦建利.新媒体 联盟2015地平线报告高等教育版[J].NMC地平线项目,现代远程教育研究,2015(02). [3] 王慧娟,袁全波,艾菁.一种基于BCI技术的智能设备控制方法[J].北华航 天工业学院学报,2015(01).

电压电流采样

电压电流采样 前言:在学习这个主题的时候,上网查了大量的资料,但大多都是基于电网里的交流大电压和大电流的采样,我个人觉得关于交流的采样以下链接有非常详尽的介绍,而我自己也只是对其进行了较为细致的阅读因为我们队里用的直流电压最大为24V,所以接下来我就直流电压及电流的采样说一下自己的见解。 一、基本电路设计及原理学习 1、电压采集回路的设计 工作原理如下所述:从分压电阻取来的电压信号经滤波后,被单片机周期采样。将采样信号转化为0~5V的模拟电压量送给单片机的A/D采样通道,使单片机能采集到当时的电压,以便进行稳压、稳流或限压、限流调节,为控制算法的分析、处理,实现控制、保护、显示等功能提供依据。 (公式推导参见电气专业的模电书,不作详细介绍) 根据上述原理,设计电压采样电路如图下图所示 由于521-4的四个光耦制的电流放电倍数是相同的。即

即把输入电压从较大的直流电压衰减到0~5V。 2、电流采集回路的设计 电流采集的原理图如上图所示。其工作原理与电压采集的原理基本相同,区别主要在电流的输入信号为分流器输出的信号,信号范围为0-75mV,显然信号太弱,对于分辨率不高的A/D精度显然不够。通过LM324将其放大。根据放大器的工作原理,放大的倍数为β=R63B/R61B=400K/10K=40。从而使得VI点的电压范围为0-3V,而VI点相对于AGNDW的电压与AC1点相对于AGND的电压的关系跟中,Vi点电压与AC0点电压的关系类似。在此处我们通过调节RW6,将0-75mV 的电压信号(分流器上的电压)放大到0-5V,供单片机采样。 二、自己设计(DIY) 经过一段时间的学习,我根据上述基本原理和所学知识设计了一款新的采样电路

采样调理电路

3.4 A/D采样电路及信号调理电路 对连续信号) x,按一定的时间间隔s T抽取相应的瞬时值(即通常所 (t 说的离散化),这个过程称为采样。) x经过采样后转换为时间上离散的模拟 (t 信号) x,简称为采样信号。 (s s nT 本系统中采集的模拟量主要是交流电压/电流(计算功率用)、整流输出直流电压/电流(用作脉冲调整)等交流量和直流量,此外加调理电路的作用是把采样信号进行硬件上的定标,变成DSP的A/D口可以识别的0~电平以内的信号。 3.4.1互感器电路原理及选型 图电压互感器原理图 如图,电流型电压互感器采用星格SPT204A(2mA/2mA),R1是熔断电阻防止电流过大烧坏互感器,R2为限流电阻将电压信号转化为2mA电流信号,R3为压敏电阻起过电压保护作用,二次侧输出为2 mA电流信号送至采样模块。 5A输入 2.5mA输出 图电流互感器原理图 如图,电流互感器采用互感器采用星格SCT254AZ,将一次侧5A交流输入转化为输出送至采样板。 3.4.2交流电压/电流采样电路 交流电压/电流采样电流采样信号来自同步变压器经霍尔电压/电流传感器的电压电流源。

为了更清楚的阐述采样电路的工作原理,首先需对电路中的重要器件LM358作简要说明: LM358内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。 (1)交流电压采样电路整流器的输入是三相三线制,无中线,交流电压采集的是经过电流型电压互感器后的交流电流信号,以A相采样电路为例,如下图所示,输入电压经过放大电路电压跟随之后,叠加+的直流量,确保正弦电压的负半周上移到DSP能处理的单极性电压信号+电压范围之内: 图交流采样电路 Rd0为熔断电阻,防止电流过大;Rd1, Rd2为限流电阻,LM358作电压跟随。滑动变阻器Wd0另一侧输入+电压,将电压信号变为单极性信号;电容Cd2、Cd3起去耦作用;电阻Rd3为限流电阻,限定电路的工作电流.,使电路在一个合适的工作状态下运行。稳压管Dd0电压设为3V,使得ADCINB1口的输出电压基本稳定在3V及其以下。采样之后的信号送至TMS320F2812的A/D口进行处理。 (2) 交流电流采样电路交流电流采样电路与电压采样原理基本相同,但相比较而言,电流采样电路更为复杂,同样以A相电流采样为例,采样电路图如下图所示:

模拟信号运算电路

模拟信号运算电路 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

第六章模拟信号运算电路典型例题 本章习题中的集成运放均为理想运放。 分别选择“反相”或“同相”填入下列各空内。 (1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。 (3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。 解:(1)反相,同相(2)同相,反相(3)同相,反相 (4)同相,反相 填空: (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 (6)运算电路可实现函数Y=aX2。 解:(1)同相比例(2)反相比例(3)微分(4)同相求和 (5)反相求和(6)乘方 电路如图所示,集成运放输出电压的最大幅值为±14V,填表。

图 u I /V u O 1/V u O 2/V 解:u O 1=(-R f /R ) u I =-10 u I ,u O 2=(1+R f /R ) u I =11 u I 。当集成运放工作到非线性区时,输出电压不是+14V ,就是-14V 。 u I /V u O 1/V -1 -5 -10 -14 u O 2/V 11 14 设计一个比例运算电路, 要求输入电阻R i =20k Ω, 比例系数为-100。 解:可采用反相比例运算电路,电路形式如图(a)所示。R =20k Ω, R f =2M Ω。 电路如图所示,试求: (1)输入电阻; (2)比例系数。 解:由图可知R i =50k Ω,u M =-2u I 。 即 3 O M 4M 2M R u u R u R u -+=- 输出电压 I M O 10452u u u -== 图 电路如图所示,集成运放输出电压的最大幅值为±14V ,u I 为2V 的直流信号。分别求出下列各种情况下的输出电压。 (1)R 2短路;(2)R 3短路;(3)R 4短路;(4)R 4断路。 解:(1)V 4 2I 1 3 O -=-=-=u R R u (2)V 4 2I 1 2 O -=-=- =u R R u (3)电路无反馈,u O =-14V (4)V 8 4I 1 3 2O -=-=+- =u R R R u

多路模拟信号采集电路毕业论文

多路模拟信号采集电路毕业论文 1 绪论 1.1 课题来源及研究的目的和意义 近年来,数据采集与处理的新技术、新方法,直接或间接地引发其革新和变化,实时监控(远程监控)与仿真技术(包括传感器、数据采集、微机芯片数据、可编程控制器PLC、现场总线处理、流程控制、曲线与动画显示、自动故障诊断与报表输出等)把数据采集与处理技术提高到一个崭新的水平。 “数据采集”是指将温度、压力、流量、位移等模拟量采集转换成数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 从严格意义上说,数据采集系统应该是用计算机控制的多路数据自动检测或巡回检测,并且能够对数据实行存储、处理、分析计算,以及从检测的数据中提取可用的信息,供显示、记录、打印或描绘的系统。总之,不论在哪个应用领域中,数据的采集与处理越及时,工作效率就越高,取得的经济效益就越大。 数据采集系统的任务,具体地说,就是传感器从被测对象获取有用信息,并将其输出信号转换为计算机能识别的数字信号,然后送入计算机进行相应的处理,得出所需的数据。同时,将计算得到的数据进行显示、储存或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来进行某些物理量的控制。 数据采集系统性能的好坏,主要取决于它的精度和速度。在保证精度的条件下,应有尽可能高的采样速度,以满足实时采集、实时处理和实时控制的要求[1]。 现场可编程门阵列(FPGA,Field Programmable Gate Array)的出现是超大规

模集成电路(VLSI)技术和计算机辅助设计(CAD)技术发展的结果,是当代电子设计领域中最具活力和发展前途的一项技术,它的硬件描述语言的可修改性、高集成性、高速低功耗、开发周期短、硬件与软件并行性决定了它的崛起是必然的趋势。现场可编程门阵列FPGA器件是Xilinx公司1985年首家推出的,它是一种新型的高密度PLD,采用CMOS-SRAM工艺制作,其部由许多独立的可编程逻辑模块(CLB)组成,逻辑块之间可以灵活的相互连接。CLB的功能很强,不仅能够实现逻辑函数,还可配置成RAM等复杂的形式。配置数据存放在片的SRAM或者熔丝图上,基于SRAM的FPGA器件工作前需要从芯片外部加载配置数据。配置数据可以存储在片外的EPROM 或者计算机上,设计人员可以控制加载过程,在现场修改器件的逻辑功能,即所谓现场可编程[2][3]。 1.2 数据采集系统研究现状 随着数字化进程的加快,工业生产和科学研究等各个领域对数据采集提出了更高的要求。数据采集作为信息处理系统的最前端,从广义上讲,主要包括以下几个方面:数据的采集、数据的存储、数据的初步处理等,并且一般需要通过PC接口总线将数据送入计算机,根据不同的需要进行相应的算法处理。简言之,数据采集系统的主要任务就是把输入的模拟信号转换成数字信号,并对其进行处理,为进一步操作做准备。 数据采集技术已经在雷达系统、通信设备、水声探测、遥感探测、语音处理、智能仪器设备、工业自动化系统以及生物医学工程等众多领域得到广泛的应用,并取得了巨大的经济效益和提高了工作效率。随着工业化和现代化水平的不断发展,以数据采集系统为核心的设备迅速在国外得到了广泛的应用,且对数据采集的要求日益提高。

相关文档