文档库 最新最全的文档下载
当前位置:文档库 › 接触网感应电压与穿越电流的分析与防护_施麒

接触网感应电压与穿越电流的分析与防护_施麒

接触网感应电压与穿越电流的分析与防护_施麒
接触网感应电压与穿越电流的分析与防护_施麒

浅谈雷电的危害与防护措施

浅谈雷电的危害与防护措施 雷电是一种自然放电现象,具有很大的破坏性。雷电发生后会产生危险的过电压和过电流造成电力设施设备的绝缘损坏引发短路及过电流、过电压事故的发生,还会造成人身和财产的重大损失。因此,做好防雷电措施是非常必要的。 标签:雷电;危害;防护措施 前言 雷电是一种大气中的放电现象。大气中的雷云在过程形成中,由于积累了大量的正负电子,当这些正负电子积累到了一定的程度并且发生碰撞后就会发生激烈放电现象。同时,伴有强烈的闪光和轰鸣声。这就是雷电形成的原因。因此,根据雷电的产生和造成危害的特点,可采取必要的预防措施,防止雷电给电力设施设备及人身安全造成危害。 1 雷电的种类及其危害 自然界中雷电按照其危害的方式分有;直击雷、感应雷及雷电侵入波。按其形状分有线型、片型及球型三种。雷电的危害就是雷电的破坏效应;主要有电效应、热效应和机械效应。当雷电发生时会产生数十万甚至数百万的冲击电压,而冲击能迅速击穿电力设施设备的绝缘保护造成电力线路短路而毁坏电力设备。甚至还会引起火灾和爆炸事故的发生。巨大的雷电电流通过导体,在极短的时间内能转换成热能使金属物体迅速熔化,产生火花,火花飞溅引起火灾和爆炸。遭到雷击的物体通过巨大的雷电流,能瞬间产生大量的热量,使物体内部的水分或其他液体迅速气化,以至物体剧烈膨胀而遭到破坏或爆炸。以上雷电发生的破坏是综合出现的,其中以伴有的爆炸和火灾的出现是最为严重的。 2 防雷装置 防雷电伤害的装置主要有;避雷针、避雷线、避雷网、避雷带及避雷器等。完整的避雷置应由接闪器、引下线和接地装置组成。避雷针主要用来保护露天的变配电设备、建筑物和构筑物。避雷线主要用来保护电力线路。避雷网和避雷带主要用来保护建筑物。避雷器主要用来保护电力设施设备。避雷针、避雷线、避雷网及避雷带实际上就是接闪器,是用来接受雷击的金属导体。当发生雷电时,吸引雷电接受雷击放电。接闪器一般是采用圆钢或扁钢制成,所用材料尺寸应符合技术规定的要求。避雷线应采用截面积不小于35平方厘米的镀锌钢绞线。并且接闪器的保护范围可根据模拟试验及运行经验来确定。防雷装置的引下线是连接接闪器与接地装置的金属导体。也是采用圆钢或扁钢制成。接地装置主要是将雷电流通过接闪器及引下线泄入大地。接地装置制作时采用圆钢的最小直径为10mm、扁钢的最小厚度为4mm,最小面积为100平方毫米;角钢的最小厚度为4mm,钢管的最小壁厚为3.5mm。

城轨刚性架空接触网工程验收标准

城轨刚性架空接触网工 程验收标准 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

6.7 城轨刚性架空接触网工程 6.7.1 一般规定 6.7.1.1 本标准适用于列车最高运行速度100Km/h、直流额定电压1500V 的刚性架空接触网的施工质量验收。 6.7.1.2 接触网的施工质量验收应包括下列项目: 1 埋入杆件及底座填充 2支持悬挂装置 3汇流排 4接触线 5架空地线 6中心锚结 7锚段关节 8线岔 9电连接 10上网电缆 11接地系统 12隔离开关 13分段绝缘器 14标志牌、支柱号码 15冷滑试验及送电开通 16热滑试验 6.7.1.3 刚性架空接触网宜采用“Π”型铝合金汇流排悬挂方式。

6.7.1.4 刚性架空接触网与柔性架空接触网的衔接处,应设置刚柔过渡设施;刚柔过渡宜采用切槽式过渡方式。 6.7.1.5 刚性悬挂高度宜为4100mm,最低高度不应小于4000mm。 6.7.1.6 刚性架空接触网在沿轨道500m 范围内的拉出值宜为±200mm~±250mm, 200m范围内的拉出值宜为±200mm。 6.7.1.7 刚性架空接触网悬挂点的跨距应满足汇流排的弛度要求,宜为6m~10m。 6.7.2 埋入杆件及底座填充 主控项目 6.7.2.1 监理单位提供埋入杆件的埋设位置、埋设深度、规格型号数据资料。 6.7.2.2 监理单位提供埋入杆件载荷检测及化学锚固螺栓所使用的化学填充剂的产品说明。 一般项目 6.7.2.3 锚栓螺纹及镀锌层完好,化学锚固螺栓孔填充密实。螺纹外露部分应涂油防腐。 检验数量:抽检不少于30%。 检验方法:观察、测量检查。 6.7.2.4 埋入杆件的施工允许偏差应符合下表的规定: 表6.7.2.4 埋入杆件位置施工允许偏差(mm)

风力发电系统低电压穿越技术探讨

风力发电系统低电压穿越技术探讨 发表时间:2018-08-06T17:04:52.203Z 来源:《电力设备》2018年第11期作者:张勇 [导读] 摘要:风力发电是将风能转化为电能的新型可再生能源,由于风能取之不尽,用之不竭,在世界范围内受到了越来越广泛的重视。 (华电福新能源股份有限公司北京市 100031) 摘要:风力发电是将风能转化为电能的新型可再生能源,由于风能取之不尽,用之不竭,在世界范围内受到了越来越广泛的重视。但如果瞬时风能的大小是随机的,且风能的变化是波动的,这就容易造成电力系统发生故障,进而导致低电压穿越问题。在近些年来,人们对电力资源的需求不断增大,若因故障而发生电压跌落问题,风力机组也因此纷纷解列,就会使系统产生不稳定性,甚至产生局部或全面的供电系统不可正常运行,因此,人们对于低压穿越技术越来越重视。 关键词:风力发电;低电压穿越技术;Crowbar电路;控制策略;技术要求 1引言 近些年来,随着社会和科技的不断发展,同时存在的问题是能源的不断消耗。走可持续化道路是当今世界的主题之一,因此,寻找可持续化再生能源是每个国家的重要研究课题。风能作为一个目前已经比较成熟的发电方式具有清洁性和可再生性,除此以外,还具有开发成本降低速度快、开发条件成熟、运行灵活等优点,因此受到了各个国家政府的重视和支持。但在实际应用过程中,也难免存在着各种各样的问题。由于自然界的风具有不确定性和波动性,导致产生的电能也不是稳定不变的,而整个电力系统也会在安全方面和稳定性方面受到影响。各国为了解决此类问题,减小大规模的风电并网产生的影响,提高整个供电系统的稳定性和安全性,均纷纷制定了相关的技术准则,而低电压穿越能力是需要解决的问题之一。 2低电压运行技术发展现状分析 低电压穿越也可简称为LVRT是指在风力发电机并网点电压跌落时,风力发电机具有保持并网的能力,甚至能够提供无功功率,以此来支持电网的恢复,“穿越”低压时间段,直到整个电网恢复正常的运行。在现实生活中,电压跌落故障是常见的故障之一,会造成一系列的不良影响,例如过电压、电流急速上升,危害整个系统的正常工作,且系统的恢复工作难度大,因此应当采取有效的低电压穿越技术,来维持整个电网的稳定。因此各国都对低电压穿越技术的加强给予了很大的重视。 低电压穿越技术是当前的一个热门问题,双馈式变速恒频风力发电机因为其本身具有有功无功都可以独立控制的优势,而在国内外广泛的应用。并得到国内外学者的深入研究,当前的低电压穿越技术主要包括三种方案:(1)采用对转子发生短路时进行保护的技术;(2)引入新型的低压旁路系统即为新型的拓扑结构;(3)修改控制策略,而低电压穿越的效果不变,即采用新型励磁控制策略。方案(1)是在实际生产过程中应用最普遍的方式,主要是通过在转子的侧边安装Crowbar电路的方式,来维持发电机的正常运行。方案(2)是通过在感应发电机具有定子的一旁与电网之间串联一个反并可控硅电路,以此来直流侧电压控制在允许变化的范围内。方案(3)是几个方案中成本最低的,普遍应用的是在用于风电场汇流作用的变电站对风场并网点的电压进行动态的监控,该监控主要使用STATCOM技术产品来实现,通过此方式使风机具有低电压穿越功能。 3低电压穿越技术的技术要求 每个国家对低电压穿越技术的要求各不相同,下面列举了几个具有代表性的国家: (1)德国:该国标准要求当故障排除以后,有功功率以每秒恢复额定功率的百分之二十或者以上的速度不断增加,当无功功率的故障被发现后,应当在20秒内进行无功功率电压的支持,且要求电压浮动百分之一,电流相应的浮动百分之二。 (2)美国:该国标准要求当电压跌落到额定电压的百分之十五时,要求风力发电机的低电压穿越能力是维持并网正常运行625毫秒。当电压在产生后达到额定电压的百分之九十时,风力发电机能够保证整个系统的正常运行,电压产生后达到所需电压值的时间为3秒。 (3)加拿大:该国标准要求电压跌落为0时,风力发动机应当具备的低电压穿越能力为维持正常运行150秒。电压在一定时间内恢复到额定电压的百分之八十五时,能够使并网正常运行,其中恢复到所需电压的时间为3秒。 (4)中国:我国在2005年才发布了相关指导性文件,与其他国家相比,较晚一些。按照2012年推行的电力系统技术要求,我们可以得到以下三点关于低电压穿越技术的要求。首先,最基本的要求是当电压跌落至额定电压的百分之二十时,应当具备的低电压穿越能力为保持运行625毫秒。电压在一定时间内恢复到额定电压的百分之九十时,能够使并网正常运行,其中恢复到所需电压的时间为3秒。其次,当有功功率的故障被发现并排除后,有功功率以每秒恢复额定功率的百分之十或者以上的速度不断增加。最后,对于大规模的风电场群,当电压跌落的原因为三相短路时,动态无功支撑功能对低电压穿越过程来说是必须的。 4低电压穿越技术特性分析 (1)电压跌落对风力发电机的影响。风力发电机的输出功率是稳定的,但如果出现电压跌落现象,电流会突然增加,为了避免这种现象,保持系统的热稳定性,就需要对电流加以限制。若没有相应的限流措施,电压会产生较大的波动,对变流器造成损坏。这时,为了抑制过电压就需要对发电机旁的输入功率进行控制。这就要求低电压穿越技术不仅能够抑制过电压和电流,还需要在故障时提供无功功率,直至系统恢复。 (2)低电压穿越技术的具体要求。每个国家对低电压穿越技术的要求不同,我国在2009年出台《风电场接入电网技术规定》,上一小节的第四点详细的给出了我国对于低电压穿越技术的具体要求。 (3)以双馈式风力发电系统为例的低电压运行控制策略。电压跌落时最直接的表现是在转子侧出现突然增大的电压和电流,因此,控制策略的关键就在于抑制过电压和过电流,主要的方式在转子的一侧加入Crowbar电路,作为保护措施,实现短接。其工作原理是当电压跌落时,Crowbar电路发挥作用,转子侧发生短接,此时发动机的作用与绕线式异步电机相同,其中异步电机加入了串联电阻。 5结语 随着风力发电系统的规模不断扩大,在社会资源中占据着越来越多的比例,电压跌落问题造成的不利影响越严重。风力发电系统是一个具有高集成化、复杂控制系统、庞大结构特点的系统,我国内近几年发生了几起电网设备故障事故,经研究发现其主要原因是不具备低电压穿越能力。因此,提高低电压穿越能力是当前风力发电发展的重点课题。 本文对低电压穿越技术的发展现状、技术要求以及特性进行详细的分析,针对现在国内外普遍使用的双馈式风力发电系统为例,给出了相应的运行控制策略。该控制策略主要是通过添加Crowbar电路来进行保护控制。针对低电压穿越技术的研究仍将是未来风电领域的研究

接触网拉出值的简介

接触网导高与拉出值测量 一、接触网导高与拉出值测量的工程意义: 接触网导高与拉出值作为接触网的基本参数,工程上有着重要作用,具体表现在: 1、承力索架设后的测量:核实悬挂点处承力索的实际高度与相对于线路中心线的偏移值,检查支柱装配的结果是否符合要求,为接触线架设创造条件。 2、接触线架设后的测量:核实悬挂点处承力索的实际高度与相对于线路中心线的偏移值,检查支柱装配的结果是否符合要求,为悬挂调整提供基础参数,尤其是为整体吊弦的预制与安装提供计算依据。 3、悬挂调整后的测量:核实悬挂点处承力索的实际高度与相对于线路中心线的偏移值,检查悬挂调整结果是否符合要求。 二、接触网导高与拉出值测量方法: 1、直接测量法:较为简单,实训时采用; 2、间接测量法:工程检测时采用,具体有两种方法:TR-2型测距器配专用计算器三角形测量法与接触网参数激光测量法。 三、接触网导高与拉出值测量工程方法原理: 如图1所示,在现场采集悬挂点处承力索到2条钢轨内缘的距离A、B及2个相邻支柱间的跨距L并将测量数据记录下来。 (1)根据式(1)计算承力索对线路中心的水平偏移距离a′,单位mm: a′= (B2-A2)/(2×1435)。(1)

(2)根据式(2)计算承力索对轨面的垂直距离H1′,单位mm: H1′={A2-[14352-(B2-A2)]2/(4×14352)}1/2。(2) (3)根据公式(3)计算该悬挂点处承力索的结构高度: h = [ (H1′- H )2+(a′- a )2 ]1/2,(3) 式中,H为设计导线高度,单位mm;a为设计拉出值,单位mm。 说明: 1、以上计算过程,是先计算的挂点处承力索的高度H1′,如将其定义为接触线高度H1′,测量原理相同,仅需将A、B值的测量起点改为到接触线处即可。 2、计算公式(1)所得结果,在直链型悬挂中即为拉出值(或称之字值)。 四、TR型测距器配专用计算器接触网导高与拉出值测量法 TR型测距器是唯一的把三角法测量原理和电子计算器结合在一起的用于电气化铁路接触线几何参数地面测量的计测工具。由郑州铁路局西安科研所独家研制、生产、经销和服务。获郑州铁路局科技成果奖、科技成果推广奖并被陕西省标准标准情报研究所编入近10年来全国范围内的《计量测试技术成果选编》。郑州、成都、兰州、北京、广州、上海等铁路局、电化工程局、铁道部第二、三、十二等工程局和煤矿部门60多个单位已使用近两千套,深受运营、施工现场的欢迎。郑州铁路局西安科研所竭诚为电气化铁路各单位提供优质的产品和优良的服务。 使用方法及步骤: 1、将绝缘测杆依次联接牢固后,悬挂在接触线扬测点上。 2、松动端头,拉出刻尺,使端头密贴钢轨内侧面,读取刻度值(注意要读到毫米级),此值为接触线至钢轨内侧面的距离。 3、再将测杆移至另一钢轨,与第二步相同,读取另一刻度值。 4、将专用电子计算器电源开关打至ON/C 5、按comp键,此时显示器的右边显示[1]。将所测的一个刻度值输入给计算器(按下相应的数字键)。 6、按comp键,显示器的右边显示[2]。将所测的另一个刻度值输入给计算器。 7、按comp键,显示器的右边显示[3],将1440输入给计算器。[轨距对计算影响较小,为操作上方便,用1440代替轨距平均值1435] 8、按comp键,显示之字值(拉出值)。 9、按comp键,3秒钟后显示接触线高度值。 注意事项: 1、绝缘测杆系绝缘工具,使用和保管均应按绝缘工具的有关要求进行. 2、在测量时,钢轨上的两点应使棒连线尽可能垂直钢轨,为了减少测量误差,手扶测杆即可,不要用力下拉。 3、测量的计算程序已被严密保护在程序存储器中,只要按上面操作步骤,任何时间都能重新取出使用。 4、严禁连续按2ndF、comp键,否则程序将失去。 万一程序丢失,可按以下步骤输入。

雷击对自动化设备的危害及防护措施

编号:SM-ZD-75332 雷击对自动化设备的危害 及防护措施 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

雷击对自动化设备的危害及防护措 施 简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、雷电的危害 出现雷击时,雷电流会沿变电站的接地网散流,支线上的雷电流和各点电位差异很大,连接在不同等电位地网上的自动化设备,如果其间有电信号联系,那么超过其容许承受能力的地电位差将导致设备损坏。由于直击雷放电的能量通过电磁感应和静电感应方式向四周辐射,会出现导致设备过电压放电。显然,这种雷危害是大面积的,变电站二次设备损坏多数都是由此情况产生,特别是自动化设备对雷电等电磁脉冲和过电压过电流的耐受能力很低,就会在设备的绝缘薄弱处造成击穿。而且电力系统针对自动化设备防雷工作滞后,这些设备遭受雷击损坏极高,后果也越来越严重。近年来在电力系统中多次发生因雷电造成综合自动化设备损环,使测控装置误动、拒动,或使远动工作站“罢工”,更严重的

地铁杂散电流和接触网验收标准

地铁杂散电流和接触网 验收标准 标准化管理部编码-[99968T-6889628-J68568-1689N]

5杂散电流防护 5.1一般规定 5.1.1开工前应复核杂散电流防护排流钢筋及防护测点的设置是否符合设计要求。 5.1.2所有端子连接前应清除表面的附着物。 5.1.3电缆保护管端头应密封防潮,电缆敷设前应进行绝缘试验。 5.1.4电缆敷设应符合本标准规定。 5.1.5电缆终端头与中间接头制作时,应严格遵守制作工艺流程,操作人员应具备操作资格。 5.2测防端子连接 主控项目 5.2.1检查测防端子预留情况,设置位置及端子引出方式是否满足设计要求。 检验数量:全数检查。 检验方法:观察检查。 5.2.2连接电缆型号,规格应符合设计要求。 检验数量:全数检查。 检验方法:检查质量证明文件。 5.2.3电缆芯线与接线端子压接牢固,接线端子与测防端子的连接可靠。 检验数量:全数检查。 检验方法:观察检查。 一般项目 5.2.4所连接的测防端子间距较大(>80cm),需对连接电缆整理和固定。 检验数量:全数检查。 检验方法:观察检查。 5.3参考电极及监测装置安装 主控项目 5.3.1参考电极及监测装置应无锈蚀或机械损伤,规格、型号及安装位置应与设计要求相符。

检验数量:全数检查。 检验方法:核对设计文件及观察检查。 5.3.2监测装置的接地方式应符合设计要求;本体接地可靠。二次回路接线正确,连接可靠。所有安装的元、器件应符合设计要求,动作可靠,固定牢固。 检验数量:全数检查。 检验方法:核对设计文件检查。 5.3.3参比电极安装地点应符合设计要求,安装位置与对应的测试端子之间距离不应超过1m的范围,安装孔直径应不小于60mm,深160mm。 检验数量:全数检查。 检验方法:观察测量检查。 5.3.4参考电极材质应为氧化钼,在埋设前应在水中浸泡不少于24小时。 检验数量:全数检查。 检验方法:观察检查。 5.3.5参考电极安装时不应和结构钢筋接触,严禁撞击其他刚硬结构物。 检验数量:全数检查。 检验方法:观察检查。 一般项目 5.3.6参考电极埋设的填充物的封闭及引线的固定,应符合设计要求。 检验数量:全数检查。 检验方法:观察检查。 5.3.7引线固定将参考电极引线传穿入玻璃钢管,并用管卡固定。 检验数量:全数检查。 检验方法:观察检查。 5.3.8参考电极安装完毕,道床表面和隧道侧墙表面应处理平整。 检验数量:全数检查。 检验方法:观察检查。 5.3.9监测装置表面涂层应完整,盘面清洁。 检验数量:全数检查。 检验方法:观察检查。 5.4传感器、转接器安装

什么是风力发电机低电压穿越技术定义

什么是风力发电机低电压穿越技术定义 2011/05/04 07:37:20来源:中国风力发电网我要投稿 小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。 低电压穿越(Low voltage ride through,LVRt) 低电压过渡能力:Low Voltage Ride Through ,LVRT ;Fault Ride Through ,FRT 曾称“低电压穿越”。定义:小型发电系统在确定的时间内承受一定限值的电网低电压而不退出运行的能力。 一、风力发电机低电压穿越技术 1、问题的提出 对于变频恒速双馈风力发电机,在电网电压跌落的情况下,由于与其配套的电力电子变流设备属于AC/DC/AC型,容易在其转子侧产生峰值涌流,损坏变流设备,导致风力发电机组与电网解列。在以前风力发电机容量较小的时候,为了保护转子侧的励磁装置,就采取与电网解列的方式,但目前风力发电的容量都很大,与电网解列后会影响整个电网的稳定性,甚至会产生连锁故障。于是,根据这种情况,国外的专家就提出了风力发电低电压穿越的问题。 2、LVRT概念的解释 当电网发生故障时,风电场需维持一段时间与电网连接而不解列,甚至要求风电场在这一过程中能够提供无功以支持电网电压的恢复即低电压穿越。 目前对于风力发电低电压运行标准,主要以德国e.on netz公司提出的为参考。 双馈风力发电机由于其自身机构特点,实现LVRT存在以下几方面的难点: 1)确保故障期间转子侧冲击电流与直流母线过电压都在系统可承受范围之内; 2)所采取的对策应具备各种故障类型下的有效性; 3)控制策略须满足对不同机组、不同参数的适应性; 4)工程应用中须在实现目标的前提下尽量少地增加成本。 3、电网电压跌落后DFIG运行的暂态过程分析(感觉这部分内容需要理论推导) 在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。如果电网出现的是不对称故障的话,会使转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。 二、低电压穿越技术的具体实现 目前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术,二种是引入新型拓扑结构,三是采用合理的励磁控制算法。本周我主要看了前两种,以下分别介绍。 1、转子短路保护技术(crowbar电路) 这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。 目前比较典型的crowbar电路有如下几种: (1)混合桥型crowbar电路,如图1所示,每个桥臂有控制器件和二极管串联而成。 (2)IGBT型crowbar电路,如图2所示,每个桥臂由两个二极管串联,直流侧串入一个IGBT器件和一个吸收电阻。 (3)带有旁路电阻的crowbar电路,如图3所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。 2、引入新型拓扑结构 如图4所示,这种结构与传统的软启动装置类似,在双馈感应发电机定子侧与电网间串联反并可控硅电路。在正常运行时,这些可控硅全部导通,在电网电压跌落与恢复期间,转子侧可能出现的最大电流随电压跌落的幅度的增大而增大,为了承受电网故障电压大跌落所

接触网补偿简介

一、概念 接触网补偿装置是自动调节接触线和承力索张力的补偿器及其制动装置的总称。 二、补偿器的作用及安设 1.补偿器的作用 当温度变化时,线索受温度变化的影响热胀冷缩出现伸长或缩短。由于在锚段两端线索下锚处安装了补偿器,在其坠砣串重力的作用下,能够自动调整线索的张力并保持线索弛度满足技术要求,从而使接触悬挂的稳定性与弹性得到了改善,提高了接触网运营质量。 2.补偿器的结构 补偿器由补偿滑轮、补偿绳、杵环杆、坠砣杆、坠砣块及连接零件组成。补偿滑轮分为定滑轮和动滑轮(构造相同),定滑轮改变受力方向,动滑轮除改变受力方向外还可省力和移动位置。滑轮一般都装有轴承。 3.补偿器的安设与要求 补偿器串接在锚段内线索两端与支柱固定处,根据接触悬挂类型的不同有不同的补偿器结构。 半补偿时,接触线带补偿器,多采用两滑轮组结构,滑轮组的传动比为1∶2,即用两个滑轮使补偿绳的张力为接触线张力的一半,也就是坠砣块的重力为接触线标称张力的一半。 全补偿时,接触线与承力索两端均带补偿器,接触线补偿器的安设与半补偿相同。承力索补偿器则采用三滑轮组式,传动比为1∶3。采用传动比比较大的滑轮组时坠砣串块数减少了,这是有利的一面,但坠砣串上升和下降的距离也会按倍数增大,这时要求支柱(锚柱)高度和容量要增加。既不经济也不利于施工和维修。在运营线路上,当接触线因磨耗其截面逐渐减小时,坠砣串块数也相应地减少,使接触线维持一定的张力防止出现断线事故。 三、补偿器的a、b值 a 、 b值 补偿器靠坠砣串的重力使线索的张力保持平衡。当温度变化时,线索的伸缩使坠砣串上升和降,当坠砣串升降超出允许范围时,如下降过多使

接触网施工质量验收标准

合武线接触网施工质量验收标准 本标准依据《铁路电力牵引供电工程施工质量验收标准》(TB10421—2003)及《客运专线铁路电力牵引供电工程施工质量验收暂行标准》(铁建设[2006]167号)进行编制. 一、基础 1.1运达现场的水泥、砂、石料、钢筋,应按批次进行检验,质量应符合国家标准并应与所配制混凝 土的等级相适应. 1.2在同条件养护下,基础(含拉线基础)的混凝土试块的抗压极限强度不得小于设计值. 1.3基础(含拉线基础)的位置应符合设计要求,同一组硬横跨两基础连线应垂直于车站正线,偏差不 应大于2°. 1.4同一组硬横跨实心基础底面高程应相等,相对误差不超过50㎜,硬横跨两实基础间距应符合横 梁跨长的要求,施工偏差±20㎜且每个实心基础的位置符合侧面限界要求. 1.5线路两侧和线路中间的基础顶面应高出路肩面100-200㎜,低于相邻轨面200-600㎜,站台及硬 化路肩上的基础面应高于站台面100㎜,允许偏差±30.拉线基础高于路肩面100㎜,施工偏差±20㎜. 1.6基础表面平整、棱角完整,无漏浆、露筋等现象. 1.7基础外形尺寸、地脚螺栓外露长度、间距允许偏差应符合表1.1的规定,拉线基础排水面的尺寸 2.1 桥钢柱、拉线锚栓及隧道埋入杆的规格型号应符合设计要求. 2.2 桥钢柱、拉线锚栓及隧道埋入杆灌注应牢固可靠,砂浆强度符合设计要求,在标准养护条件下, 任一组试块的抗压极限强度不得小于设计值。 2.3桥钢柱、拉线及隧道膨胀和粘结式锚栓,其粘结剂类别、规格应符合设计要求。 2.4桥钢柱、拉线及隧道膨胀和粘结式锚栓的锚固抗拔力应小于设计值。 2.5 桥钢柱预埋螺栓与线路中心线的距离应满足设计要求,允许偏差为+50mm。 2.6桥钢柱锚栓螺纹完好,拉线和隧道锚栓埋入杆无锈蚀,砂浆表面平整、无脱落现象。 桥钢柱、拉线锚栓、隧道埋入杆位置及灌注允许偏差(mm)

风力发电机低压穿越

低电压穿越和电力系统稳定性 风力发电能够顺利地并入一个国家或地区的电网,主要取决于电力系统对供电波动反映的能力。风电机组由于风的随机性,运行时对无功只能就地平衡等原因将对电网造成一定的影响。在过去,我国风力发电所占电力系统供电的比例不大,大型电网具有足够的备用容量和调节能力,风电接入,一般不必考虑频率稳定性问题,当电力系统某处发生电压暂降时风力发电机可以瞬间脱网进行自我保护。但对于先如今,我国风力资源的不断开发。风力发电所占我国电网供电的比例与日俱增就不得不考虑电网电压暂降时风力发电机组脱网给电力系统所带来严重的影响系统的稳定运行这时就需要风电机组具有低电压穿越能力,保证系统发生故障后风电机组不间断并网运行。 电压暂降:供电电压有效值供电电压有效值突然将至额定电压的10%~90%。然后又恢复至正常电压,这一过程的持续时间为10ms~60s。 低电压穿越,指在风力发电机并网点电压跌落的时候,风机能够保持电压跌落会给电机带来一系列暂态过程, 如出现过电压、过电流或转速上升等, 严重危害风机本身及其控制系统的安全运行。一般情况下若电网出现故障风机就实施被动式自我保护而立即解列, 并不考虑故障的持续时间和严重程度, 这样能最大限度保障风机的安全, 在风力发电的电网穿透率(即风力发电占电网的比重) 较低时是可以接受的。然而, 当风电在电网中占有较大比重时, 若风机在电压跌落时仍采取被动保护式解列, 则会增加整个系统的恢复难度, 甚至可能加剧故障, 最终导致系统其它机组全部解列, 因此必须采取有效的措施, 以维护风场电网的稳定。 电网发生故障(尤其是不对称故障) 的过渡过程中, 电机电磁转矩会出现较大的波动, 对风机齿轮箱等机械部件构成冲击, 影响风机的运行和寿命。定子电压跌落时, 电机输出功率降低, 若对捕获功率不控制, 必然导致电机转速上升[5~7]。在风速较高即机械动力转矩较大的情况下, 即使故障切除, 双馈电机的电磁转矩有所增加, 也难较快抑制电机转速的上升, 使双馈电机的转速进一步升高,吸收的无功功率进一步增大, 使得定子端电压下降, 进一步阻碍了电网电压的恢复, 严重时可能导致电网电压无法恢复, 致使系统崩溃[9, 10] , 这种情况与电机惯性、额定值以及故障持续时间有关。

常见接触网零件以及功能介绍汇总

常见接触网零件以及功能介绍[图文并茂] 套管双耳 JL14-2002 本零件适用腕臂或定位管上连接耳环型零件。 本零件采用Q235A或QAl9-4棒材,采用金属模锻工艺加工制造,材质为Q235A 时,表面三级热浸镀锌。 本零件的最大水平工作荷重为5.8kN;最大垂直工作荷重为4.9kN,滑动荷重不小于7.5kN。 本零件螺栓的紧固力矩为44N.m。 P型组合承力索座 本零件适用于平腕臂上悬挂支撑标称截面为80mm2、100mm2的钢承力索或95mm2、120mm2、127mm2的铜及铜合金承力索。 本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500的材料,采用熔模精密铸造 工艺制造,材质为ZG270-500时,表面三级热浸镀锌。本零件的最大水平工作荷重为5.8kN;垂直工作荷重为4.9kN;水平破坏荷重不小于17.4kN;垂直破坏荷重不小于14.7kN;滑动荷重不小于3.9kN;与腕臂之间的滑动荷重不小于6.0kN。本零件抱箍螺栓的紧固力矩为44N.m;线夹压块螺栓的紧固力矩为70N.m。

横承力索线夹 JL23-2002 本零件适用于软横跨GJ-70横承力索上悬挂吊线。 本零件采用Q235A或QAl9-4棒材,采用金属模锻工艺加工制造。材质为Q235A 时,表面三级热浸镀锌。 本零件最大垂直工作荷重为7.9kN;滑动荷重不小于9.8kN。 本零件U螺栓的紧固力矩为44N.m。 支持器 JL09-2002 本零件适用于接触网系统定位装置中,连接定位线夹,固定接触线。 本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500,采用熔模精密铸造工艺制造,材质为ZG270-500时,表面三级热浸镀锌。 本零件的最大水平工作荷重为2.5kN;滑动荷重不小于4.9kN;破坏荷重不小于7.5kN。 本零件螺栓的紧固力矩为44N.m. 长支持器 JL10-2002 本零件适用于固定在Φ34mm、Φ27mm的定位管上,连接定位线夹,固定接触线。本零件选用牌号为ZG1Cr18Mn8Ni4N或ZG270-500,采用熔模精密铸造工艺制造。

雷电的危害性分析及其预防措施

雷电的危害性分析及其预防措施 雷电是自然界中雷云之间或是雷云与大地之间的一种放电现象。其特点是电压很高、电流很大、能量释放时间短,具有很大的危害性。雷电会造成电力系统大面积停电、森林大面积烧毁、建筑物毁坏、油库爆炸起火、通讯系统瘫痪以及家电设备损坏等等。 1雷电理论 1.1雷云结构和雷电的放电机理 雷云的典型结构是中部有强烈的上升气流,在这种气流的作用下,带正电的冰晶与带负电的水滴开始分离,形成一部分带正电荷,一部分带负电荷的雷云。由于异性电荷的不断积累,不同极性的云块之间电场强度不断增大,当某处的电场强度超过空气可能承受的击穿强度时,就形成了云间放电。不同级性的电荷通过一定的电离通道互相中和,产生强烈的光和热,并发出一种强光,称之为“闪”,所发出的热,使附近的空气突然膨胀,发出霹雳的轰鸣,称之为“雷”。 由于雷云负电的感应、使附近地面积聚正电荷,从而使地面与雷云之间形成强大的电场。当某处积聚的电荷密度很大,造成电场强度达到雷云与地面之间空气游离的临界值时,就为雷云对地放电打到地面上的闪电即为“落雷”。如果落雷击中人员、建筑物、机电设备和森林树木而造成的危害,这种现象为“雷击事故”。 1.2雷电活动强度 雷电活动的强度是因地区而异的,有的地区强,有的地区弱,某

一地区的雷电活动强度通常用“年平均雷电日”这一数字表示。我国年平均雷电日分布大致可划分4个区域,其中长江以北大部分地区年平均雷电日在15~40d。年平均雷电日这一数字只能给人们提供某一地区雷电活动的概括情况,雷电活动的强弱程度与落雷概率是两个不同的概念。事实上,即使是在同一地区,雷电活动也是有所不同的,有些地方受局部气象条件的影响,雷电活动可能比邻近地区强得多。 1.3雷击的选择性 雷害事故的统计资料说明,雷击的地点和建筑物遭受雷击的部位是有一定规律的,这个规律称为雷击的选择性。 地面上建筑物的性质和形状对雷电的发展是有影响的,当地面上电场不断增强时,在高大建筑物的尖顶和边缘上电场强度最大,构成雷电发展的良好条件。在旷野中,即使建筑物并不很高,但是由于它比较孤立、突出,因而较容易遭受雷击。金属结构的建筑物或内部有大型或大量金属物体的厂房,由于具有良好的导电性能,也较易遭受雷击。

接触网验收标准(完整资料).doc

【最新整理,下载后即可编辑】 接触网验收标准 一、在接触网工程交接的同时,施工单位应向运营部门交付下列电子版(1、2、3项)和书面竣工资料: (1)竣工工程数量表。 (2)接触网供电分段示意图。 (3)接触网车站、区间平面布置竣工图。 (4)接触网装配图、设备零件图及安装曲线,接触线磨耗换算表。 (5)工程施工记录(含隐蔽工程记录和确认后的轨面标准线、侧面限界、外轨超高记录)。 (6)设备试验报告。 (7)主要设备、零部件、金具、器材的技术规格、合格证、出厂试验记录、使用说明书;对在产品上显示不出工厂标志的器材(例如各种线索),应按生产厂家列出具体安装地点。 (8)设计变更通知书。 (9)跨越接触网的架空线路(主要包括架空线路位置、电压等级、导线高度、规格型号、产权单位及联系方式等)和跨线桥(主要包括跨线桥位置、最近的桥墩距线路中心的距离,跨线桥净高、接触网带电部分距跨线桥最小距离、产权单位及联系方式等)有关资料。 在接触网投入运行时,牵引供电设备管理单位要建立起正常的生产秩序,制定各项原始记录和报表,并按时填报。牵引供电设备管理单位技术主管部门应有下列技术文件和资料: (1)第一条规定的竣工资料。 (2)承力索、接触线的技术规格和接触线磨耗换算表。 (3)接触网零部件的技术条件、试验方法及图册。 (4)接触网有关标准(部标和国标)。 (5)部、局颁发的有关规章和牵引供电设备管理单位自定的有关制度、办法和措施。 (6)与相关单位的设备分界协议。 (7)管内各车间、工区之间的设备分界及设备中各工种分工的

规定。 (8)轨面标准线(俗称“红线”)测量记录。 (9)管内设备大修设计文件、设计审查意见及竣工报告。 上述资料如有新文件下发,按新文件执行! 1 一般规定 1.1接触网工程施工前应按设计文件对支柱杆位进行定测,并应符合下列规定: (1)纵向测量应以正线钢轨为依据,从设计规定的起源点或1号、2号道岔开始。杆位因地形、地物需调整跨距以避让时,跨距调整幅度为设计跨距的-2--+1m,调整后的跨距不得大于设计允许最大跨距; (2)站场横向测量中,同组软横跨支柱、硬横梁支柱中心的连线应与正线中心线垂直; (3)隧道口的起测点,为隧道口顶部水平线与线路中心线的交点;对隧道悬挂点、定位点测量定位时,遇有隧道伸缩缝,不同断涌接缝,石缝或明显渗水、漏水的地方应避开;悬挂点跨距可在+1——-2m的范围内调整,但调整后的跨距不得大于设计允许值。 (4)桥支柱垂直线路中心线应吻合墩台中心线。 1.2 基坑开挖前施工单位应进行基坑坑形设计,并按其施工。坑形设计应包含拉线锚板坑。基坑开挖后,地质情况与设计不符时,应及时与设计、监理联系,共同确认变更,施工应严格执行变更设计。 1.3混凝土搅拌和灌注以及直埋基础的回填应符合下列规定: (1)严格掌握水灰比和配合比。 (2)在厚大元筋或稀疏配筋的结构中灌注混凝土时,填入片石的数量,不应大于混凝土结构体积的25%。 (3)混凝土各种配料的拌和要均匀,灌注混凝土时,宜连续进行,如必须间断,对不掺外加剂的混凝土问歇时间不宜超过2h。基础的灌注应水平分层进行,逐层捣实。杯形基础应连续浇制,一次成形。

低电压穿越

低电压穿越:当电网故障或扰动引起风电场并网点的电压跌落时,在电压跌落的范围内,风电机组能够不间断并网运行。 低电压穿越 英文:Low voltage ride through 缩写: LVRT 低电压穿越(LVRT),指在风力发电机并网点电压跌落的时候,风机能够保持 低电压穿越 并网,甚至向电网提供一定的无功功率,支持电网恢复,直到电网恢复正常,从而“穿越”这个低电压时间(区域)。LVRT是对并网风机在电网出现电压跌落时仍保持并网的一种特定的运行功能要求。不同国家(和地区)所

基本要求 对于风电装机容量占其他电源总容量比例大于5%的省(区域)级电网,该电网区域内运行的风电场应具有低电压穿越能力。 风电场低电压穿越要求 右图为对风电场的低电压穿越要求。 a) 风电场内的风电机组具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的能力; b) 风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组能够保证不脱网连续运行。 不同故障类型的考核要求 对于电网发生不同类型故障的情况,对风电场低电压穿越的要求如下: a) 当电网发生三相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 b) 当电网发生两相短路故障引起并网点电压跌落时,风电场并网点各线电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证不脱网连续运行;风电场并网点任意线电压低于或部分低于图中电压轮廓线时,场内风电机组允许从电网切出。 c) 当电网发生单相接地短路故障引起并网点电压跌落时,风电场并网点各相电压在图中电压轮廓线及以上的区域内时,场内风电机组必须保证

雷击的危害和防护

雷击的危害和防护 雷电是一种大气中的放电现象,作为一种无法抑制的强大的自然力的爆发,不仅威胁着人类的生命安全,而且常使电力、航空、通信、建筑等许多部门遭到破坏。在正常运行时,电力系统电气设备的绝缘处于额定电压作用下。但是,由于雷击和操作等原因,电力系统中某些部分的电压可能升高,甚至会大大超过正常状态下的数值。这种对电气设备绝缘造成危险的电压升高,称为过电压。按过电压产生的原因分为大气过电压(雷击过电压)和内部过电压两大类。。 1 .雷电的形成:大气中的水蒸气和地面的湿气受热上升,在空中不同冷、热气团相遇,凝结成水滴或冰晶,形成积云。积云运动,使电荷发生分离,亦即在上下气流的强烈摩擦和撞击下,形成带正、负不同电荷的积云,也称雷云。云层中电荷越聚越多,就形成了正、负不同雷云间的强大电场。同时,由于静电感应,带电的雷云临近地面时,对大地或电气设备将感应出与雷云极性相反的电荷,二者之间形成了一个巨大的“电容器”。雷云中电荷积聚到足够数量时,电场强度达到 25~30kV / cm 时,就会使正、负雷云之间或雷云与大地之间的空气绝缘击穿,而发出先导放电,当先导放电到达另一雷云或大地时,就产生强烈的“中和”作用,出现强大的电流,其值可达数十至数百千安。该电流称为雷电流,这一过程称为主放电过程。主放电的温度可达 20000 ℃,使周围的空气猛烈膨胀,并出现耀眼的光亮和巨响,称为雷电,亦即通常所说的雷鸣和闪电。主放电到达云端就已结束,然后,云中的残余电荷,经主放电通道下来与地上的电荷中和,称为余光放电过程。余光阶段的电流不大,但持续时间较长。由于云中可能同时存在几个电荷堆积中心,当第一个电荷中心的上述放电完成后,可能引起第二个、第三个中心向第一个通道放电,因此,雷电往往是多重性的(约占 40 % ) ,放电的平均数约为三次,雷击总的持续时间一般不超过 0.5s 。 2 .雷电过电压的基本形式:分为直接雷过电压、感应雷过电压、侵人波过电压三种基本形式。(1)直接雷过电压。雷云直接击中房屋、杆塔、电力装置等物体时,强大的雷电流流过该物体而泄人大地,在该物体上将产生很高的电压降,称为直接雷过电压。由于直接雷过电压幅值极高,是任何绝缘都无法直接承受的,因此必须采取有效的保护措施,通常用避雷针、避雷线、避雷带或避雷网进行防护。(2)感应雷过电压。当雷击设备或架空线路附近地面时,在设备或导线上由于静电感应和电磁感应而产生的过电压,称为感应雷过电压。感应过电压对 35kV 及以下绝缘是危险的,应采取措施加以防护,但对 110kV 及以上的设备,由于其绝缘的冲击耐压水平高于 500kV ,故没有危险。(3)侵人波过电压。它是指由于架空线路或架空金属管道上遭受直接雷或感应雷而产生的高压冲击雷电荷,可能沿线路或管道侵人室内。据统计,在电力系统中,由于雷电波侵人而造成的雷害事故,约占雷害总数的一半以上。 3 . 雷电参数(1)雷暴日。为了统计雷电活动频繁度,采用雷暴日为单位,在一天内只要听到雷声就算一个雷暴日。全年雷暴日的总和叫年雷暴日,我国把每年平均雷暴日不超过 15 日的地区叫少雷区,超过 40 日的叫多雷区,超过 90 日的叫强雷区。我们这一地区介于少雷区和多雷区之间。 4、常用防雷装置的种类和作用防雷工作包括电气设备的防雷和建(构)筑物的防雷两大内容。避雷针、避雷线、避雷网、避雷带及避雷器都是经常采用的防雷装置。一套完善的防雷装置包括接闪器、引下线和接地装置。上述针、线、网、带实际上都只是接闪器。避雷针主要用于发电厂、变电站等电气设备

雷电的危害及预防措施

雷电是大自然中最壮观的自然现象之一,它是一把锋利无比的双刃剑,具有巨大的能量及破坏力。其电压可高达几十万伏甚至数百万伏,瞬时电流可高达数十万安培,放电时温度高达30000℃。世界各地每年遭受雷击而造成破坏的重大事故不计其数,仅我国每年就有数万人遭受雷击伤亡。因此,我们必须了解和掌握防雷知识,采取切实可行的防雷措施,才能有效地避免或减少雷电事 故的发生。 雷电的主要危害 根据雷电产生的危害特点,它的破坏作用主要是雷电流引起的。通常雷电以三种形式出现,即直接雷击、感应雷击和雷电波。一般人所说的雷击是由直接雷造成的,由于它瞬间放出的电流相当大,产生的高温高压引起爆炸、火灾和建筑物倒塌,造成人畜伤亡事故。1998年6月30日南京市栖霞区一农民受雷击身亡;次日江苏大丰滩涂的雷击事故中2人死亡、7人受伤;7月10日贵州省威宁县云贵乡50多名农民在临街新建的砖房中避雨时遭受雷击,造成14人当场死亡、42人受伤的惨剧;这几起雷击事故都是因直接雷造成的。 感应雷的主要危害是由电流沿着金属导线或导体形成雷电冲击波,并进入建筑物内造成用户的仪器设备或家用电器的损坏,在一定的条件下还会造成人员伤亡和火灾等重大雷击事故。在雷击事故中90%是感应雷造成的,例如,十年前震惊中外的山东黄岛油库大火就是由感应雷引起的。随着现代化高科技的迅速发展,在电子设备、供电设备、通信广播、计算机网络的信息传输 等领域都是感应雷的主要袭击对象。 雷电波是由于雷击而在架空线路或空中金属管道上产生的冲击电压,沿线路或管道的两个方面迅速传播,其传播速度为300m/us(在电缆中为150m/us),若侵入建筑内可造成配电装置和电气线路绝缘层击穿产生短路或使建筑物的易燃易爆物品燃烧和爆炸。1994年5月广州市《南方日报》社近百台微机被雷击毁就是因为雷电波侵入所致。 造成雷电击事频繁发生的原因,除了不可抵御的自然现象外,人们的防知识缺乏、防雷意识淡薄是主要原因。有的人认为避雷针是万能的灵丹妙药,有了它就会任凭电闪雷鸣而安然无恙,有的单位舍不得花这笔钱来搞防雷工程,有的单位即使安装了避雷设施,但安置不规范或长期得不到维护、保养,成了引雷入室的祸根;雷雨期间,野外作业及行走不能及时地离开所处环境的最高点;有人甚至跑到大树下、屋檐下躲雨,室内人员甚至打开门窗观赏雨景或收看电视、打电话,对家用电器电源插头不及时拨掉,从而导致雷电击伤亡悲剧频发。 预防雷击事故的措施 为了避免或减少雷击事故的发生,保证人畜及建筑物的安全,对建筑物而言,首先把好建筑设计第一关,按建筑物的功能综合考虑防雷避雷设施,特别要考虑清理到室外附加在屋顶上的霓虹灯、广告牌、金属旗杆、微波塔及共用天线等潜在的不安全因素;其次把好施工质量检查监督及竣工关,严格按照国家规定的标准验收建筑物的避雷设施。对共用天线、居民住宅楼的总电源、电子计算机网络用户以及架空电话线用户等应加装专用避雷器,并在每年雷雨季节到来之前,对 这些避雷装置进行一次安全性能检测维修。 对于个人和家庭而言,首先要多了解防雷知识,增强防雷意识,积极采取预防措施,避免雷电击伤人。其次,要用自已已掌握到的防雷知识,宣传教育身边的人;雷雨期内,在野外行走时,要尽量离开所处环境的最高点,跑到低洼处或干脆趴下,不要在大树、电线杆、高架铁塔、烟囱

相关文档
相关文档 最新文档