文档库 最新最全的文档下载
当前位置:文档库 › LVDT位移传感器

LVDT位移传感器

LVDT位移传感器
LVDT位移传感器

LVDT位移传感器

LVDT(Linear.Variable.Differential.Transformer)是线性可变差动变压器缩写,简单地说是铁芯可动变压器。所以,LVDT位移传感器也可称之为LVDT差动变压器式位移传感器,它由一个初级线圈、两个次级线圈、铁芯、线圈骨架、外壳等部件组成。当铁芯由中间向两边移动时,次级两个线圈输出电压之差与铁芯移动成线性关系。

构成原理:

LVDT的结构由铁心、衔铁、初级线圈、次级线圈组成,当初级线圈P1,P2 之间供给一定频率的交变电压时,铁芯在线圈内移动改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈S11,S22 之间就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出,由于两个次级线圈电压极性相反, ,输出电压为差动电压。

当铁芯往右移动时,次级线圈 2 感应的电压大于次级线圈1;当铁芯往左移动时,次级线圈1 感应的电压大于次级线圈2,两线圈输出的电压差值大小随铁芯位移而成线性变化。

初级线圈、次级线圈分布在线圈骨架上,线圈内部有一个可自由移动的杆状衔铁。当衔铁处于中间位置时,两个次级线圈产生的感应电动势相等,这样输出电压为0;当衔铁在线圈内部移动并偏离中心位置时,两个线圈产生的感应电动势不等,有电压输出,其电压大小取决于位移量的大小。

为了提高传感器的灵敏度,改善传感器的线性度、增大传感器的线性范围,设计时将两个线圈反串相接、两个次级线圈的电压极性相反,LVDT输出的电压是两个次级线圈的电压之差,这个输出的电压值与铁心的位移量成线性关系。

LVDT工作过程中,铁心的运动不能超出线圈的线性范围,否则将产生非线性值,因此所有的LVDT均有一个线性范围。

1,无摩擦测量

LVDT 的可动铁芯和线圈之间通常没有实体接触,也就是说LVDT 是没有摩擦的部件。它被用于可以承受轻质铁芯负荷,但无法承受摩擦负荷的重要测量。例如,精密材料的冲击挠度或振动测试,纤维或其它高弹材料的拉伸或蠕变测试。

2,无限的机械寿命

由于LVDT 的线圈及其铁芯之间没有摩擦和接触,因此不会产生任何磨损。这样LVDT 的机械寿命,理论上是无限长的。在对材料和结构进行疲劳测试等应用中,这是极为重要的技术要求。此外,无限的机械寿命对于飞机、导弹、宇宙飞船以及重要工业设备中的高可靠性机械装置也同样是重要的。

3,无限的分辨率

LVDT 的无摩擦运作及其感应原理使它具备两个显著的特性。第一个特性是具有真正的无限分辨率。这意味着LVDT 可以对铁芯最微小的运动作出响应并生成输出。外部电子设备的可读性是对分辨率的唯一限制。

4,零位可重复性

LVDT 构造对称,零位可回复。LVDT 的电气零位可重复性高,且极其稳定。用在闭环控制系统中,LVDT 是非常出色的电气零位指示器。

5,径向不敏感

LVDT 对于铁芯的轴向运动非常敏感,径向运动相对迟钝。这样,LVDT 可以用于测量不是按照精准直线运动的物体,例如,可把LVDT 耦合至波登管的末端测量压力。

6,输入/输出隔离

LVDT 被认为是变压器的一种,因为它的励磁输入(初级)和输出(次级)是完全隔离的。LVDT 无需缓冲放大器,可以认为它是一种有效的模拟信号元件。在要求信号线与电源地线隔离的测量和控制回路中,它的使用非常方便。

7,坚固耐用

制造LVDT 所用的材料以及接合这些材料所用的工艺使它成为坚固耐用的变送器。即使受到工业环境中常有的强大冲击、巨幅振动,LVDT 也能继续发挥作用。铁芯与线圈分离LVDT 铁芯与线圈彼此分离,在铁芯和线圈内壁间插入非磁性隔离物,可以把加压的、腐蚀性或碱性液体与线圈组隔离开。这样,线圈组实现气密封,不再需要对运动构件进行动态密封。对于加压系统内的线圈组,只需使用静态密封即可。

8,环境适应性

LVDT 是少数几个可以在多种恶劣环境中工作的变送器之一。例如,密封型LVDT 采用不锈钢外壳,可以置于腐蚀性液体或气体中。有时,LVDT 被要求在极端恶劣的环境下工作。例如,在类似液氮的低温环境中或核辐射环境。虽然在大多数情况下,LVDT 具有无限的工作寿命(理论上) ,置于恶劣环境下的LVDT,工作寿命却因环境不同而各不相同。

9,LVDT 与光栅,磁栅,等高精度测长仪器相比有以下几个优点缺点:

优点:动态特性好,可用于高速在线检测,进行自动测量,自动控制。光栅、磁栅等测量速度一般为1.5m/s 以内,只能用于静态测量。LVDT 可在强磁场,大电流,潮湿,粉尘等恶劣环境下使用。可以做成在特殊条件下工作的传感器,如耐高压,高温,耐辐射,全密土封在水下工作。可靠性非常好,能承受冲击达150g/11ms ,振动频率2KHZ 加速度20g。体积小,价格低,性能价格比高。

内容来源:https://www.wendangku.net/doc/804851350.html,/sensor/apply/jzbtwycgqdsyffjzysx_67318.html

LVDT线性位移传感器数据检测技术

LVDT线性位移传感器数据检测技术及测控电路课程设计 姓名:吕国强 学号:0905010306 班级:测控09-3班 学校:哈尔滨理工大学

第一章 一、设计目的 1、根据LVDT线性位移传感器的工作原理,设计差动变压器电感 式位移传感器(包括传感器参数设计和架构设计)。 2、学习集成芯片AD698工作原理以及与LVDT的连接的应用。 3、学习分析设计电路、Altium Designer绘制原理图及PCB图。 4、学习焊接电路板并完成电路板的调试。 5、了解传感器标定方法,并计算传感器的相关参数。 6、运用所学习的理论知识解决实际问题。 第二章

一、 原始数据及技术要求 1、 最大输入位移为1cm ; 2、 灵敏度不小于1v/mm ; 3、 非线性误差不大于10%; 4、 电源为直流30v; 二、 传感器原理设计 2-1.差动变压器的工作原理 因为差动输出电动势为)()(1211M f M I j M M I j E S ?=?=-=? ? ωω 所以差动变压器输出电动势为两副边线圈互感之差M ?的函数。 2-2.螺管型差动变压器的结构设计 螺管型差动变压器结构复杂,常用二段式、三段式、一节式的灵敏度高,但三节式的零点较好,如图一所示为三种形式的示意图。 二节式 一节式 三节式 图一 差动变压器的结构形式 2-3.螺管型差动变压器的参数计算 1. 激磁绕组长度的确定 通常是在给定非线性误差γ及最大动态范围max l ?的条件下来确定值b ,即

? ???? ???=?=?-=max 2 22 2 21l l b k l k r 联立以上各式解得 γ 2max l b ?= 取max l ?=1cm ,则缘边线圈长度b=2.24 cm, 2k =997 2. 衔铁的长度c l 的确定 由结构图二的几何尺寸关系可知,铁芯的长度为 212l b d l l c +++= 式中1l 、2l --衔铁在两个副边绕组m 中的长度; d --初次线圈间骨架厚度; b --原边线圈的长度; m --两副边绕组长度; 初始状态时有02 1l l l ==,则衔铁的长度由图二的几何尺寸有 b d l l b d l l c ++=+++=)(22000 设计时,一般取b l =0 ,故有d b l c 23+=,通常取b d <<,则 b l c 3= 由一中式求得为b=2.24cm ,求得为c l =6.72cm 。 3. 副边线圈长度的确定 设: ①衔铁插入到两个副边绕组的长度分别为1l 、2l ,且在初始状态时: 21l l l ==;

位移传感器的主要分类

位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;梯度变化越均匀,霍耳电势与位移的关系越接近于线性。图2中是三种产生梯度磁场的磁系统:a系统的线性范围窄,位移Z=0时,霍耳电势≠0;b系统当Z<2毫米时具有良好的线性,Z=0时,霍耳电势=0;c系统的灵敏度高,测量范围小于1毫

用于多电机同步控制的角位移传感器设计

用于多电机同步控制的角位移传感器设计 Design of rotate displacement sensor used to multi-drive synchronization system 奚小网1,陆 荣1,高 波2 XI Xiao-wang1, LU Rong1, GAO Bo2 (1. 无锡职业技术学院 机电技术学院,无锡 214121;2. 中国船舶科学研究中心,无锡 214082) 摘 要:本文介绍了一种可用于多电动机同步控制系统的角位移传感器。它采用导电塑料电位器为敏感元件,电位器滑动转轴与质量块固定,将传感器转角的变化转换成电阻的变化并通过测量转 换电路改变输出电压,输入变频器控制多电机同步运行。详细分析了传感器的结构、特点和 测量转换电路。实验表明输出电压与角位移变化呈线性关系。 关键词:角位移传感器;多电机同步,变频,运算放大器 中图分类号:TP274 文献标识码:A 文章编号:1009-0134(2011)8(上)-0045-04 Doi: 10.3969/j.issn.1009-0134.2011.8(上).13 0 引言 角度和角位移的测量在现代工业生产中广泛应用,主要采用电阻式、电感式、电容式、光栅式、磁阻式等角度和角位移传感器[1]。在多电机同步控制系统中角位移传感器也有应用,但传统的角位移测量仪,因结构等方面的缺陷,影响了其使用寿命和可靠性。利用导电塑料薄膜电位器作为敏感元件,设计了一种新型角位移传感器,用于多电机同步运行控制,具有无接触式、结构简单、小巧轻便、线性好、控制精度高等特点,既提高了控制的可靠性和分辨率,又简化了装配工艺,降低了成本。 1 多电机同步控制原理 在造纸、纺织印染、轧钢等生产设备中,由于具有多点传动的要求,电动机的数量通常较多,对系统的调速控制也提出了更高的要求。在调速方式上,由于变频调速具有可靠性高、使用维护方便等特点,因此这些设备一般采用变频器传动交流异步电动机的调速方式[2]。在工艺上,通常要求这些传动电动机之间能够实现同步运行(例如造纸、纺织印染设备)或按照一定的牵伸比(线速度比)运行(例如轧钢机、化纤后处理设备)。如常用的印染后整理设备有显色皂洗机、退煮漂联合机、热风烘燥机、丝光联合机等,这些设备的传动电机较多。工作时,布卷从设备进口进入,经过多电动机传动后,在出口处再次形成布卷。显然,为防止布匹在加工过程中跑偏、起皱并保证一定的张力,要求多个电动机保持同步运行,即实现多单元同步传动。 图1为三单元同步控制系统框图。图中VF1为主令电动机变频器,VF2、VF3为轧车2以及轧车3的传动电机变频器。VF1的运行速度信号来自主控单元的主令给定,当主令信号确定后,整机的运 行速度就确定了。 图1 三单元同步控制系统示意图 本系统中,为保证轧车2、轧车3与轧车1的同步运行,变频器VF2、VF3 的速度由主令信号和同步检测装置共同给定。由图1可见,同步检测装置中的电位器接±5V直流电源,当电位器处于中间位置时,给定信号为0V。同步检测信号输入变频器辅助模拟量输入端后,可通过设定变频器内部参数得到如下速度控制信号: 收稿日期:2011-03-10 基金项目:江苏省高等教育人才培养模式创新实验基地项目资助(2008-47) 作者简介:奚小网(1967 -),男,江苏无锡人,副教授,工学硕士,研究方向为电工技术、功能材料及应用等。

电容式位移传感器的设计

课程设计 设计名称: 电容式位移传感器的设计_ 专业班级: __ 姓名: ____________ 学号: _________ 指导教师: ______ xxxx年 xx 月

目录 一、设计要求……………………………………………………………… 3 二、电容传感器工作特性 (3) 三、电容传感器的优缺点 (3) 四、基本原理……………………………………………………………… 3 五、设计分析……………………………………………………………… 4 六、消除和减少寄生电容的影响 (5) 七、转换电路的设计 (6) 八、差动放大电路………………………………………………………… 8 九、相敏检波器系统工作及原理 (9) 十、心得体会 (11) 十一、参考文献 (12) 十二、附录 (13)

1、设计要求: 设计差动变面积式电容位移传感器,要求规定的设计参数。 1、测量范围(mm):0~±1mm; 2、线性度(%Fs):0.5; 3、分辨率(μm):0.01; 4、灵敏度(PF/mm): 5、通过理论设计、结构设计、理论分析等过程设计传感器结构和测量电路,画出结构示意图和测量电路图,并进行参数计算。利用参数和结构来选择合理的方法消除或减少寄生电容的干扰影响。结合传感器实验平台,确定传感器的静态灵敏度和线性范围,并设计电容传感器的电子秤应用实验。 2、电容传感器工作特性 电容式传感器具有灵敏度高、精度高等优点。相对与其他传感器来说,电容式传感器的温度稳定性好,其结构简单,易于制造,易于保证高的精度,能在高温、低温、强辐射及强磁场等各种恶劣环境条件下工作,适应性强;它的静电引力小,动态响应好,可用于测量高速变化的参数,如测量振动、瞬时压力等;它能够实现非接触测量,在被测件不能受力,或高速运动,或表面不连接,或表面不允许划伤等不允许采用接触测量的情况下,电容传感器可以完成测量任务;当采用非接触测量时,电容传感器具有平均效应,可以减少工件表面粗糙度等对测量的影响。因其所需的输入力和输入能量极小,因而可测极低的压力、很小的加速度、位移等,由于在空气等介质中损耗小,采用差动结构并连接成桥式电路时产生的零点残余电压极小,因此允许电路进行高倍率放大,使仪器具有很高的灵敏度,分辨力高,能敏感0.01μm至更小的位移。本课题采用差动变面积式电容位移传感器,线性的反映电容和位移的变化关系。 3、电容传感器的优缺点

位移传感器原理与分类

位移传感器原理与分类 传感器之家中将位移传感器分为线位移跟物位移两类,这是按照位移的特征分的。位移传感器就是测量空间中距离的大小,线位移就是在一条线上移动的长度,角位移就是转动的角度。下面就线位移做下介绍,线位移按原理分主要有电阻式、电容式、电感式、变压器式、电涡流式、激光式等等。前面三种主要用来测量小位移,中位移一般则用变压器式,大的位移则用电位器式的比较多,对于精密的场合,则需要选择激光式。 电容式位移传感器是把位移的变化换作电容的变化进行制作的。对于振动频率很高的环境条件下,最适合选用这种类型的传感器。它具有灵敏度高、能实现非接触量的测量,而且可以在恶劣场合下工作。它也有一些缺点,比如对连接线缆有很高的要求,它要有屏蔽性能;而且最好选用高频电源用来供电。现在做的最好的电容式位移传感器可以测量0.001微米的位移,误差非常小。 电感式位移传感器是将测量量换作互感的变化的传感器,它既可以测量角位移也可以测量线位移。目前常用到的电感式位移传感器有气隙式,面积式,螺管式三种。变气隙型中电感的变化与传感器中活动衔铁的位移相对应。变面积型是用铁芯与衔铁之间重合面积的变化来反映位移。螺管型是衔铁插入长度的变化导致电感变化的原理。

变压器式位移传感器是用途最广的一种位移传感器,线圈中感应电动势随着位移的变化而变化。这种传感器它的灵敏度都很高,有时都不用放大器。缺点在于质量一般比较大,不应用于高频场合。 电涡流式位移传感器是基于电涡流效应,它的感应参数是阻抗的变化,尽量使阻抗是位移的函数,它还与被测物体的形状跟尺寸有关。该传感器的量程一般在0到80毫米。 电阻式位移传感器是通过测量变化的电阻值来计算位移的变化,它通常分为电位器式跟应变式。前面一种适合测量位移大、精度要求不高的场合;后面一种是利用电阻应变效应,它具有线性度跟分辨率都比较高,失真小的优点。

LVDT式位移传感器的原理

L V D T式位移传感器的原 理 The Standardization Office was revised on the afternoon of December 13, 2020

LVDT式位移传感器的原理 Linearity Variable Differential Transducers简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1-Es2。这就是LVDT的简单工作原理(如图1-2示)。

LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

位移传感器原理及应用课程设计[1]

题目:位移传感器的设计设计人员: 学号: 班级: 指导老师:许晓平、高宏才、陈焰日期:

位移传感器—光栅的原理和应用 一、概述 位移是和物体的位置在运动过程中的移动有关的量,位移的测量方式所涉及的范围是相当广泛的。小位移通常用应变式、电感式、差动变压器式、涡流式、霍尔传感器来检测,大的位移常用感应同步器、光栅、容栅、磁栅等传感技术来测量。其中光栅传感器因具有易实现数字化、精度高(目前分辨率最高的可达到纳米级)、抗干扰能力强、没有人为读数误差、安装方便、使用可靠等优点,在机床加工、检测仪表等行业中得到日益广泛的应用(1)。 二、原理 计量光栅是利用光栅的莫尔条纹现象来测量位移的。“莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为幅射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b 为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、 50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π(2)。由图1可得光电信号为 u0=U平均+Umsin(π/2+2πX/W) 式中u0—光电元件输出的电压信号;

电涡流位移传感器的原理

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而

LVDT线性位移传感器地设计

LVDT线性位移传感器的设计 一、引言 差动变压器式传感器的特点是灵敏度高、分辨力大,能测出0.1um更小的机械位移变化;传感器的输出信号强,有利于信号的传输;重复性好,在一定位移范围内,输出特性的线性度好,并且比较稳定,因此广泛应用于压力、位移传感器的设计制造中,尤其在航空、航天等环境恶劣、环境温度高的压力测量方面,也得到了广泛的应用。 二、方案论证 1.参数要求 给定原始数据及技术要求 1).最大输入位移为100mm 2)灵敏度不小于80V/m 3)非线性误差不大于10% 4)零位误差不大于1mv 5).电源为9v,400HZ 6).最大尺寸结构为160mmX21mm 2.方案讨论 根据给定技术要求选择电感变换元件的类型及测量电路的形式,如图1所示

图1、传感器的组成框图 1)传感器电感变换元件类型的选择 (1)测量范围小,如位移从零点几微米至数百微米,且当线性范围也小时,常用E形或II形平膜硅钢片叠成的电感式传感器或差动变压器。 (2) 螺线管,常用于测量1mm以上至数百毫米的大位移,其线性范围也较大。 2)测量电路的选择 测量电路主要依据选定的电感变换器的种类、用途、灵敏度、精度及输出形式等技术要求来确定。 3.螺管型差动变压器的工作原理 差动输出电动势为 E = jωI1(M1-M2) = jωI1ΔM = fΔM 所以,差动变压器输出电动势为两副边线圈互感之差ΔM的函数。 螺管型差动变压器结构复杂,常用二节式、三节式、一节式的灵敏度高,但三节式的零点较好。

差动变压器的工作原理类似变压器的作用原理。这种类型的传感器主要包括有衔铁、一次绕组和二次绕组等。一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。图2为三节式螺管型差动变压器的示意图。 图2 三节式差动变压器的结构形式 三.螺管型差动变压器的参数计算 现以三节式螺管型差动变压器式传感器为例来说明参数的设计计算方法,其结构如图3。由推导的数学模型可知:所推导处的各种公式是设计螺管型差动变压器式传感器的主要依据。 1.激磁绕组长度的确定 通常是在给定非线性误差γ及最大动态范围Δl MAX的条件下来确定值b,即

KTF滑块式直线位移传感器(电子尺)说明书

防护等级 :IP57; 最大工作速度: ≤ 10m/s; 使用寿命: 50X10 6次 电气接线方式: 机械安装: 一、电子尺的安装宜将余量均匀留在两端,未确定极限位置之前不要锁紧固定支架螺丝,待调整行程后才能锁紧电子尺固定支架螺丝。 二、拉杆式电子尺的拉球万向头允许半径1mm 的对中性偏差,当然规格越短,建议对中偏差越小。 三、固定电子尺后,将拉杆(LS,LM 系列均适用)缩回时,万向球头的圆柱本体应能在四个径向方位有空隙。。否则,调整万向头安装位或调整靠近伸出端的安装支架位。 四、在拉杆拉出时如有很大的不对中,应调整靠近插头那端的安装支架。这可作为一种辅助复查方式。 五、拉球万向头安装杆与拉杆允许角度±12o的倾斜。但如果安装时对中偏差和倾斜偏差同时都很大将会影响电子尺的稳定性和使用寿命。应予以进一步调整。 六、滑块电子尺可以减少调整对中性的工作量,但辅助加长杆不能取消,否则,会出现由于对中性不好而导致稳定性和使用寿命,甚至当即致使电子尺失效。 七、一切调整好后,紧固安装螺丝,力度应使接地电阻小于1Ω为宜。用万用表200Ω档位测量电子尺封盖螺丝与安装支架之间的电阻。 八、使用四线制或带有屏蔽线的配线,电子尺那端接地端应连接,同时将第四端或屏蔽线在电控箱端可靠接地。(参考资料:https://www.wendangku.net/doc/804851350.html, 版权归深圳市米朗科技有限公司所有) Items 型号 KTF 线性精度(±%FS) ≤0.1% 电阻 ±10% 10.0 重复性精度 0.01mm 解析度 本质无穷 温度系数 ≤1.5ppm/℃ 工作电压 ( For 5K Ω~20K Ω): ≤24V 环境温度 -30~+125℃ 负载特性 ≥1K Ω 输出类型(电压) 0-给定输入工作电压(随位移变化而变化) 尺寸 B (mm) 有效行程 尺寸 A (mm) 有效行程+80 KTF 直线位移传感器使用说明书 标准技术参数:

传感器课程设计 电感式位移传感器

东北石油大学 课程设计 2015年7 月 8日

任务书 课程传感器课程设计 题目电感式位移传感器应用电路设计 专业测控技术与仪器姓名祖景瑞学号 主要内容: 本设计要完成电感式位移传感器应用电路的设计,通过学习和掌握电感式传感器的原理、工作方式及应用来设计一个电路。电路要能够检测一定范围内位移的测量,并且能够通过LED进行数字显示。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器等技术。 基本要求: 1、能够检测 0~20cm 的位移; 2、电压输出为 1~5V; 3、电流输出为 4~20mA; 主要参考资料: [1] 贾伯年,俞朴.传感器技术[M].南京:东南大学出版社,2006:68-69. [2]王煜东. 传感器及应用[M].北京:机械工业出版社,2005:5-9. [3] 唐文彦.传感器[M].北京:机械工业出版社,2007: 48-50. [4] 谢志萍.传感器与检测技术[M].北京:高等教育出版社,2002:80-90.完成期限—

指导教师 专业负责人 2015年 7 月 1 日

摘要 测量位移的方法很多,现已形成多种位移传感器,而且有向小型化、数字化、智能化方向发展的趋势。位移传感器又称为线性传感器,常用的有电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器,磁致伸缩位移传感器以及基于光学的干涉测量法,光外差法,电镜法,激光三角测量法和光谱共焦位移传感器等技术。电感式位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。电感式位移传感器主要应用在自动化装备生产线对模拟量的智能控制方面。针对目前电感式位移传感器的应用现状,本文提出了一种电感式位移传感器的设计方法,具有控制及数据处理等功能,结构简单、成本低等优点,可以广泛应用于机械位移的测量与控制。 关键词:电感式传感器;自感式传感器;测量位移;位移传感器

2021年LVDT式位移传感器的原理之令狐采学创编

LVDT式位移传感器的原理 欧阳光明(2021.03.07) Linearity Variable Differential Transducers 简称 LVDT,中文译名为差动变压器式位移传感器,在世界范围内盛销数十年而不衰,足以看出它的各项性能在当前工业过程检测与试验领域中的适应性。随着系统对检测元件提出越来越高的要求同时,它的技术性能在不断的完善与发展,应用领域也在不断地更新与扩大。 差动变压器(LVDT)的原理比较简单。它就是在一个线圈骨架(1)上均匀绕制一个一次线圈(2)作励磁。再在两侧绕制两个二次线圈(3与4),与线圈同轴放置一个铁芯(5),通过测杆(6)与可移动的物体连接。线圈外侧还有一个磁罩(7)作屏蔽,如图1-1示。 在未引入铁芯以前,一次线圈通入交流电流后产生一个左右对称的沿轴向分布的交变磁场。交变磁场在两个对称放置的二次线圈上产生的感应电动势当然相等,引入铁芯后,铁芯在一次交变磁场的激励下,产生沿铁芯中心轴(当然也是线圈的中心轴)分布并与铁芯对称的交变磁场。这样,线圈中心轴上的磁感应强度就成为铁芯位置的轴向分布函数,于是两个二次线圈的感应电动势Es1与Es2也成了铁芯位置的函数。如果设计得当,两者可成为线性函数关系。将两个二次线圈差接后,即可获得与铁芯位移成线性关系的二次输出:Es=Es1Es2。这就是LVDT的简单工作原理(如图12示)。 LVDT式位移传感器的原理二 差动变压器式位移传感器(LVDT)为电磁感应原理,其结构示意见图一。

(图一:LVDT工作原理图) 采用环氧树脂,不锈钢等材料作为线圈骨架,用不同线径的漆包线在骨架上绕制线圈。与传统的电力变压器不同。LVDT是一种开磁路弱磁耦合的测量元件。在骨架上绕制一组初级线圈,两组次级线圈,其工作方式依赖于在线圈骨架内磁芯的移动,当初级线圈供给一定频率的交变电压(激励电压)时,铁芯在线圈内移动就改变了空间磁场分布从而改变了初,次级线圈之间的互感量,次级线圈就产生感应电动势,随着铁芯位置的不同,互感量也不同, 刺激产生的感应电动势也不同,这样就将铁芯的位移量(实际的铁芯是通过测杆与被测物保持相接触,也就是被测物体的位移量)变成电压信号输出,由于两个次级线圈电压极性相反,所以传感器的输出是两个次级线圈电压之差,其电压差值与位移量成线性关系 (图二LVDT电原理图) 当铁芯处在线圈正中间位置时两次级线圈感应电压相等但相位相反,其电压差值为零,当铁芯往右移动时,右边的次级线圈感应的电压大于左边。两线圈输出的电压差值大小随铁芯位移而成线性变化(第一象限的实线段部分),这是LVDT 有效的测量范围(一半)。当铁芯继续往右移动时两级线圈输出电压的差值不与铁芯位移成线性关系,此为缓冲,非测量区(虚线段)。反之,当铁芯自线圈中间位置向左边移动亦然。零点两边的实线段一般是对称的测量范围,只不过两者都是交流信号而相位差180″。

LVDT位移传感器原理及应用—信为科技

LVDT位移传感器原理及应用 作者:鲍亚子(高级工程师) 深圳市信为科技发展有限公司 一.概述 随着我国国民经济的高速发展,自动化程度的不断提高,传感器的用量越来越大,开发高新技术位移传感器产品具有广阔的前景。 该产品具有精度高,动态特性好,工作可靠,使用方便等特点。 差动变压器式位移传感器(LVDT)可广泛应用于航天航空、机械、建筑、纺织、铁路、煤炭、冶金、塑料、化工以及科研院校等国民经济各行各业,用来测量伸长、振动、物体厚度、膨胀等的高技术产品。 深圳市信为科技发展有限公司是专业生产位置传感器的高科技公司,我公司生产的LVDT有分体式,回弹式,气动式,耐压式,及各种定制产品, 具有测量精度高,性能稳定,防水,抗冲击能力强,适合较恶劣环境下使用, ,是客户安全放心的选择. 二、工作原理 LVDT(Linear.Variable.Differential.Transformer)是线性可变差动变压器缩写。工作原理简单地说是铁芯可动变压器。它由一个初级线圈、两个次级线圈、铁芯、线圈骨架、外壳等部件组成。当铁芯由中间向两边移动时,次级两个线圈输出电压之

差与铁芯移动成线性关系。 当初级线圈P1,P2之间供给一定频率的交变电压时,铁芯在线圈内移动改变了空间的磁场分布,从而改变了初、次级线圈之间的互感量,次级线圈S11,S22之间就产生感应电动势,随着铁心的位置不同,互感量也不同,次级产生的感应电动势也不同,这样就将铁芯的位移量变成了电压信号输出,由于两个次级线圈电压极性相反,参见图1,输出电压为差动电压。 图1:LVDT原理图 当铁芯往右移动时,次级线圈2感应的电压大于次级线圈1;当铁芯往左移动时,次级线圈1感应的电压大于次级线圈2,两线圈输出的电压差值大小随铁芯位移而成线性变化。图2中的虚线范围内是传感器的量程,当铁芯移动行程大于100%时(虚线之外段),两次级线圈输出电压的差值与铁芯位移线性关系变差。零点两边的实线段一般是对称的测量范围,两者都是交流信号而相位差180度。实际的LVDT线圈通常与壳体紧固为一体,铁芯与测杆紧固为另一体,当两体间发生相对位移时,就产生位移电压输出。

直线位移传感器

Sense it! Connect it! Bus it! Solve it!

2 公 司 简 介 TURCK·图尔克 TURCK (图尔克)是全球著名的自动化品牌,旗下囊括近15000种丰富多样的传感器产品、工业现场总线产品、过程自动化产品和各类接口及接插件产品,为工厂自动化及过程自动化提供了高效率和系统化的全方位解决方案。目前,总部位于德国的图尔克集团已在世界27个国家建立分公司、拥有超过3000名雇员,并通过代理与另外60个国家建立商业往来,年营业额近4亿欧元。 TURCK (图尔克)作为工业自动化领军企业已有40多年的历史。凭借世界一流的设计、生产技术、全系列的产品线、优异的质量和遍布全球的销售服务网络,TURCK 不仅能为用户提供及时专业的技术支持与定制产品,还能确保直接在现场为世界各地的客户提供优质的系统化解决方案。 秉承“信任、专业、忠诚、成功”的企业理念,TURCK (图尔克)总是力求为不同用户提供最切合需要的优质产品与服务,通过为客户增值而致力于客户的成功发展。TURCK (图尔克)产品已广泛应用于世界各国的不同行业,包括汽车制造、电力、食品饮料、石油化工、冶金、烟草、航空航天、机械、纺织、造纸、印刷、包装、轨道交通、物流、水泥建材、造船、电线及电缆制造、采矿、市政等行业,成为深受用户信赖的首选品牌。 图尔克·中国 1994年图尔克集团正式在中国投资设立分公司,以便最大化地满足中国市场的需求,并为本地客户提供零距离的定制化服务。同年9月8日,图尔克(天津)传感器有限公司作为德国图尔克集团的全资子公司,在天津经济技术开发区注册成立。 历经17年的稳健发展,集生产、销售、系统集成、工程服务为一体的图尔克中国公司,已逐步发展成为图尔克集团在亚太地区的生产及销售中心。目前,图尔克中国公司包括从事销售及市场营销的图尔克(天津)传感器有限公司、从事产品设计生产的图尔克(天津)科技有限公司、以及从事自控系统集成的图尔克(天津)自动化系统有限公司三家下属公司。 目前,图尔克中国公司年销售额逾4.6亿人民币、员工500余人,并分别在北京、上海、广州、武汉、沈阳、无锡、成都、西安等23个城市设立办事处,已成功为10000多家中国客户提供专业的产品和服务,客户遍布全国各行业。 图尔克是值得您信赖的“自动化元器件全系列供应商”和“全方位解决方案提供商”!

LVDT变送器说明书

RDP-LVDT 位移传感器说明书 一、概述 RDP-LVDT 位移传感器分为两个部分,第一部分为前置器部分,它与被测量物相连,根据被测物体位移,产生的频率幅值相应改变;第二部分为变送器单元,它把频率信号转化成两路1-5V 信号和两路4-20mA 信号。 二、功能指标 RDP-LVDT 为英国产的五线制位移传感器,所采用的LVDT 行程一般为0-50mm 、0-100mm 和0-150mm 。其出线图见下图: LVDT 位移传感器的变送器安装在DEH 机柜内,它接受两路24VDC 直流电源,形成冗余配置,一路失电不影响其正常工作,它的接线图和元件布置图见下图: LVDT 位移传感器的变送器大致可以分成三部分,电源部分(24VDC 转化成±15V ,两个绿色发光二极管分别表示±15V 是否工作正常);转换电路部分(提供LVDT 激励信号,把检测到的频率变化信号转化成1-5V 和4-20毫安信号);输入输出端子部分。 LVDT 位移传感器的变送器有四个可调电位器,分别是:调零电位器、调幅电位器、电流I 调整电位器和电流II 调整电位器。LVDT 调整的顺序为:电压输出的调零调幅最后调整电流的输出(RDP-ACT 系列五线位移传感器的红线接输入的1端子、黄线接2端子、蓝线接3端子、绿线接4端子、黑线悬空)。 功能指标 ● 接受两路24VDC 容量0.3安培 ● RDP-ACT 系列五线位移传感器信号 红 黄 LVDT出线图 黑

●输出1-5V两路 ●输出4-20mA两路 ●精度为0.1% 三、LVDT零点满度的调整 1、把LVDT位移传感器的红、黄、蓝、绿四线接到位移变送器输入端子的1、 2、 3、4 端子上(陡河#3机调试在红黄线圈和蓝绿线圈里分别串接了一个220欧姆电阻,GV 变送器中的R12由原来的10K改为17K),把LVDT位移传感器的黑线悬空;LVDT 位移传感器到DEH机柜的接线应是屏蔽电缆,屏蔽线应和LVDT位移传感器出线的屏蔽线短接,并在DEH机柜内接地;GV2、GV4和IV1的屏蔽电缆有现场接地的现象。 2、把攻放板拔掉,在DEH机柜内用一号电池给每个MOG阀加电,在位移变送器的输 出端子上用四位半万用表电压档观察阀门由关到开的过程中,电压是否是增大的过程,如不是对调位移变送器输入端子的蓝绿接线;LVDT的调零:MOG阀不加电,调整W1电位器使OUT1输出为1.0XXV,MOG阀加电,该调门全开,调整W2电位器使OUT1输出为5V;再使MOG阀失电,调门全关,调整W1电位器使OUT1输出为1.0XXV,重新使MOG阀加电,该调门全开,调整W2电位器使OUT1输出为5V,反复几次这样调整使LVDT的零点为1.0XXV,满度为5V。

直线位移传感器的接线方法与注意事项

1、直线位移传感器(俗称电子尺),供电电压一般在5v——36v为宜,不要超过36v,否则容易烧坏线路。 2、供电电压要稳定,工业电源要求±0.1%的稳定性,比如基准电压10v,允许有±0.01v的波动,否则,会导致显示的较大波动。如果这时的显示波动幅度不超过波动电压的波动幅度,直线位移传感器(电子尺)就属于正常。 3、供电电源要有足够的容量,如果电源容量太小,容易发生如下情况:合模运动会导致射胶直线位移传感器(电子尺)显示跳动,或熔胶运动会导致合模电子尺的显示波动。特别是电磁阀驱动电源于电子尺供电电源在一起时容易出现上述情况,严重时可以用万用表的电压档测量到电压的波动。如果在排除了静电干扰、高频干扰、对中性不好的情况下仍不能解决问题,也可以怀疑是电源的功率偏小。 4、不能接错直线位移传感器(电子尺)的三条线,1#、3#线是电源线,2#是输出线除1#、3#线电源线可以调换外,2#线只能是输出线。上述线一旦接错,将出现线性误差大,控制精度差,容易显示跳动等现象。如果出现控制非常困难,就应该怀疑是接错线。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/804851350.html,。

位移传感器

位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。模拟式又可分为物性型和结构型两种。 位移传感器的主要分类 根据运动方式 直线位移传感器: 直线位移传感器的功能在于把直线机械位移量转换成电信号。 为了达到这一效果,通常将可变电阻滑轨定置在传感器的固定部位,通过滑片在滑轨上的位移来测量不同的阻值。传感器滑轨连接稳态直流电压,允许流过微安培的小电流,滑片和始端之间的电压,与滑片移动的长度成正比。将传感器用作分压器可最大限度降低对滑轨总阻值精确性的要求,因为由温度变化引起的阻值变化不会影响到测量结果。 角度位移传感器: 角度位移传感器应用于障碍处理:使用角度传感器来控制你的轮子可以间接的发现障碍物。原理非常简单:如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地

板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。一个空转的齿轮连接到马达上就可以避免这个问题,这个轮子不是由马达驱动而是通过装置的运动带动它:在驱动轮旋转的过程中,如果惰轮停止了,说明你碰到障碍物了。 根据材质 电位器式位移传感器:它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。图1中的电位器式位移传感器的可动电刷与被测物体相连。物体的位移引起电位器移动端的电阻变化。阻值的变化量反映了位移的量值,阻值的增加还是减小则表明了位移的方向。通常在电位器上通以电源电压,以把电阻变化转换为电压输出。线绕式电位器由于其电刷移动时电阻以匝电阻为阶梯而变化,其输出特性亦呈阶梯形。如果这种位移传感器在伺服系统中用作位移反馈元件,则过大的阶跃电压会引起系统振荡。因此在电位器的制作中应尽量减小每匝的电阻值。电位器式传感器的另一个主要缺点是易磨损。它的优点是:结构简单,输出信号大,使用方便,价格低廉。 霍耳式位移传感器:它的测量原理是保持霍耳元件(见半导体磁敏元件)的激励电流不变,并使其在一个梯度均匀的磁场中移动,则所移动的位移正比于输出的霍耳电势。磁场梯度越大,灵敏度越高;

霍尔位移传感器的设计

霍尔位移传感器的设计 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

霍尔位移传感器的设计 学院(系):电气信息工程学院 年级专业:电自09102 学号: 学生姓名:黄晶晶 摘要:霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔期间以霍尔效应为其工作原理。 本文主要研究霍尔位移传感器的设计。如图所示,被测物体分别与恒定电流I和恒定磁场B垂直。当被测物体相对于原来位置有微小位移变化时,会产生变化的磁通量,会在导体垂直于磁场和电流的两个端面之间产生电势差,即UH(霍尔电压)。本文主要研究微小位移与霍尔电压的关系来设计霍尔位移传感器。 关键字:霍尔传感器位移霍尔电压 霍尔效应原理图 正文: 一.霍尔传感器的工作原理 1、霍尔效应 如霍尔效应原理图所示,在半导体薄片两端通以恒定电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于

电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为UH=KHIBCOSA,式中KH称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。I为所加的电流(一般为恒流源),B为均匀磁场,A为磁场与法线的夹角。EH为电场(图中所示) 2、霍尔元件 霍尔元件是半导体四端薄片,一般做成正方形,在薄片的相对两侧对称的焊上两对电极引出线(一对称激励电流端,另一对称霍尔电势输出端),如下图所示。 霍尔元件结构 3、霍尔元件的主要特性及材料 1)霍尔元件的主要特性参数 灵敏度KH:表示元件在单位的磁感应强度和单位控制电流所得到的开路霍尔电动势 霍尔输入电阻:霍尔控制及间的电阻值 霍尔最大允许激励电流:以霍尔元件允许的最大温度为限所对应的激励电流 不等位电势:当霍尔元件的控制电流为额定值时,若元件所处位置的磁感应强度为零,测得的空载霍尔电势。(不等位电势是由霍尔电极2和之间的电阻决定的, r 0称不等位电阻)寄生直流电势(霍尔元件零位误差的一部分):

相关文档
相关文档 最新文档