文档库 最新最全的文档下载
当前位置:文档库 › (完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式
(完整版)数列通项公式及其求和公式

一、数列通项公式的求法

(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;

(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;

叠乘法(迭乘法):

1

223322111a a a a a a a a a a a a n n n n n n n ???=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】

(4)构造法(待定系数法):形如1n n a ka b -=+、1n

n n a ka b -=+(,k b 为常数)的递推数列;

【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即

1

思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、

21(1)a a f -=,将各式叠加并整理得111

()n n i a a f n -=-=∑,即1

11

()n n i a a f n -==+∑

例题1:已知11a =,1n n a a n -=+,求n a

解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…

∴将各式叠加并整理得12

n n i a a n =-=∑,1

2

1

(1)

2

n n

n i i n n a a n n ==+=+==

∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以n

p 得

11(1)

n n n n n

a a f n p p p ---=+,我们令

n n n a b p =,那么问题就可以转化为类型一进行求解了.

例题: 已知12a =,1

142n n n a a ++=+,求n a

解:∵1

142

n n n a a ++=+ ∴142n

n n a a -=+,则111442n

n n n

n a a --??

=+ ???

, ∵令4n n n

a b =,则112n

n n b b -??

-= ???

,依此类推有1

1212n n n b b ---??

-= ???

、2

2312n n n b b ---??-= ???

、…、2

2112b b ??-= ???

∴各式叠加得1212n

n

n i b b =??-= ???∑,即122111*********n n n n n n n n i i i b b ===????????=+=+==- ? ? ? ???????

??∑∑∑ ∴1441422n n

n

n n n n a b ??

??=?=?-=-?? ???????

②1+1=,()n n a a a a f n =?型,其中()f n 是可以求积数列,用累乘法求通项公式,即

1

(2)(1)f f a

思路(叠乘法):

1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21

(1)a

f a =, 将各式叠乘并整理得

1

(1)(2)(3)n

a f f f a =???…(2)(1)f n f n ?-?-,即(1)(2)(3)n a f f f =???…1(2)(1)f n f n a ?-?-?

例题:已知11a =,11

1

n n n a a n --=+,求n a . 解:∵11

1

n n n a a n --=+ ∴

111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113

a a = ∵11a =

∴将各式叠乘并整理得

112311n a n n n a n n n ---=???+-…2143??,即123

11

n n n n a n n n ---=???+- (212)

43(1)

n n ??=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即

1()11n n q q a p a p p +-

=---,设1n n q

b

a p

=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +??+

=+ ?--??,则数列1n

q a p ??

+??-??

是以11

q

a p +

-为首项,p 为公比的等比数列.

思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1

q

p μ=

-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -??+

=+ ?--??,即1111n n

q q

a a p p p -??=++ ?--?

? 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=

∵11a =

∴数列{}3n a +是以134a +=为首项、2为公比的等比数列

∴113422n n n a -++=?=,即1

23n n a +=-

④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,1

1

1n n n n a a p q q q q ++=?+,设n n n a b q =,则11n n

p b b q q

+=?+

思路(构造法):1

1n n n a pa rq --=+,设11n n n n a a q q μλμ--??+=+ ???,则()1

1n n q p q rq λμλ-=???-=??,从而解得p q r p q λμ?=????=

?-?

那么n n

a r q

p q ??

+?

?-??是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,1

12n n n a a --=-+,求n a 。

解:∵设

1

122n n n n a a μλμ--??+=+ ??

?,则()1

21122

n n λμλ-=-???-=??,解得12

13λμ?

=-????=-??

, 123n n a ??

∴-????

是以111236-=为首项,12为公比的等比数列,即1

1112362n n n

a -??-=? ???21

3

n n a +∴=

⑤+1n

n n a a pa q

=

+型,其中p q 、是常数且0n a ≠,可以采用等式两边取倒数.

思路(转化法):对递推式两边取倒数得11n n n pa d a c a ++=?,那么111n n d p a c a c +=?+,令1

n n

b a =,这样,问题就可以进行求解了. 例题:已知14a =,1221

n

n n a a a +?=

+,求n a

解:∵对递推式左右两边取倒数得

12112n n n a a a ++=即111112n n

a a +=?+, ∴令

1n n b a =则1112n n b b +=+.设()11

2

n n b b μμ++=+,即2μ=- ∴数列{}2n b -是以17244-=-为首项、12为公比的等比数列,则17

22n n b +-=-,即21

272n n n b ++-=,1

2227

n n n a ++∴=-

思路(特征根法):递推式对应的特征方程为ax b x cx d +=+即2

()0cx d a x b +--=.当特征方程有两个相等实根12x x δ==时,数列1n a δ????-??即1

2n a d a c ??

????-??

-?

?为等差数列,我们可设111

22n n a d a d a a c c

λ+=+----

(λ为待定系数,可利用1a 、2a 求得)

;当特征方程有两个不等实根1x 、2x 时,数列12n n a x a x ??-?

?-??

是以11

12a x a x --为首项的等比数列,我们可设1111212n n n a x a x a x a x μ-??--=? ?--??(μ为待定系数,

可利用已知其值的项间接求得);当特征方程的根为虚根时数列{}n a 通项的讨论方法与上同理,此处暂不作讨论. 例题:已知11

2

a =

, 11432n n n a a a --+=+(2n ≥),求n a

解:∵当2n ≥时,递推式对应的特征方程为432

x x x +=

+即2

230x x --=,解得11x =-、23x = ∴数列13n n a a ??+??

-??

是以1112212a x a x -==---为首项的等比数列

∵设

()1113n n n a a μ-+=-?-,由11

2

a =得22a =则3μ-=-, 3μ∴=,即

()11133n n n a a -+=-?-,从而13131n n n a --=+,11

,12

31,2

31n n n n a n -?=??∴=?-?≥?+?

二、数列求和的几种常见方法

数列问题中蕴涵着丰富的数学思想方法,是高考用来考查考生对数学思想方法理解程度的良好素材,是历年高考的一大热点,在高考命题中,多以与不等式的证明或求解相结合的形式出现,一般数列的求和,主要是将其转化为等差数列或等比数列的求和问题,因此,我们有必要对数列求和的各种方法进行系统探讨.

1、公式求和法

通过分析判断并证明一个数列是等差数列或等比数列后,可直接利用等差、等比数列的求和公式求和,或者利用前n 个正整数和的计算公式等直接求和.运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算.特别地,注意数列是等比数列时需要讨论1q =和

1q ≠的情况.

⑴等差数列求和公式:d n n na a a n S n n 2

)1(2)(11-+=+=

另外,还有必要熟练掌握一些常见的数列的前n 项和公式.正整数和公式有:

1

(1)

2

n

k n n k =+=

∑;21

(1)(21)

6

n

k n n n k =++=

∑;

3

21

(1)[

]2

n

k n n k

=+=∑

例1、已知数列(){}n f 的前n 项和为n S ,且.22n n S n +=若(),11f a =()n n a f a =+1()

*

∈N n ,求数

列{}n a 的前n 项和.n T

分析:根据数列的项和前n 项和的关系入手求出(),n f 再根据()n n a f a =+1(∈n *

N )求出数列{}n a 的

通项公式后,确定数列的特点,根据公式解决.

解:∵当2≥n 时,().121+=-=-n S S n f n n 当1=n 时,(),311==S f 适合上式

()12+=∴n n f ()*∈N n ,(),311==f a 121+=+n n a a ()*∈N n ,即)1(211+=++n n a a

∴数列{}1n a +是首项为4、公比为2的等比数列.

∴()12,22

111

1

1

1-=∴=?+=+++-n n n n n a a a ()*

∈N n ;()

.422222

1

3

2

--=-++=++n n T n n n Λ 【能力提升】公式法主要适用于等差、等比数列或可转化为等差、等比数列的数列的求和,一些综合性的数列求和的解答题最后往往就归结为一个等差数列或等比数列的求和问题.

变式训练1: 已知3

log 1log 23-=

x ,求???++???+++n

x x x x 32的前n 项和.

变式训练2: 设*

12()n s n n N =+++∈…,求1

)32()(++=

n n

S n S n f 的最大值.

2、倒序相加法

如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一个常数,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等

差数列前n 项和公式的推导,用的就是“倒序相加法”.

121121n n n n n n S a a a a S a a a a --=++++?

?=++++?…………则

()()()12112n n n n S a a a a a a -=++++++……

例2、已知函数().211223??? ??≠--=

x x x x F 求.200920082009220091??

?

??+??? ??+??? ??F F F Λ 分析:由所求的和式的特点,易想到探究:和为1的两个自变量函数值的和是否为常数.从而确定可否

用倒序相加法求和. 【解析】∵()()()().31122

1312231=----+--=

-+x x x x x F x F ∴设.2009

20082009

220091

??? ??+??? ??+??? ??=F F F S Λ①200820071200920092009S F F F ??????

=++ ? ? ???????

L ②

+

?

???????? ??+??? ?

?++????????? ??+??? ??+????????? ??+??? ??=2009120092008200920072009220092008200912F F F F F F S Λ 602420083=?=,所以.3012=S

【能力提升】倒序相加法来源于课本,是等差数列前项和公司推导时所运用的方法,它是一种重要的求和方法.当求一个数列的有限项和时,若是“与首末两端等距离”的两项和都相等,即可用此法.

例3:已知2

2

()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ??

??

??

++

++++= ? ? ???????

解:∵由2

2

22222

111()111111x x x f x f x x x x

x ?? ?????+=+=+= ?+++????+ ???

∴原式11111(1)(2)(3)(4)111323422

f f f f f f f ???

?????????=++++++=

+++= ? ? ????????????????

??

?

变式训练1: 求ο

οοο

ο89sin 88sin 3sin 2sin 1sin 2

2

22

2++???+++的值

变式训练2:如已知函数f(x)对任意x ∈R 都有21)1()(=

-+x f x f ,++=)1()0(n

f f S n )3()2(n f n f ++…)1()2(n

n f n n f -+-+)1(f + ,

(*N n ∈),求n S

3

2

2

1)(x x x f +=

,那么

=+++++)2008

1

()31()21()2008()2()1(f f f f f f ΛΛ_____

3、裂项相消法

裂项相消法是将数列的各项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n 项和. 一般地,我们把数列的通项分成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.适用于类似?

??

??

?

+1n n a a c (其中{}n a 是各项不为0的等差数列,c 为常数)的数列,以及部分无

理数列和含阶乘的数列等.用裂项法求和,需要掌握一些常见的裂项方法:

?

?

?

??+--=+-12112121)12)(12(1n n n n ;1111

()

()n n k k n n k

=-++;

n n n n -+=++11

1;

例4:{}n a 是公差为d 的等差数列,求

11

1

n

k k k a a =+∑ 解:∵

()()11111110k k k k k k d a a a a d d a a ++??

==-≠ ?+??

·

11111223111111111111n

n

k k k k k k n n a a d a a d a a a a a a ==+++??

????????=-=-+-++-?? ? ? ? ???????????∑∑……11111n d a a +??=- ??? 例5、数列

{}

n a 满足

n n n a a a a a 3

2

35,35,11221-===++

()

*

∈N n ,求

.32323232

1

433

322

21+??? ??++??? ??+??? ??+=n n n

n a a a a a a a a T Λ 分析:根据给出的递推式求出数列{}n a ,再根据

1

32+?

??

??n n n

a a 的特点拆项解决.

解:∵由已知条件,得()n n n n a a a a -=

-+++11232

,{}n n a a -∴+1是以3

212=-a a 为首项,32为公比

的等比数列,故,321n

n n a a ??

?

??=-+

∴()()()21

1213212222131.3333n n n n n a a a a a a a a --??????

??=+-+-++-=++++=-?? ? ?

?????

??????

L L ∴11

1

2211133322221131313333n

n

n n n n n n a a +++????

??

?? ? ???????==-??????????????---?-??

???? ? ? ? ???????????????????

∴23211

12233412222

111111133333.23322221111133333n

n n n n n n T a a a a a a a a +++?????????????? ? ? ???????????=++++=-++-=-????

????????-----????

? ? ? ????????????

?L L 【能力提升】用裂项相消法求和的关键是先将形式复杂的式子转化为两个式子的差的形式因此需要掌

握一些常见的裂项技巧. 变式训练1:在数列{}n a 中,1

1211++

???++++=n n

n n a n ,又12+?=n n n a a b ,求数列{}n b 的前n 项的和.

变式训练:2:求和:111

112123123s n =+

+++

+++++++L L 变式训练3:求和:n

n +++++++++11

341231121Λ. 4、错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.即若在(差比数列){}n n a b ?中,{}n a 成等差数列,{}n b 成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n 项和.

例题:231

1234n n S x x x nx -=+++++……

()23412341n n n x S x x x x n x nx -=+++++-+·……

①—②()2111n n

n x S x x x nx --=++++-……

当1x ≠时,()()

2

111n

n

n

x nx S x

x -=-

--,当1x =时,()

11232

n n n S n +=++++=

…… 【能力提升】错位相减法适用于数列{}n n b a ,其中{}n a 是等差数列,{}n b 是等比数列.若等比数列{}n b 中公比q 未知,则需要对公比q 分11≠=q q 和两种情况进行分类讨论. 例6、已知数列{}n a 是首项为,411=

a 公比为41

=q 的等比数列,设n n a b 4

1log 32=+()*∈N n ,数

列{}n c 满足.n n n b a c ?=求数列{}n c 的前n 项和.n S

分析:根据等比数列的性质可以知道数列{}n b 为等差数列,这样数列{}n c 就是一个等差数列与一个等比数列对应项的乘积构成的数列,因而可考虑用错位相减法来解决.

解:∵由题意知,n

n a ??? ??=41()*∈N n ,又2log 34

1-=n n a b ,故23-=n b n ()

*

∈N n .

∴()1324n

n c n ??=-? ???

()

*

∈N n

∴()()231

11111147353244444n n

n S n n -??????

??

=?+?+?++-?+-? ? ? ?

???????

??

L

∴()()2

3

4

1

1111111473532444444n

n n S n n +??????????=?+?+?++-?+-? ? ? ? ? ???????????

L

∵两式相减,得()().4123214123414141341431

132++???

???+-=??? ???--?

?????????? ??++??? ??+??? ??+=n n n n n n S Λ

n

n n S ??

?

???+-=∴4132332()*∈N n .

变式训练1、求231

1234n n S x x x nx -=+++++……

变式训练2、若数列{}n a 的通项n

n n a 3)12(?-=,求此数列的前n 项和n S .

变式训练3、 求数列

??????,2

2,,26,24,2232n n

前n 项的和. 5、(分组)拆项求和法(裂项重组法)

所谓裂项重组法就是针对一些特殊的数列,既不是等差数列,也不是等比数列的数列,我们可以通过拆分、合并、分组,将所求和转化为等差、等比数列求和

例7、已知数列{}n a 的通项公式为,132-+=n a n

n 求数列{}n a 的前n 项和.

分析:该数列的通项是由一个等比数列{}n

2与一个等差数列{}13-n 组成的,所以可将其转化为一个

等比数列与一个等差数列进行分组求和.

【解析】()()()

132********-+++++=++=n a a a S n

n n ΛΛ

=()()[].13522222

1

-++++++n n

ΛΛ=()

()[]2

13221212-++--n n n =.22

1

232

21

-+++n n n 【能力提升】在求和时,一定要认真观察数列的通项公式,如果它能拆分成几项的和,而这些项分别

构成等差数列或等比数列,那么我们就可以用此方法求和. 例8、数列{}n a 的前n 项和是n

S ()*

∈N n ,若数列{}n

a 的各项按如下规则排列:

,,6

1

,54,53,52,51,43,42,41,32,31,21Λ若存在自然数k ()*∈N k ,

使10,101≥<+k k S S ,则=k a . 分析:数列的构成规律是分母为2的一项,分母为3的两项,分母为4的三项,···,故这个数列的和可以并项求解. 解:5543213,3432123,2332121,2110631=++++==+++==++==

S S S S ,215654321515=+++++=S 而,37654321=+++++这样102

21

21>=S ,而

,102

521571521575432121520=+<+=+++++=S 故75=k a ,故填.75

【能力提升】当一个数列连续的几项之间具有明显的规律性,特别是一些正负相间或者是周期性的数列等,可以考虑用并项求和的方法.

变式训练1:求和:2536+47++(+3)n n ?+??……

变式训练2:求数列221

1,1+2,1+2+21+2+2++2n -,…,

…… 的前n 项和

变式训练3:求数列{(1)(21)}n n n ++的前n 项和.

一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.高考数学试题中所涉及的数列求和问题往往具有一定的技巧性,需要考生具有很强的分析问题、解决问题的能力才能解决,但是基本的求和方法就是上面介绍的这些.希望广大考生熟练掌握,灵活适用. 三、数列的综合应用

⑴求解等差、等比数列的综合问题的基本途径是:应用等差数列和等比数列的基本量(首项、公差、或公比、通项、前n 项和)表示数列中的项,适时地应用它们的基本性质求解.此外,应该熟悉等差数列与等比数列的递推公式.

⑵数列与函数、数列与不等式的综合问题主要是:由函数的解析式得到的数列递推公式,转化为等差数列或等比数列进行求解.

⑶数列的应用问题:一般地,涉及递增率通常用到等比数列;涉及依次增加或减少要用到等差数列;

复利和分期付款问题,用等比数列解决.

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结 知识点精讲 一、基本概念 (1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. (2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列 的通项公式. 注:①并非所有的数列都有通项公式; ②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式. 题型归纳及思路提示 题型1 数列通项公式的求解 思路提示 常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法 根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a ②叠乘法:形如1()n n a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a ③构造辅助数列:通过变换递推公式,将非等差(等比)数列 构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法. 利用n S 与n a 的关系求解 形如 1(,)()n n n f S S g a -=的关系,求其通项公式,可依据 1* 1(1)(2,) n n n S n a S S n n N -=? =?-≥∈?,求出n a 观察法 观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n -或者1 (1) n -- 部分.②考虑各项的变化 规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2 n 、{}2n 与(1) n -有 关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式: (1)325374 ,,,,,,;751381911 - --L

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

数列求通项公式及求和9种方法

【方 a n a S n 数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型 亠、S n 是数列{a n }的前n 项的和 S i (n 1) S n S n 1 (n 2 ) S n 1 ”代入消兀消a n 【注意】漏检验n 的值(如n 1的情况 [例 U . ( 1)已知正数数列{a n }的前n 项的和为S n , 且对 任意的正整数n 满足2\金 如1 ,求数列{a n }的 通项公式。 (2)数列{a n }中,印1对所有的正整数n 都有 a 1 a 2 a 3 L a n 『, 求数列 {a n } 的通项公式 【作业一】 2 n 1 n * 1 — 1 ■数列 a n 满足 a 1 3a 2 3 a 3 L 3 a n - (n N ) , 求数列a n 的通项公式. (二).累加、累乘 a 型如 a a f(n) , am f (n )

型一:a n a n 1 f (n),用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 a n a n 1 f(n), a n 1 a n 2 f(n 1), a2 a1 f (2) n 2, 从而a n a1 f (n) f(n 1) L f (2),检验n 1 的情况型二:|电f(n),用累乘法求通项公式(推导等比a n1 数列通项公式的方法) 【方法】n 2,亘也L邑f(n) f(n 1) L f(2) a n 1 a n 2 a i 即色f(n) f(n 1) L f(2),检验n 1的情a1 况 【小结】一般情况下,“累加法”(“累乘法”)里只有n 1个等式相加(相乘). 1 1 【例2】.(1)已知a1 2,a n a n1 ■n^[(n 2),求 a n ■ n 2 (2)已知数列a n满足a n1 - 2a n,且a1 n 2 3 求a n .

数列的通项公式与求和的常见方法

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =,12n n a a +-=* ()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,1 3n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =,110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-,13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=* ()n N ∈,求数 列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++* ()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足2 11=a ,n a a n n 21+=+,* ()n N ∈求 数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈, 13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11ln(1)n n a a n +=++,求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,*()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 31 31+-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,2 51n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可得数列 λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{} n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列 {}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-* ()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新的等差数 列。 例:已知数列{}n a 满足11a =,122 n n n a a a += +*()n N ∈, 求数列{}n a 的通项公式。 变式练习: 1. 已 知 数 列 {} n a 满 足 11 a =, 1(1)n n na n a +=++(1)n n +, * ()n N ∈,求数列{}n a 的 通项公式。 2. 已知首项都为1的两个数列{}n a 、{} n b (0n b ≠* n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b =求数列{}n c 的通 项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ=-++11,即数列? ? ????n n p a 为以p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数 列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1 15 5+++=n n n a a ,11=a ,求数列 {}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列 {}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的 前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2232221n a a a a ++++Λ. 类型二:分组求和法 例. 求数列的前n 项和: 232 1 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 2 1 )12(+ +=,求n S . 类型三:倒序相加法 例.求ο ο ο ο 88sin 3sin 2sin 1sin 2 2 2 2+???+++ο 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式; (2)设n n n b a c = ,求数列}{n c 的前n 项和n T . 类型五:裂项相消法 例.已知数列}{n a 中,) 2(1 += n n a n ,求n S . 1.求数列 1 1 ,,321,211++???++n n 的前n 项和. 2.在数列}{n a 中,1 1211++???++++=n n n n a n , 又1 2 +?=n n n a a b ,求数列}{n b 的前n 项的和. 3.求和 求数列的通项与求和作业 1.已知数列}{n a 的首项11=a (1)若12n n a a +=+,则n a =__________; (2)若12n n a a +=,则n a =_________ 1 11{}:1,{}.31n n n n n a a a a a a --==?+ 已知数列满足,求数列的通项公式

求数列通项公式与数列求和精选练习题(有答案)

数列的通项公式与求和 1 练习1数列佝}的前n项为S n,且a =1, a ni=-S n(n =1,2,3,) 3 (1) 求a2,a3, a4B值及数列{a n}的通项公式. (2) 求a2a4一-玄 n ■ 2 练习2 数列{a n}的前n项和记为S n,已知a^1, 3n1 6(n = 1,2,…)?证明: n (1) 数列{§L}是等比数列; n (2) S n 1 = 4a n 1 * 练习3 已知数列{a n}的前n项为S n,S n = —@n -1)(门,N ) 3 (1)求耳忌 ⑵求证:数列{a n}是等比数列.

1 1 已知数列{a n }满足 @ = — ,a n1 =a n ? - ,求a n . 2 n +n 练习5 已知数列 {an } 满足?岭…&an,求歸 5 1 1 n * 练习6已知数列?}中,印 ,a n 1 a n - H),求a n . 6 3 2 练习7已知数列{a n }满足:a n 色^ , a , =1,求数列{a n }的通项公式 3色」+1 { } 2 十2十2+…十2 等比数列 {a n } 的前n 项和S n = 2n - 1,则a1 a 2 a 3 a n 5 (10n -1) 练习 9 求和:5, 55, 555, 5555,…,9 练习4 练习

练习10 求和: + +… + 1 4 4 7 (3n - 2) (3n 1) ’ 1 1 1 1 练习11 求和: 1 2 12 3 12 3 n 练习12 设 {a n } 是等差数列, {b n } 是各项都为正数的等比数列,且 = b^=1 , fa 1 a 5 b 3 =13 (I)求 {a n } , { b n } 的通项公式;(H)求数列? 的前门项和S n . Sb = 21

数列求通项公式及求和9种方法

数列求通项公式及求和 9种方法 -CAL-FENGHAI.-(YICAI)-Company One1

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a 的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都 有2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-?? 即1 ()(1)(2)n a f n f n f a =?-??,检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知2 11=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列 {}n a 满足1 2 n n n a a n +=+,且32 1=a ,求n a .

数列求通项公式及求和9种方法

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都有 2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1- 1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通 项公式.

(二).累加、累乘 型如1()n n a a f n --=, 1 ()n n a f n a -= 1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比 数列通项公式的方法) 【方法】2n ≥, 1 2 12 1 ()(1)(2)n n n n a a a f n f n f a a a ---??? =?-??

数列通项公式与求和的常见解法

数列通项公式的十种求法 {a n }的通项公式。 二、累加法 例2已知数列{a n }满足a n 1 a n 2n 1, 3 (n 1)(n 2 n 、公式法 例1已知数列{a n }满足a n 1 2a n 3 2n , a i 2,求数列{a n }的通项公式。 解:a n 1 2a n 3 2n 两边除以2n 1,得開 a n 3 a n 1 a n 3 2^ 2,人」2门1歹 2, 得鱼 2n 以岂 2 1为首项,以-为公差的等差数列,由等差数列的通项公式, 21 2 2 故数列{》}是 1(n 丐, 3 1 所以数列{a n }的通项公式为a n ( n -)2n 。 评注:本题解题的关键是把递推关系式 a n1 2a n 2n 转化为開 是等差数列,再直接利用等差数列的通项公式求出 a n 1)3,进而求出数列 -,说明数列 2 解:由a n 1 a n 2n 1 得 a n 1 a n 2n 1则 a n (a n [2(n 2[(n 2^ a n 1 ) (a n 1) 1) 1)n 2 1 a n 2 ) 1] [2(n 2) (n 2) 1] I 2 1] @3 a 2) L (2 2 1) 1 (a 2 a 1 ) 4 1) (2 1 1) 1 (n (n 1) 所以数列{a n }的通项公式 为 a n 评注:本题解题的关键是把递推关系式 a n 1 a n 2n 1转化为a n 1 a n 2n 1,进而求 出(a n a n 1) (a n 1 a n 2) L (a 3 a 2) (a ?印) a 1,即得数列{a n }的通项公 式。 求数列{a n }的通项公式。 1) 1

数列的通项及求和公式

数列的通项及求和公式专题课内导学案11 一、基本公式法:等差数列,等比数列。 例1、(1)若{}n a 是等差数列,公差0d ≠, 236,,a a a 成等比,11a =,则n a =_________。 (2)若{}n a 是等比数列,243,,a a a 成等差, 13a =,则n a =_________。 二、已知n S 求n a :11 (2) (1)n n n S S n a S n --≥?=? =?。 类型1、(1)已知2 1n S n n =++,求n a 。 (2)已知101n n S =-,求n a 。 类型2、(1)已知32n n S a =-,求n a ; (2)已知3 32 n n S a =-,求n a ; (3)已知22n n S a +=,求n a 。 类型3、(1)2 24n n n a a S +=,0n a >,求n a ; (2)2 1056n n n S a a =++,0n a >,求n a ; (3)2111 424 n n n S a a = ++,0n a >,求n a 。 类型4、(1)11a =,12n n a S +=,求n a ; (2)11a =,12n n S a +=,求n a ; (3)13a =,11n n S a +=+,求n a 。

类型5、(1)122n n a a a ++???+=,则n a =_____ (2)123n a a a a n ?????=,则n a =_____ (3)12323n a a a na n +++???+=,则n a =_____ (4) 3 12123n a a a a n n +++???+=,则n a =_____ (5)231233333n n a a a a n +++???+=,n a =___ 三、形如1()n n a a f n +-=的递推数列求通项公式,使用累加法。 例1、(1)数列{}n a 中满足12a =,1n n a a n +=+,求n a 的通项公式。 (2)已知数列{}n a 中满足13a =, 12n n n a a +=+,求n a 的通项公式。 (3)求数列2,4,9,17,28,42,???的通项公式。 四、形如 1 ()n n a f n a +=的递推数列求通项公式,使用累乘法。 例1、(1)数列{}n a 中满足15a =,12n n n a a +=?, 求n a 的通项公式。 (2)数列{}n a 中满足14a =,11 n n n a a n +=?+,求n a 的通项公式。 (3)112a = ,111 n n n a a n --=+(2n ≥),求n a 的通项公式。 五、构造法 例1、(1)14a = 2=,求n a ; (2)14a =,22 12n n a a +-=,求n a ; (3)14a =, 144 2n n a a +-=,求n a ; (4)12a =,112(1)n n a a +-=-,求n a ; (5)11a =,1(1)3n n n a na ++=,求n a ; (6)11a =,121n n a a n n +-=+,求n a 。

求数列通项公式及求和的基本方法

求数列通项公式及求和的基本方法 1.公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有 1n n n a S S -=-(2)n ≥,等差数列或等比数列的通项公式。 例一 已知无穷数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项 公式? 12n n a ?? = ??? . 反思:利用相关数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设条件,建立递推关系,是本题求解的关键. 2.累加法:利用1211()()n n n a a a a a a -=+-+???-求通项公式的方法称为累加法。累加法是求型如1()n n a a f n +=+的递推数列通项公式的基本方法(()f n 可求前n 项和). 已知112a =,112n n n a a +?? =+ ??? *()n N ∈,求数列{}n a 通项公式. 3. 累乘法:利用恒等式3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥求通项公式的方法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的基本方法(数列()g n 可求前n 项积). 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. n a n =. 反思: 用累乘法求通项公式的关键是将递推公式变形为1()n n a g n a +=.

4.构造新数列: 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例1:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+211 ,求n a 1131122n a n n =+-=- 解: 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例2:已知数列{}n a 满足3 21=a ,n n a n n a 11+= +,求n a 。23n a n = 解: 变式:(全国I,)已知数列{a n },满足a 1=1,1321)1(32--+???+++=n n a n a a a a (n ≥2),则{a n }的 通项1___n a ?=?? 12 n n =≥ 2!n a n =)2(≥n 解

数列求和及数列通项公式的基本方法和技巧

数列求和的基本方法和技巧 关键词:数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法 合并法 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。 二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方

求数列通项公式累乘和累加法

全国名校高中数学优质学案、专题汇编(附详解) 1 专题:求数列的通项公式——累加法和累乘法 学习目标 1. 掌握并能熟练应用数列通项公式的常用方法:累加法和累乘法; 2. 通过对例题的求解引导学生从中归纳相应的方法,明确不同的方法适用不同的前提、形式,使学生形成解决数列通项公式的通法; 3. 感受知识的产生过程,通过方法的归纳,形成事物及知识间联系与区别的哲学观点,体会数学累加思想和累乘思想。 ________________________________________________________________________________ 自学探究:回顾等差、等比数列的通项公式推导过程,完成下列任务。 例:已知数},{n a 其中,, 111n a a a n n +==+ ① 求它的通项n a 。 变题1:把①式改为;11+=+n n a a 变题2:把①式改为;21 n n n a a +=+ 小结1:通过求解上述几个题,你得到什么结论? 变题3:把①式改为;11n n a n n a += + 变题4:把①式改为;21 n n a a =+ 小结2:通过求解上述2个题,你得到什么结论? 挑战高考题: 1.(2015.浙江.17)已知数列{}n a 满足n n n a a a 2,211==+,)*∈N n (。 (1)求n a 2.(2008.江西.5)在数列{}n a 中,)11ln(,211n a a a n n ++==+,则=n a ( ). A.n ln 2+ B.n ln 1-n 2)(+ C.n n ln 2+ D.n n ln 1++ 你能否自己设计利用累加法或累乘法求解数列通项公式的题? 通过本节课的学习你收获了什么?

求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种方法(方法全,例子全,归纳细) 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法、 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、 等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211 122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13) 2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=+++++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 111 21 3333n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故 11223211 2232111122122()()()()33333333212121213()()()()3333333332(1)11111()1 333333 n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++

求数列通项公式的11种方法

求数列通项公式的11种方法方法 总述:一.利用递推关系式求数列通项的11种方法: 累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、 换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用) 不动点法(递推式是一个数列通项的分式表达式)、 特征根法 二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。 四.求数列通项的基本方法是:累加法和累乘法。 五.数列的本质是一个函数,其定义域是自然数集的一个函数。 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-=

两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足1121 1n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1 (1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 例2 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。 解法一:由1231n n n a a +=+?+得1231n n n a a +-=?+则 11232211122112211()()()()(231)(231)(231)(231)3 2(3333)(1)3 3(13)2(1)3 13 331331 n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=?++?+++?++?++=++ +++-+-=+-+-=-+-+=+- 所以3 1.n n a n =+- 解法二:13231n n n a a +=+?+两边除以1 3 n +,得 11 121 3333 n n n n n a a +++=++, 则 111 21 3333n n n n n a a +++-=+,故

相关文档