文档库 最新最全的文档下载
当前位置:文档库 › 未解决的世界数学难题

未解决的世界数学难题

未解决的世界数学难题
未解决的世界数学难题

一、千年难题。

"千僖难题"之一:P(多项式算法)问题对NP(非多项式算

法)问题

在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最

突出的问题之一。它是斯蒂文〃考克(StephenCook)于1971

年陈述的。

"千僖难题"之二:霍奇(Hodge)猜想

二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。

"千僖难题"之三:庞加莱(Poincare)猜想

如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是"单连通的",而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。

"千僖难题"之四:黎曼(Riemann)假设

有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经

对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

"千僖难题"之五:杨-米尔斯(Yang-Mills)存在性和质量缺

量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观

念。

"千僖难题"之六:纳维叶-斯托克斯(Navier-Stokes)方程

的存在性与光滑性

起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶

-斯托克斯方程中的奥秘。

"千僖难题"之七:贝赫(Birch)和斯维讷通-戴尔

(Swinnerton-Dyer)猜想

数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方

法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。

数学研究领域的重大难题(续)

数学领域其他的难题可以说层出不穷,根据您提供的信息,

简单的至少有以下几个:

第一个是哥德巴赫猜想

哥德巴赫(Goldbach)是德国一位数学家,生于1690年。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,

12=5+7等等。

公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉

(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(<--emo&B)--> <--endemo--> 任何一个>=9之奇数,都

可以表示成三个奇质数之和。

这就是著名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。

从此,这道著名的数学难题引起了世界上成千上万数学家的

注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比36大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9+9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样

就证明了“哥德巴赫猜想”。

目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chen's Theorem) 。即“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结论为大偶数可表示为“1 + 2 ”的

形式。

在陈景润之前,关于偶数可表示为 s个质数的乘积与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了“9 + 9”。

1924年,德国的拉特马赫(Rademacher)证明了“7 + 7”。

1932年,英国的埃斯特曼(Estermann)证明了“6 + 6”。

1937年,意大利的蕾西(Ricei)先后证明了“5 + 7”, “4 + 9”, “3 + 15 ”和“2 + 366”。

1938年,苏联的布赫?夕太勃(Byxwrao)证明了“5 + 5”。 1940年,苏联的布赫?夕太勃(Byxwrao)证明了“4 + 4”。

1948年,匈牙利的瑞尼(Renyi)证明了“1 + c”,其中c

是一很大的自然数。

1956年,中国的王元证明了“3 + 4”。

1957年,中国的王元先后证明了“3 + 3 "和 "2 + 3”。

1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了“1 + 5”,不久,潘承洞和王元又证明了“1 + 4”。

1965年,苏联的布赫?夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),以及意大利的朋比利(Bombieri)证明了“1

+ 3 ”。

1966年,中国的陈景润证明了“1 + 2”。

最终会由谁攻克“1 + 1”这个难题呢?现在还无法预测,不过,王元最近有一个演讲,说英国数学家正在绕道探讨,

但愿有希望。

图1 大数学家欧拉

图2 青年人的榜样、

中国著名数学家陈景润

图3 著名数学家王元

图4法国数学家韦达

图6法国数学家达朗贝尔

第二个是连续统之谜

(注:文中将阿拉夫零记为alf(0),阿拉夫一记为alf(1),

依次类推…)

由于alf(0)是无穷基数,阿拉夫是有异于有限运算的神奇运算,因而,以下的结果也不足为怪:

alf(0)+ 1 = alf(0)

alf(0) + n = alf(0)

alf(0) + alf(0) = alf(0)

alf(0) n = alf(0)

alf(0) alf(0) = alf(0)

alf(0)是自然数集的基数。一个无穷基数,只要是可数集,其基数必为alf(0)。由可排序性,可知如整数集、有理数集的基数为alf(0);或由它们的基数为alf(0),得它们为

可数集。而实数集不可数(可由康托粉尘线反证不可数)推之存在比alf(0)更大的基数。乘法运算无法突破alf(0),但幂集可突破: = alf(1)。可以证明实数集的基数card(R) = alf(1)。进而,阿拉夫“家族”一发而不可收:

= alf(2); = alf(3); ……

alf(2)究竟有何意义?人们冥思苦想,得出空间所有曲线的数目。但而后的alf(3),人类绞尽脑汁,至今未能道出眉目来。此外,还有一个令人困惑的连续统之谜:“alf(0)与alf(1)之间是否还存在另一个基数?”

公元1878年,康托提出了这样的猜想:在alf(0)与alf(1)之间不存在其它的基数。但当时康托本人对此无法予以证

实。

公元1900年,在巴黎召开的第二届国际数学家会议上,德国哥庭根大学教授希尔伯特提出了举世闻名的23个二十世纪须攻克的数学问题中,连续统假设显赫的排在第一个。然

而这个问题的最终结果却是完全出人意料的。

公元1938年,奥地利数学家哥德尔证明了“连续统假设决不会引出矛盾”,意味着人类根本不可能找出连续统假设有什么错误。1963年,美国数学家柯亨居然证明了“连续统假设是独立的”,也就是说连续统假设根本不可能被证明。

哥德尔的工作太重要了,冯.诺依曼就是受他的影响来设

计计算机。

用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷

明快的书面证明方法。

第四个是几何的三大问题

平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。用直尺与圆规当然可以做出许多种图形,但有些图形如正七边形、正九边形就做不出来。有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。

几何三大问题是 :

1.化圆为方:求作一正方形使其面积等于一已知圆;

2.三等分任意角;

3.倍立方:求作一立方体使其体积是一已知立方体的二倍。

圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π,所以化

圆为方的问题等于去求一正方形其面积为π,也就是用尺规做出长度为的线段(或者是π的线段)。

三大问题的第二个是三等分一个角的问题。对于某些角如,三等分并不难,但是否所有角都可以三等分呢?例如,若能三等分则可以做出的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为)。其实三等分角的问题是由求作正多边形这一类问题

所引起来的。

第三个问题是倍立方。埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。

这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。

1637年笛卡儿创建解析几何以后,许多几何问题都可以

转化为代数问题来研究。1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。

五、数学研究领域的重大难题(续)

第五个是费马最后定理

被公认执世界报纸牛耳地位的纽约时报于1993年6月24日在其一版头题刊登了一则有关数学难题得以解决的消息,那则消息的标题是《在陈年数学困局中,终于有人呼叫“我找到了”》。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以“业余王子”之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学

家戴奥芬多斯的数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理。这个定理的内容是有关一个方程式的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理):,此处z表示一直角形之斜边,而x、y为其之两股,也就是一个直角三角形之斜边的平方等于它的两股的平方和,这个方程式当然有整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13……等等。费马声称当n>2时,就找不到满足的整数解,例如:方程式就无法找到整数解。

当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最后定理也就成了数学界的心头大患,

极欲解之而后快。

十九世纪时法国的法兰西斯数学院曾经在1815年和1860年两度悬赏金质奖章和三百法郎给任何解决此难题的人,可惜

都没有人能够领到奖赏。德国的数学家佛尔夫斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人,有效期间为100年。其间由于经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然如此仍

然吸引不少的“数学痴”。

二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确的(注286243-1为一天文数字,大约为25960位数)。

虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终于解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决的。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明的。

50年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在80年代德国数

学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论由威利斯在1993年的6月21日于英国剑桥大学牛顿数学研究所的研讨会正式发表,这个报告马上震惊了整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的证明马上被检验出有少许的瑕疵,于是威利斯与他的学生又花了十四个月的时间再加以修正。1994年9月19日他们终于交出完整无瑕的解答,数学界的梦魇终于结束。1997年6月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。

要证明费马最后定理是正确的(即对n>3 均无正整数解),只需证和 (P为奇质数)都没有整数解。

六、数学研究领域的重大难题(续)

第六个是七桥问题(一笔画问题)

当欧拉(Euler)在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,在河上建有七座桥如图所示:

这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。Euler把每一块陆地考虑成一个点,连接两块陆地的桥

以线表示,便得如下的图形:

后来推论出此种走法是不可能的。他的论点是这样的:除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始

世界十大数学难题

难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 难题”之二:霍奇(Hodge)猜想 难题”之三:庞加莱(Poincare)猜想 难题”之四:黎曼(Riemann)假设 难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口 难题”之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 难题”之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 难题”之八:几何尺规作图问题 难题”之九:哥德巴赫猜想 难题”之十:四色猜想 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题的简单介绍。 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 “千僖难题”之二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。“千僖难题”之三:庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四:黎曼(Riemann)假设

现代数学七大难题

20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决,如费尔玛大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲,其后,塔特(T ate)和阿啼亚(Atiyah) 公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 现在先只列出一个清单: 这七个“千年大奖问题”是:NP 完全问题,郝治(Hodge)猜想,庞加莱(P oincare)猜想,黎曼(Rieman )假设,杨-米尔斯(Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程,BSD(Birch and Swinnerton-Dyer)猜想。 “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 (北京大学数学学院院长张继平) 7大难题的介绍 “千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

3趣味数学小故事

动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。 丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?” 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。 阿拉伯数字的由来 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。 阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,

高考数学:世界著名数学难题

455 63 世界著名数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成 等, 从而使数学的基本理论得到空前发展。回首20世纪数学 的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫·希 尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世 界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方 向。 知识荐语: 数学是研究数量、结构、变化以及空间模型等概念的一门 基础学科,简单地说,是研究数和形的科学。在数学发展的历 史上,数学们不但证明了诸多经典的定理,还把众多谜题留给 后人。这期知识,就让我们一同走进那些著名的数学难题。 1. 四色猜想 世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 ? 四色猜想到底怎么回事? ? 什么是四色猜想 ? 证明四色猜想的计算机是什么名字 ? 哪里有关于四色猜想的资料 ? 请问世界上那个四色猜想的内容是什么? ? 2. 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。 ? 哥德巴赫猜想为什么被转化为证明1+1? ? 哥德巴赫猜想的内容 ? 哥德巴赫猜想难在哪里? ? 哥德巴赫猜想有什么新进展 ? 哥德巴赫猜想与1+1是什么关系?

世界50个经典的数学难题

世界50个经典的数学难题 第01题阿基米德分牛问题 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。 在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。 在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数 是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。 问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。 问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题 a头母牛将b块地上的牧草在c天内吃完了; a&#39;头母牛将b&#39;块地上的牧草在c&#39;天内吃完了; a"头母牛将b"块地上的牧草在c"天内吃完了; 求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题 在下面除法例题中,被除数被除数除尽: * * 7 * * * * * * * ÷* * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢?第05题柯克曼的女学生问题 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每 个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of th e Misaddressed letters

世界七大数学难题

世界七大数学难题 难题的提出 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展,数学家们深切感谢20世纪最伟大的数学大师大卫·希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,98年费尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. 世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣 布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已被我国中山大学朱熹平教授和旅美数学家、清华大学兼职教授曹怀东破解了。) 整个计算机科学的大厦就建立在图灵机可计算理论和计算复杂性理论的基础上, 一旦证明P=NP,将是计算机科学的一场决定性的突破,在软件工程实践中,将革命性的提高效率.从工业,农业,军事,医疗到生活,软件在它的各个应用域,都将是一个飞跃. P=NP吗?这个问题是著名计算机科学家(1982年图灵奖得主)斯蒂文·考克(StephenCook)于1971年

100个历史上最有名的数学难题

100个历史上最有名的数学难题 第01题阿基米德分牛问题archimedes' problema bovinum 太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成。在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7。在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7。问这牛群是怎样组成的? 第02题德·梅齐里亚克的法码问题the weight problem of bachet de meziriac 一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物。问这4块砝码碎片各重多少? 第03题牛顿的草地与母牛问题newton's problem of the fields and cows a头母牛将b块地上的牧草在c天内吃完了;a'头母牛将b'块地上的牧草在c'天内吃完了;a"头母牛将b"块地上的牧草在c"天内吃完了;求出从a到c"9个数量之间的关系?

第04题贝韦克的七个7的问题berwick's problem of the seven sevens 在下面除法例题中,被除数被除数除尽:* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * * * * * * * * * * * * * 7 * * * * * * * * * 7 * * * * * 7 * * * * * * * * * * * * * * * 7 * * * * * * * * * * * * * * 用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢? 第05题柯克曼的女学生问题kirkman's schoolgirl problem 某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每个女生同其他每个女生同一行中散步,并恰好每周一次? 第06题伯努利-欧拉关于装错信封的问题the bernoulli-euler problem of the misaddressed letters 求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置。

世界近代三大数学难题:哥德巴赫猜想

世界近代三大数学难题:哥德巴赫猜想 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。 猜想提出 1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。” 1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。 研究途径 研究偶数的哥德巴赫猜想的四个途径。这四个途径分别是:殆素数,例外集合,小变量的三素数定理以及几乎哥德巴赫问题。 殆素数

世界7大数学难题

世界七大数学难题 这七个“千年大奖问题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想 千年大奖问题 美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千年数学难题”的每一个悬赏一百万美元。 其中有一个已被解决(庞加莱猜想),还剩六个.(庞加莱猜想,已由俄罗斯数学家格里戈里·佩雷尔曼破解。) “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。可以预期,“千年大奖问题” 将会改变新世纪数学发展的历史进程。 P问题对NP问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因式分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。人们发现,所有的完全多项式非确定性问题,都可以转换为一类叫做满足性问题的逻辑运算问题。既然这类问题的所有可能答案,都可以在多项式时间内计算,人们于是就猜想,是否这类问题,存在一个确定性算法,可以在多项式时间内,直接算出或是搜寻出正确的答案呢?这就是著名的NP=P?的猜想。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克于1971年陈述的。 霍奇(Hodge)猜想

Removed_希尔伯特23个问题与21世纪七大数学难题

希尔伯特23个问题与21世纪七大数学难题 2009-12-31 12:41:40 希尔伯特23个问题及解决情况 1900年希尔伯特应邀参加巴黎国际数学家大会并在会上作了题为《数学问题》重要演讲。在这具有历史意义的演讲中,首先他提出许多重要的思想: 正如人类的每一项事业都追求着确定的目标一样,数学研究也需要自己的问题。正是通过这些问题的解决,研究者锻炼其钢铁意志,发现新观点,达到更为广阔的自由的境界。 希尔伯特特别强调重大问题在数学发展中的作用,他指出:“如果我们想对最近的将来数学知识可能的发展有一个概念,那就必须回顾一下当今科学提出的,希望在将来能够解决的问题。” 同时又指出:“某类问题对于一般数学进程的深远意义以及它们在研究者个人的工作中所起的重要作用是不可否认的。只要一门科学分支能提出大量的问题,它就充满生命力,而问题缺乏则预示着独立发展的衰亡或中止。” 他阐述了重大问题所具有的特点,好的问题应具有以下三个特征: 清晰性和易懂性; 虽困难但又给人以希望; 意义深远。 同时他分析了研究数学问题时常会遇到的困难及克服困难的一些方法。就是在这次会议上他提出了在新世纪里数学家应努力去解决的23个问题,即著名的“希尔伯特23个问题”。 编号问题推动发展的领域解决的情况 1 连续统假设公理化集合论1963年,Paul J.Cohen 在下述意义下证明了第一个问题是不可解的。即连续统假设的真伪不可能在Zermelo_Fraenkel公理系统内判定。 2 算术公理的相容性数学基础希尔伯特证明算术公理的相容性的设想,后来发展为系统的Hilbert计划(“元数学”或“证明论”)但1931年歌德尔的“不完备定理”指出了用“元数学”证明算术公理的相容性之不可能。数学的相容性问题至今未解决。 3 两等高等底的四面体体积之相等几何基础这问题很快(1900)即由希尔伯特的学生 M.Dehn给出了肯定的解答。 4 直线作为两点间最短距离问题几何基础这一问题提得过于一般。希尔伯特之后,许多数学家致力于构造和探索各种特殊的度量几何,在研究第四问题上取得很大进展,但问题并未完全解决。 5 不要定义群的函数的可微性假设的李群概念拓扑群论经过漫长的努力,这个问题于1952年由Gleason, Montqomery , Zipping等人最后解决,答案是肯定的。 6 物理公理的数学处理数学物理在量子力学、热力学等领域,公理化方法已获得很大成功,但一般地说,公理化的物理意味着什么,仍是需要探讨的问题。概率论的公理化已由 A.H.Konmoropob等人建立。 7 某些数的无理性与超越性超越数论1934年A.O.temohm 和Schneieder各自独立地解决了这问题的后半部分。 8 素数问题数论一般情况下的Riemann猜想至今仍是猜想。包括在第八问题中的Goldbach 问题至今也未解决。中国数学家在这方面做了一系列出色的工作。 9 任意数域中最一般的互反律之证明类域论已由高木贞治(1921)和E.Artin(1927)解决. 10 Diophantius方程可解性的判别不定分析1970年由苏、美数学家证明Hilbert所期望的一

高中数学十大难点概念的调查研究

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学十大难点概念的调查研究高中数学十大难点概念的调查研究 [摘要] 随着我国教育事业的蓬勃发展,在新课程标准的要求下高中数学在原有的基础上也发生了质的飞跃。 数学概念是数学知识体系中的核心环节,为学生的知识构建和数学教育的认知结构的发展发挥着巨大的作用,由此可见,高中数学概念的调查研究在高中数学难点概念教学中中具有举足轻重的作用。 本文研究的主要问题是当前高中数学教师对于高中数学十大难点概念现状调查。 通过问卷调查和课堂听课以及面对面探讨的方法收集出所要研究的原始资料和数据,并将其进行了资料分析和数据处理,从而得出研究的主要结论是,当前高中数学教师已经认识到高中数学的十大难点,但由于教师的数学教育观念和教学态度等方面原因,使其在高中数学十大难点概念的教学中有一定的影响。 本文主要阐述了对于高中数学十大难点概念进行调查研究的必要性以及对于调查结果的理论分析,最后提出关于高中数学十大难点概念教学的一些建议。 [关键词] 高中数学十大难点概念调查研究随着我国教育事业的蓬勃发展,素质教育也日益受到人们的重视,而数学概念教学在素质教育中具有重要的意义。 1/ 7

数学概念是现实世界空间形式和数量关系及其本质属性在思维中的反映,它不仅包含着数学判断、推理、论证以及数学理论体系演化的一切矛盾的萌芽,而且象征着数学的思想和方法。 在课改的春风中新课程标准也揭示了数学概念的形成过程,让学生从概念的现实原形、概念的抽象过程、数学思想的指导作用、形式表达和符号化的运用等多方面理解一个数学概念,使之符合学生主动构建的教育原理。 根据新课程改革的理念和要求,教学内容的各个方面都发生了很大的变化,然而对于高中数学十大难点概念的教学更是难上加难,学生在对这些概念的理解更是困难,这必然造成数学在各学科的教育中成为学生畏难的科目之一。 因此,如何解决高中数学概念中的难点教学,进一步加强学生对于高中数学十大难点概念的理解,成为高中数学教师面临的迫切任务。 由此可见,对于高中数学十大难点概念的调查研究是必要的。 高中数学十大难点概念调查研究的意义数学概念是数学思维的核心和逻辑的起点,是学生认知的基础,是以掌握概念、原理为主要学习目标的高中学生的思维能力、空间想象能力以及分析解决数学问题能力等都得到发展的关键,但学生在学习过程中感到难学,教师在教学过程中感到难教的时候,就出现了数学概念的难点。 在高中数学中存在着几百个数学概念,而这么多的概念中会遇到或多或沙的十大难点概念,这些难点概念不仅使学生普遍难以理解

世界经典数学名题

鸡兔同笼 《孙子算经》卷下第31题叫“鸡兔同笼”问题,也是一道世界数学名题。“有一群野鸡和兔子关在同一个笼子里,头数是35,脚数是94。问野鸡和兔子的数目各是多少?”这个题目编得很有趣,如果35只动物全是鸡,就应该有70只脚;如果全是兔,就应该有140只脚,而题中却说共有94只脚,给人一种左右为难的印象。其实,解题关键也正在这里,假设35只动物全是鸡,则共有70只脚,与题中“脚数是94”相比较,还差24只脚,将1只兔看作是鸡,脚数就会相差2,有多少只兔被看作是鸡了呢?24 2=12。算到这里,答案也就呼之欲出了。 清朝时,作家李汝珍把这类问题写进了小说《镜花缘》中。书中有这样一个情节,一座楼阁到处挂满了五彩缤纷的大小灯球,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个。一位才女把大灯看作是头,小灯看作是脚;把一种灯球看作是鸡,把另一种看作是兔,运用“脚数的一半减头数得兔数,头数减兔数得鸡数”的算法,很快就算出了一大二小的灯是120盏,一大四小的灯是240盏,赢得了一片喝彩声。伴随古代中外文化交流,鸡兔同笼问题很快就漂洋过海流传到了日本。不过到了日本之后,鸡变成了仙鹤,兔变成了乌龟,鸡兔同笼变成了赫赫有名的“鹤龟算”。 狗跑与兔跳 行程问题是中小学里常见的一类数学应用题,也是一类很古老的数学问题。在我国古代数学名著《九章算术》里,收集了很多这方面的题目如书中第6章第14题:“狗追兔子。兔子先跑100步,狗只追了250步便停了下来,这时它离兔子只有30步的距离了。问如果狗不停下来,还要跑多少步才能追上兔子?”这道追及问题编得很有趣,它没有直接告诉狗与兔的“速度差”,反而节外生枝地让狗在追及过程中停了下来,数量关系显得扑朔迷离。2000年前,我们的祖先解决这类问题已经很有经验了,所以书中只是简单地说,用(250 30)作除数,用(100-30)作被除数,即可算出题目的答案。 世界各国人民都很喜爱解答这类问题,一本公元8世纪时在欧洲很流行的习题集中,也记载了一个狗与兔的追及问题:“狗追兔子,兔子在狗前面100英尺。兔子跑7英尺的时间狗可以跑9英尺,问狗跑完多少英尺才能追上兔子?”相传

NP完全问题

NP完全问题 NP完全问题,是世界七大数学难题之一。NP的英文全称是Non-deterministic Polynomial 的问题,即多项式复杂程度的非确定性问题。简单的写法是NP=P?,问题就在这个问号上,到底是NP等于P,还是NP不等于P。 概述 NP完全问题是不确定性图灵机在P时间内能解决的问题,是世界七大数学难题之一。 NP完全问题排在百万美元大奖的首位,足见他的显赫地位和无穷魅力。 数学上著名的NP问题,完整的叫法是NP完全问题,也即“NP COMPLETE”问题,简单的写法,是NP=P?的问题。问题就在这个问号上,到底是NP等于P,还是NP不等于P。证明其中之一,便可以拿百万美元大奖。 这个奖还没有人拿到,也就是说,NP问题到底是Polynomial(意思是多项式的),还是Non-Polynomial,尚无定论。 NP里面的N,不是Non-Polynomial的N,是Non-Deterministic(意思是非确定性的),P代表Polynomial倒是对的。NP就是Non-deterministic Polynomial的问题,也即是多项式复杂程度的非确定性问题。 非确定性问题详解 什么是非确定性问题呢?有些计算问题是确定性的,比如加减乘除之类,你只要按照公式推导,按部就班一步步来,就可以得到结果。但是,有些问题是无法按部就班直接地计算出来。比如,找大质数的问题。有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的。再比如,大的合数分解质因数的问题,有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式。 这种问题的答案,是无法直接计算得到的,只能通过间接的“猜算”来得到结果。这也就是非确定性问题。而这些问题通常有个算法,它不能直接告诉你答案是什么,但可以告诉你,某个可能的结果是正确的答案还是错误的。这个可以告诉你“猜算”的答案正确与否的算法,假如可以在多项式时间内算出来,就叫做多项式非确定性问题。而如果这个问题的所有可能答案,都是可以在多项式时间内进行正确与否的验算的话,就叫完全多项式非确定问题。 完全多项式非确定性问题可以用穷举法得到答案,一个个检验下去,最终便能得到结果。但是这样算法的复杂程度,是指数关系,因此计算的时间随问题的复杂程度成指数的增长,很快便变得不可计算了。

世界七大数学难题

世界七大数学难题 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 效法希尔伯特,许多当代世界著名的数学家在过去几年中整理和提出新的数学难题,希冀为新世纪数学的发展指明方向。这些数学家知名度是高的,但他们的这项行动并没有引起世界数学界的共同关注。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个"千年大奖问题",克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个"千年大奖问题"的解决都可获得百万美元的奖励。克雷数学研究所"千年大奖问题"的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年费尔兹奖获得者伽沃斯以"数学的重要性"为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个"千年大奖问题"。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对"千年大奖问题"的解决与获奖作了严格规定。每一个"千年大奖问题"获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖. NP完全问题 NP完全问题是不确定性图灵机在P时间内能解决的问题,是世界七大数学难题之一。NP完全问题是NP

霍奇猜想 一。 庞加莱猜想

Riemann猜想 黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。 与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

世界七大数学难题

世界七大数学难题 这七个“世界难题”是:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨·米尔斯理论、纳卫尔-斯托可方程、BSD猜想。这七个问题都被悬赏一百万美元。 数学大师大卫·希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向,其对数学发展的影响和推动是巨大的,无法估量的。 20世纪是数学大发展的一个世纪。数学的许多重大难题得到完满解决,如费马大定理的证明,有限单群分类工作的完成等,从而使数学的基本理论得到空前发展。 2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”,克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得一百万美元的奖励。 克雷数学研究所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向,而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。 2000年5月24日,千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。 其中有一个已被解决(庞加莱猜想,由俄罗斯数学家格里戈里·佩雷尔曼破解),还剩六个。 “千年大奖问题”公布以来,在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。“千年大奖问题” 将会改变新世纪数学发展的历史进程。 七大难题编辑 [1]NP完全问题 例:在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。宴会的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现宴会的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。 生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,

世界七大数学难题

世界七大数学难题 世界七大数学难题 P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(Steph enCook)于1971年陈述的。 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形

色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~186 6)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。

世界近代三大数学难题之一四色猜想

世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有

相关文档
相关文档 最新文档