文档库 最新最全的文档下载
当前位置:文档库 › 数值分析(打印)

数值分析(打印)

数值分析(打印)
数值分析(打印)

1. .给出()ln f x x =的数值表

用线性插值及二次插值计算ln 0.64的近似值。

解:依据插值误差估计式选择距离0.64较近的点为插值的节点,并建立均差表:取0120.6,0.7,0.5x x x ===

所以:牛顿插值多项式为1()0.510826 1.54151(0.6)N x x =-+-

21()()( 1.4085)(0.6)(0.7)N x N x x x =+---

计算近似值

1(0.64)0.510826 1.54151(0.640.6)0.4491656N =-+-≈-

21(0.64)(0.64)( 1.4085)(0.640.6)(0.640.7)-0.4457852

N N =+---≈2.求一次数不超过3的多项式3()P x ,满足下列的插值条件:

解:由题目条件可以设:

3001001201012()()[,]()[,,]()()()()()

P x f x f x x x x f x x x x x x x A x x x x x x =+-+--+---

其中:

01[,]2

f x x =,

012[,,]3

f x x x =;又因为

'

3()3i P x y ==

所以可以得到:2A =

32

3()29156P x x x x =-+-;其余项的表达式为:

(4)

21()()(1)(2)(3)4!

R x f x x x ε=

---式中的ε位于012,,x x x 和x 所界定的范围内。

3.设[]2

(),f x C a b ∈且()()0,f a f b ==求证:

21

max ()()max ().8

a x

b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为

10101010()()()

x x x x L x f x f x x x x x --=+--

()()x b x a

f a f b a b x a

--=+-- 1

()()0

()0

f a f b L x ==∴= 又

插值余项为1011

()()()()()()2

R x f x L x f x x x x x ''=-=

-- 011

()()()()2

f x f x x x x x ''∴=--

[]012

012

102

()()1()()21()41()4

x x x x x x x x x x b a --??≤-+-????=-=- 又

∴2

1max ()()max ().8

a x

b a x b f x b a f x ≤≤≤≤''≤- 4.已知实验数据如下:

用最小二乘法求形如2

y a bx =+的经验公式;

解:由题目可得:

2

{1,}

span x φ=,则有

0011

01(,)5,(,

)

727699,(

,)5

??????=== 01(,)271.4,(,)369321.5f f ??==;

则法方程组为:5

5327271.45327727699369321.5a b ??????=????????????

解得:

20.9726046,0.005003510.97260460.00500351a b y x ==?=+

5. 用牛顿法解方程组

222

241x y x y ?+=??-=??

取(0)(0)(,)(1.6,1.2)T T

x y =.

解 记2222

1

2(,)4,(,)1f x y x y f x y x y =+-=--,则 1

1

12244'(,),['(,)]112244x y x x F x y F x y x y y y -??

??????==??

-????

-????

牛顿迭代法为

()()

(1)()()()11

()()(1)()2(,)['(,)](,)k k k k k k k k k k f x y x x F x y f x y y y +-+??????=- ? ? ???????

代入初值(0)(0)(,)(1.6,1.2)T T x y =,迭代计算,得

(1)(2)(1)(2)(3)(4)(3)(4)1.581250000 1.58113834,1.225000000 1.2247448981.581138830 1.58138830,1.224744871 1.224744871x x y y x x y y ????????== ? ? ? ?

???

?????????????== ? ? ? ?

?????

??? 6.

1231231235212422023103

x x x x x x x x x ++=--++=-+=,分析用雅可比迭代法,高斯-塞

德尔迭代法解此方程的收敛性。

(1)()()

1

23(1)(

)2

13(1)()()

3

12(02112555

1154213351010(1,1,1),17( 4.0000186,2.9999915,2.0000012k k k k k k k k k T x x x x x x x x x x x +++?=---??

?=-+??

?=-++??

==-(17)解:(a)因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。(b)雅可比法的迭代格式为

取迭代到次达到精度要求(1)

()()1

23(1)

(1)()2

13(1)(1)(1)

3

12(0)(8))2112555

1154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)T k k k k k k k k k T T

x x x x x x x x x x ++++++-?=---??

?=-+??

?=-++??

==-高斯塞德尔法的迭代格式为

x 取迭代到次达到精度要求

利用n=4的复化辛普森公式求火箭在第80秒时的速度。 解:因为速度

()v t 对时间t 的导数为加速度,故有:

800

()(0)(),

(80)(0)().

t v t v a t dt v v a t dt =+=+

?

?

应用复化Simpson 公式计算,此题中80b a -=,9个节点,且n=4,h=80/4=20.

由于火箭从地面向上发射,

(0)0v =,因此

80

1

(80)()20[30.004(31.6335.4740.3346.69)6

2(33.4437.7543.29)50.67]3087.03333

v a t dt =

?+?++++?+++=?即火箭在第80秒时的速度约为

3087.03333/m s

8.用欧拉法和改进的欧拉法求解初值问题:'22100,(0)0y x y y =+=,取步长

0.1h =,计算到0.3x =(保留到小数点后4位)

解:(1)欧拉法求解: 欧拉公式为:221(,)(100),0,1,2n n n n n n n y y hf x y y h x y n +=+=++=

00y =,代入上式,计算结果为:

123(0.1)0.0(0.2)0.0010(0.3)0.0050

y y y y y y ≈=≈=≈=

(2)改进的欧拉法:

1

11

[(,)(,(,))]2

n n n n n n n n y y h f x y f x y hf x y ++=+++

即(0.1)0.000000(0.2)0.001005(0.3)0.005136

y y y ≈≈≈

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

数值分析推荐书目

第一类:教材匹配阅读 ?数值分析复习与考试指导,李庆扬编,高等教育出版社; ?数值分析(第四版)导教·导学·导考,封建湖等编,西北工业大学出版社; ?数值分析,孙志忠编,东南大学出版社; ?数值分析简明教程(第二版),王能超编,高等教育出版社; ?数值分析全真试题解析,孙志忠编,东南大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; 第二类:实验教材匹配阅读 ?数值分析及其MATLAB实验,姜健飞等编,科学出版社; ? MATLAB数值计算,Cleve B.Moler, 机械工业出版社; ?数值分析与实验,薛毅,北京工业出版社; ?高等应用数学问题的MATLAB求解(第二版),薛定宇,陈阳泉著,清华大学出版社; ? MATLAB数值分析与应用,宋叶志等编著,机械工业出版社; 第三类:扩展阅读 ?现代科学与工程计算,孟大志,刘伟编著,高等教育出版社; ?计算数学简明教程,何旭初等编,高等教育出版社; ?计算方法导论,徐萃薇编,高等教育出版社; ?计算方法(第二版),邓建中、刘之行编,西安交通大学出版社; ?数值分析学习辅导习题解析,李宏、徐长发编,华中科技大学出版社; ?计算方法,邓建中、葛仁杰、程正兴编,西安交通大学出版社; ?数值计算方法,孙淑英张圣丽编,山东大学出版社; ?数值分析,.M.奥特加著,张丽君等译,高等教育出版社; ?有限元方法及其理论基础,姜礼尚庞之垣著,人民教育出版社; < ?微分方程数值解法,李荣华、冯国忱编,高等教育出版社; ?偏微分方程数值解法,李荣华编,高等教育出版社; ?非线性方程组的数值解法,李庆扬、莫孜中、祁力群编,科学出版社; ?非线性方程组解法,王德人编,人民教育出版社; < ?数值分析基础,关治、陆金甫编,高等教育出版社; ?数值线性代数,徐树方、高立、张平文编,北京大学出版社; ?数值线性代数,曹志浩编著,复旦大学出版社;

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析-华东交通大学研究生院

华东交通大学博士研究生初试科目考试大纲 科目代码:2006 科目名称:数值分析 一、考试要求 掌握数值分析领域的基本概念, 理论及其在工程中的应用。考试要求掌握线性方程组的数值解法,非线性方程数值解法,插值法,函数的最佳平方逼近和数值积分等基本内容。 二、考试内容 (一)误差的来源与分类,误差估计以及数值稳定性概念。 (二)函数的插值方法:拉格朗日插值,均差与牛顿插值,差分与等距节点插值,埃尔米特插值,分段插值和三次样条插值。 (三)函数逼近与快速傅里叶变换:函数逼近的基本概念,最佳平方逼近,曲线拟合的最小二乘法,有理逼近,三角多项式逼近与快速傅里叶变换。 (四)数值积分和数值微分:数值积分的基本思想,插值型的求积公式,牛顿-柯特斯公式,复合求积公式,龙贝格求积公式,高斯求积公式,数值微分的中点方法,插值型的求导公式和数值微分的外推算法。 (五)解线性方程组的直接方法:矩阵的特征值与谱半径,高斯消去法,矩阵三角分解法,向量和矩阵的范数。 (六)解线性方程组的迭代法:迭代法的基本概念,雅可比迭代法与高斯-塞德尔迭代法,超松弛迭代法和共轭梯度法。 (七)非线性方程与方程组的数值解法:二分法,不动点迭代法及其收敛性,牛顿法,弦截法与抛物线法,多变量方程的不动点迭代法和非线性方程组的牛顿迭代法。 (八)矩阵特征值计算:特征值性质与估计,幂法及反幂法,QR方法。 (九)常微分方程初值问题数值解法:欧拉法与后退欧拉法,梯形方法,龙格-库塔方法和线性多步法。 三、题型结构 满分100分。其中,简答(10分),分析计算题(70分),证明题(20分)。 四、参考书目 1. 李庆扬王能超易大义,数值分析(第5版),清华大学出版社2008。 2. 封建湖车刚明聂玉峰,数值分析原理,科学出版社2001。 3. 颜庆津,数值分析(第三版),北京航空航天大学,2006年。 1

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析题库答案

1. 正方形的边长大约为100cm ,应怎样测量才能使面积误差不超过1cm 2? 2. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m, 1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.

3.为使π的相对误差小于0.001%,至少应取几位有效数字? 4.设x的相对误差界为δ,求n x的相对误差界. 5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算 p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?

6. 已知33348 7.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并估计截断误差. 7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并估计误差. 8. 已知 1 6243sin ,sin π ππ== =请用抛物插值求sin50的值,并估计误差

9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x 10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式 . 11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,

试用二次牛顿插值多项式计算(2.15)f 的近似值,并讨论其误差 12. 设],[)(b a x f 在上有四阶连续导数,试求满足条件)2,1,0()()(==i x f x P i i 及 )()(11x f x P '='的插值多项式及其余项表达式. 13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944?? ???? ,上的三次埃尔米特

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

数值分析西南交通大学

1.填空 (1). 在等式∑== n k k k n x f a x x x f 0 10)(],,,[ 中, 系数a k 与函数f (x ) 无 关。 (限填“有”或“无”) (2). Gauss 型求积公式不是 插值型求积公式。(限填“是”或“不是”) 或“无”) (3). 设l k (x )是关于互异节点x 0, x 1,…, x n , 的Lagrange 插值基函数,则 ∑=-n k k m k x l x x 0 )()(≡0 m=1,2,…,n (4). ? ? ? ? ??-=3211A ,则=1||||A 4 ,=2||||A 3.6180340 ,=∞||||A 5 ; (5). 用1n +个不同节点作不超过n 次的多项式插值,分别采用Lagrange 插值方法与Newton 插值方法所得多项式 相等 (相等, 不相等)。 (6). 函数3 320, 10(),01(1),12x f x x x x x x -≤=B ρ,故Jacobi 方法发散。 (2)对Gauss-Seidel 方法,迭代矩阵为

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

数值分析习题第四章

第四章 习题 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()? --++-≈h h h f A f A h f A dx x f 1010; (2)()()()()? --++-≈h h h f A f A h f A dx x f 221010; (3)()()()()[]3/3211 121?-++-≈x f x f f dx x f ; (4)()()()[]()()[]h f f ah h f f h dx x f h '0'2/020 +++≈? 解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得 ()()??? ???? =+=+-=++---3 1121 110132 02h A A h A A h h A A A 解得h A h A A 34 31011===-,。 所求公式至少具有2次代数精度。又由于 ()() ()() 4 4 4 3 33 3 3 33h h h h dx x h h h h dx x h h h h ? ?--+ -≠ +-≈ 故()()()()? --++-≈h h h f A f A h f A dx x f 1010具有三次代数精度。 (2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()2 1x x x f ,,=准确成立,得()()??? ???? =+=+-=++---3 1121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34 316424381011-=- =-===-, 故()()()[]()03 43 822hf h f h f h dx x f h h - +-≈ ? - 因()?-=h h dx x f 220 而 ()() []03 83 3 =+-h h h 又[ ]4 45 5 6224 3 83 165 2h h h h h dx x h h += ≠= ? -

上海交通大学硕士研究生课程《传热流动的数值分析大作业》

“传热流动的数值分析”2015年大作业 1. 2维条件下的无粘、不可压缩流体通过出口和入口流过箱体,具体情况如图所示,求该箱体内的流线情况,所有单位为厘米。 (1)流线方程为:22220x y ψψ ??+=?? 使用Gauss-Seidel 线迭代,0.1x y ?=?=,误差0.005ξ=,结果输出中,包括在y=0,1,2,3,4,5 处的所有X 处对应的流函数值。 (2)设出口处纵向速度V =0,试采用PSOR 方法,0.1x y ?=?=,计算在x=0,1,2,3,4,5 处的所有Y 处对应的流函数值,以及不同的松弛系数和迭代次数的关系曲线(至少三个系数)。 答:(1)该问题为稳态问题,流线方程为椭圆型方程,在求解方程时,首先对方程在计算域内进行离散。计算域为:{}(,)05,05x y x y Ω=≤≤≤≤,在离散时,0.1x y h ?=?=?=,因此可以得到流线方程的差分方程为: 1,,1,,1,,1 22 220i j i j i j i j i j i j h h ψψψψψψ+-+--+-++=?? (1) 整理后可得: 1,1,,1,1 ,4 i j i j i j i j i j ψψψψψ+-+-+++= (2) 在本题中,采用Gauss-Seidel 线迭代方法进行求解,扫描方向选为自左向右,此时有 111,1,11,1,1,4 n n n n i j i j i j i j n i j ψψψψψ ++++--+++++= (3) 由于是线推进,因此在当前线方向求解时,之前的扫描线上的参数已经得到更新,所以 方程可改写为: 11,1,11 1,1,,111444n n i j i j n n n i j i j i j ψψψψψ+-++++-++-+-= (4) 其中1 1,n i j ψ+-看着当前迭代层中的已知变量。

数值分析报告第五版_李庆扬_王能超_易大义主编课后习题问题详解

第一章 绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= = = 而ln x 的误差为()1 ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -=, 1 ||n p x nx C n n -?∴== 又 ((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,* 57 1.0.x =? 解:* 1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) *** 123x x x ,(3) **24/x x . 其中**** 1234,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈=

数值分析第七章上机题

数值分析第七章计算机实习题 写一程序实现下面问题的牛顿算法——求解方程组: ?? ???=--=-+.0)1sin(,18)7)(3(12321x e x x x 源程序如下: function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 initial point % f function % g gradient % maxit maximum iteration % tol tolerance for convergence % OUTPUTS: % x solution % it iteration % hist history of iteration format long ; if nargin<5, tol = 1e-7; if nargin<4, maxit = 100; if nargin<3, error('too few input!!'); end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; for k = 1:maxit, x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1;

hist = [hist x]; end flag = 0; fprintf('\nNewton Iteration fails!!\n'); 在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2'); >> [x,it,hist] = newton2([0;0],f,g) 得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x = -0.000000000000000 1.000000000000000 it = 5 hist = 0 -0.428571428571429 -0.141348392468100 -0.002875590925150 0.000000056935424 -0.000000000000101 0 1.557407724654902 1.087738055836075 1.001269946612821 1.000000431005363 1.000000000000127 由以上运行结果可知: 该方程组采用牛顿迭代法迭代5步可到足够精度,解为??? ? ??=10x .

相关文档
相关文档 最新文档