文档库 最新最全的文档下载
当前位置:文档库 › LTE TDD特殊子帧

LTE TDD特殊子帧

LTE TDD特殊子帧
LTE TDD特殊子帧

TD-LTE特殊子帧Dwpts:gap:Uppts的配比目前一共有9种,配置0到配置8,具体的定义在3GPP TS36.211 表4.2.1里面。

LTE TDD中,帧的长度是10s,分成10个长度为1s的子帧。上行和下行的数据在同一个帧内不同的子帧上传输。LTETDD中支持不同的上下行时间配比,可以根据不同的业务类型,调整上下行时间配比,以满足上下行非对称的业务需求。

在同一帧内,不同的上下行子帧的配置如下图所示:

从图中可以看到,子帧0和5传输的总是下行子帧。子帧1传输的总是特殊子帧。并且特殊子帧后传输的总是上行子帧。

在上述的几种配置中,0-2和6的配置,从下行到上行的转化周期为5s,由于从下行转换为上行时,首先发送特殊子帧,意味着特殊子帧的出现周期为5秒,也就是说,子帧1和子帧6传输的是特殊子帧。

配置3,4,5中,下行到上行的转换周期为10 s。

这里经常会有疑问,为何只有下行subframe到上行subframe之间有隔离(GP),而在上行subframe到下行subframe之间没有有隔离(GP)?

在36.211,Section 8里面提到,上行发送的时间是:

TA+TAoffset, TAoffset固定为624个Ts,前面是基站进行上行同步用的,后面这个就是上行提前了发送的时间了,也就是可以理解为上行到下行的时间间隔。特殊子帧包含三个部分:DwPTS(downlink pilot time slot),GP(guard period),UpPTS(uplink pilot time slot)。DwPTS传输的是下行的参考信号,也可以传输一些控制信息。UpPTS上可以传输一些短的RACH和SRS的信息。GP是上下行之间的保护时间。

同其他的子帧相同,特殊子帧的长度也是1S。但其中各个部分的长度是不同的,是可以通过高层信令配置的。

相对而言,UpPTS的长度比较固定,只支持一个符号、两个符号两种长度,以避免过多的选项,简化系统设计,GP和DwPTS具有很大的灵活性,这主要是为了实现可变的GP长度和GP位置,以支持各种尺寸的小区半径。

另外,一段协议原文,可以更好理解协议的内容:

In case of 5 ms downlink-to-uplink switch-point periodicity, the special subframe exists in both half-frames.

In case of 10 ms downlink-to-uplink switch-point periodicity, the special subframe exists in the first half-frame only.w

Subframes 0 and 5 and DwPTS are always reserved for downlink transmission. UpPTS and the subframe immediately following the special subframe are always reserved for uplink transmission.

标红的可以看出,在10ms的切换周期内,特殊子帧只存在于第一个半帧,因此上下行5:3只存在与5ms的切换周期,10ms的上下行配比只有配置3、4、5中规定的,不会有6:3的配置出现。

“上下行子帧配比”和“特殊子帧配比”,在小区带宽一定的情况下,这两者的不同配置,决定了小区上下行传输速率的大小,具体大小可通过灌包测试来确定。下行灌包测试就是基站往测试手机拼命发包进行的测试;上行灌包测试则相反,是测试手机向基站发包进行的测试。

其中,下行(D)转换为上行(U)时,中间存在特殊子帧S。

S子帧包括三个部分:

特殊子帧包含三个部分:

DwPTS(downlink pilot time slot),GP(guard period),UpPTS(uplink pilot time slot)。DwPTS 传输的是下行的参考信号,也可以传输一些控制信息。UpPTS上可以传输一些短的RACH 和SRS的信息。GP是上下行之间的保护时间。

同其他的子帧相同,特殊子帧的长度也是1S。但其中各个部分的长度是不同的,是可以通过高层信令配置的。

相对而言,UpPTS的长度比较固定,只支持一个符号、两个符号两种长度,以避免过多的选项,简化系统设计,GP和DwPTS具有很大的灵活性,这主要是为了实现可变的GP长度和GP位置,以支持各种尺寸的小区半径。

这里有个疑问,为何特殊子帧只存在于下行转换为上行之间,上行转换为下行时则不存在?考虑到的可能原因是:

(1)对于基站而言,由下行转换为上行时(即从发送态转换为接收态),可能会接收到邻小区的下行信号,形成干扰,需要一个gap时间间隔;上行转换为下行时(接收态转换为发送态)则不存在这个干扰问题。对于终端而言,不论从接收转换为发送还是从发送转换为接收都不会存在干扰问题。

(2)在36.211,Section 8里面提到,上行发送的时间是:TA+TAoffset

TAoffset固定为624个Ts,前面是基站进行上行同步用的,后面这个就是上行提前了发送的时间了,也就是可以理解为上行到下行的时间间隔。

晶体结构解析基本步骤

晶体结构解析基本步骤 Steps to Crystallographic Solution (基于SHELXL97结构解析程序的SHELXTL软件,尚需WINGX和DIAMOND程序配合) 注意:每一个晶体数据必须在数据所在的目录(E:\STRUCT)下建立一子目录(如E:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORIG,形成如右图所示的树形结构。 一. 准备 1. 对IP收录的数据, 检查是否有inf、dat和f2(设为sss.f2, 并更名为sss.hkl)文件; 对CCD 收录的数据, 检查是否有同名的p4p和hkl(设为sss.hkl)文件 2. 对IP收录的数据, 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从total reflections项中,记下总点数;从R merge项中,记下Rint=?.???? % (IP收录者常将衍射数据转化为独立衍射点后传给我们); ⊕从unique reflections项中,记下独立点数 对CCD收录的数据, 用EDIT或记事本打开P4P文件, 并于记录下相关数据: ⊕从CELL和CELLSD项中,记下晶胞参数及标准偏差; ⊕从CCOLOR项中,记下晶体颜色; 总点数;从CSIZE项中,记下晶体大小; ⊕从BRA V AIS和SYMM项中,记下BRA V AIS点阵型式和LAUE群 3. 双击桌面的SHELXTL图标(打开程序), 呈 4. New, 先在“查找范围”选择数据所在的文件夹(如E:\STRUCT\AAA), 并选择衍射点数据文件(如sss.hkl),?单击Project Open,?最后在“project name”中给一个易于记忆和区分的任务名称(如050925-znbpy). 下次要处理同一结构时, 则只需Project 在任务项中选择050925-znbpy便可 5. 单击XPREP , 屏幕将显示DOS式的选择菜单: ⊕对IP收录的数据, 输入晶胞参数后回车(下记为) (建议在一行内将6个参数输入, 核对后) ⊕在一系列运行中, 注意屏幕内容(晶胞取向、格子型式、消光规律等), 一般的操作动作是按。之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦 ⊕退出XPREP运行之前,如果机器没有给出默认的文件名[sss],此时, 晶胞已经转换, 一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 6. 在数据所在文件夹中,检查是否产生有PRP、PCF和INS文件(PRP文件内有机器对空间群确定的简要说明) 7. 在第5步中若重新输入文件名, 则要重做第4步, 并在以后将原任务名称(如050925-znbpy)删除 8. 用EDIT 打开sss.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长,更正测量温度TEMP ?? C)。?(单位已设为

LTE不同时隙配比问题分析

LTE不同时隙配比问题分析 目录 1.概述 (2) 1.1.帧结构原理部分说明 (2) 1.2.问题描述 (3) 2.问题分析 (3) 2.1只A-2小区时隙配比,其余小区仍为1:7情况下 (3) 2.2三个小区时隙配比都修改为2:7情况下 (6) 2.3 两种现象分析 (7) 3.小结 (8)

1.概述 1. 帧结构描述 TDD-LTE每一个无线帧由两个半帧(half-frame)构成,每一个半帧长度为5ms。每一个半帧包括8个slot,每一个的长度为0.5ms;以及三个特殊时隙,DwPTS、GP和UpPTS。DwPTS 和UpPTS的长度是可配置的。 TDD-LTE上下行子帧配比如下:“D”代表此子帧用于下行传输,“U” 代表此子帧用于上行传输,“S”是由DwPTS、GP和UpPTS组成的特殊子帧。红方框处标示1代表上下行子帧配比为2:2;标示2代表上下行子帧配比为1:3. 由上图可见,当同时存在两种子帧配比的时候,在时隙3和8的上下行不一致,传输数据时会出现严重的干扰。 TDD-LTE特殊子帧时隙配比如下:特殊子帧中DwPTS和UpPTS的长度是可配置的,满足DwPTS、GP和UpPTS总长度为1ms 。下图红方框处标示7代表特殊子帧时隙配比为10:2:2.

2. 问题描述 XX大学迎新前一天。测试队伍到达4G演示地点后,发现数据卡终端占用A-3小区的信号,但显示“数据业务未就绪”,无法接入,在更换电脑及测试终端后发现问题还是一样,怀疑后台参数配置有误。后台人员在核查参数时发现,A-3小区时隙配比为2:7,其余两个小区时隙配比为1:7。询问后知道,周边小区闭塞是为了避免引起时隙干扰,将A-3小区时隙配比修改为2:7是为了提高XX大学9月11日迎新时4G演示点的峰值速率,提高用户的感知度。后将A-3小区时隙配比还原未1:7,问题没有再出现。 2.问题分析 为了方便查找问题原因,在A-2扇区覆盖的地方进行不同时隙配比测试,该地点只能收到A-1、A-2小区的信号并占用后者信号,与演示点情况类似。 为复现问题,我们做了以下测试: 2.1只修改A-2小区时隙配比,其余小区仍为1:7情况下 如下图所示,只修改A-2小区时隙配比,其余小区仍为1:7情况下,

Ethernet帧结构解析..

实验一Ethernet帧结构解析 一.需求分析 实验目的:(1)掌握Ethernet帧各个字段的含义与帧接收过程; (2)掌握Ethernet帧解析软件设计与编程方法; (3)掌握Ethernet帧CRC校验算法原理与软件实现方法。 实验任务:(1)捕捉任何主机发出的Ethernet 802.3格式的帧和DIX Ethernet V2(即Ethernet II)格式的帧并进行分析。 (2)捕捉并分析局域网上的所有ethernet broadcast帧进行分析。 (3)捕捉局域网上的所有ethernet multicast帧进行分析。 实验环境:安装好Windows 2000 Server操作系统+Ethereal的计算机 实验时间; 2节课 二.概要设计 1.原理概述: 以太网这个术语通常是指由DEC,Intel和Xerox公司在1982年联合公布的一个标准,它是当今TCP/IP采用的主要的局域网技术,它采用一种称作CSMA/CD的媒体接入方法。几年后,IEEE802委员会公布了一个稍有不同的标准集,其中802.3针对整个CSMA/CD网络,802.4针对令牌总线网络,802.5针对令牌环网络;此三种帧的通用部分由802.2标准来定义,也就是我们熟悉的802网络共有的逻辑链路控制(LLC)。以太网帧是OSI参考模型数据链路层的封装,网络层的数据包被加上帧头和帧尾,构成可由数据链路层识别的数据帧。虽然帧头和帧尾所用的字节数是固定不变的,但根据被封装数据包大小的不同,以太网帧的长度也随之变化,变化的范围是64-1518字节(不包括8字节的前导字)。 帧格式Ethernet II和IEEE802.3的帧格式分别如下。 EthernetrII帧格式: ---------------------------------------------------------------------------------------------- | 前序| 目的地址| 源地址| 类型| 数据 | FCS | ---------------------------------------------------------------------------------------------- | 8 byte | 6 byte | 6 byte | 2 byte | 46~1500 byte | 4 byte| IEEE802.3一般帧格式 ----------------------------------------------------------------------------------------------------------- | 前序| 帧起始定界符| 目的地址| 源地址| 长度| 数据| FCS | ----------------------------------------------------------------------------------------------------------- | 7 byte | 1 byte | 2/6 byte | 2/6 byte| 2 byte| 46~1500 byte | 4 byte | Ethernet II和IEEE802.3的帧格式比较类似,主要的不同点在于前者定义的2字节的类型,而后者定义的是2字节的长度;所幸的是,后者定义的有效长度值与前者定义的有效类型值无一相同,这样就容易区分两种帧格式 2程序流程图:

药物化学复习资料(化学结构式)

异戊巴比妥 5-乙基-5-(3-甲基丁基)-2,4,6-(1H , 3H ,5H )嘧啶三酮 地西泮 1-甲基-5-苯基-7-氯-1,3-二氢-2H-1,4-苯并二氮杂卓-2-酮 唑吡坦 Zolpidem 苯妥英钠 5,5-二苯基-2,4- 咪唑烷二酮钠盐 卡马西平 酰胺咪嗪 卤加比 Progabide 盐酸氯丙嗪 N ,N-二甲基-2-氯-10H-吩噻嗪-10-丙胺 盐酸盐 氟哌啶醇 氯氮平 盐酸丙咪嗪 N ,N-二甲基-10,11-二氢-5H-二苯并[b ,f] 氮杂卓-5-丙胺 盐酸盐 氟西汀 吗啡 Morphine 17-甲基-4, 5α-环氧-7, 8-二脱氢 吗啡喃 -3, 6α-二醇盐酸盐 三水合物 盐酸哌替啶 1-甲基-4-苯基-4-哌啶甲酸乙酯盐酸盐 盐酸美沙酮 喷他佐辛

咖啡因 Caffeine 1,3,7-三甲基-3,7- 二氢-1H - 嘌呤 -2,6-二酮一水合物 吡拉西坦 2-(2-氧代-吡咯烷-1-基)乙酰胺 氯贝胆碱 Bethanechol Chloride 毛果芸香碱 溴新斯的明 Neostigmine Bromide 多奈哌齐 硫酸阿托品 Atropine Sulphate 溴丙胺太林 哌仑西平 苯磺阿曲库铵 泮库溴铵 1,1'-[3α,17β-双-(乙酰氧基)-5α-雄甾烷 -2β,16β-二基]双-[1-甲基哌啶鎓]二溴化物 肾上腺素 Epinephrine 麻黄碱 Ephedrine 沙丁胺醇 Salbutamol

马来酸氯苯那敏 N ,N-二甲基-g-(4-氯苯基)-2-吡啶丙胺顺丁烯二酸盐,又名扑尔敏 氯雷他定 4-(8-氯-5,6-二氢-11H-苯并[5,6]-环庚烷[1,2-b]吡 盐酸西替利嗪 2-[4-[( 4-氯苯基)苯基甲基]-1-哌嗪基]乙氧基乙酸二盐酸盐 咪唑斯汀 Mizolastine 2-〔〔1-〔1-〔(4-氟苯基)甲基〕-1H-苯并咪唑-2-基〕哌啶基-4-基〕甲基氨基〕嘧啶-4(3H )-酮 盐酸普鲁卡因 Procaine Hydrochloride 4-氨基苯甲酸-2-(二乙氨基)乙酯盐酸盐 盐酸利多卡因 Lidocaine Hydrochloride N-(2,6-二甲苯基)-2-(二乙氨基)乙酰胺盐酸盐一水合物 盐酸达克罗宁 盐酸普萘洛尔Propranolol 1-异丙氨基-3-(1-萘氧基)-2-丙醇盐酸盐 硝苯地平Nifedipine 盐酸地尔硫卓DiltiazemHydrochloride HCl 硫酸喹尼丁(9S )-6 ′-甲氧基-脱氧辛可宁-9-醇硫酸盐二水合物 2 H 2SO 4 2H 2O 1 盐酸胺碘酮 (2-丁基-3-苯并呋喃基)[4-[2-(二乙氨基)乙氧基]-3,5-二碘苯基]甲酮盐酸盐

单晶结构解析步骤

shelxtl open new name xp fmol kill $q proj select the good direction exit telp 0 -30 plotfile enter file name draw file name select file(ps file) black and white cell fmol kill $q matr 1=a 2=b 3=c pbox 5 15 pack select (space=keep, enter=del) fmol telp cell enter file name draw file name select file type(a=psfile) black and white(enter) plane xp read file name fmol mpln atom1 atom 2..... enter angle xp read file name fmol

mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... mpla n(atom number) atom1 atom 2..... enter fmol kill link matr pbox pack undo c**? C**? telp cell xl 计算方法 在ins中任何地方插入 mpla 虚拟平面的原子个数(例如六个原子只有四个可能共平面,即输入4),后面连续输入可能共平面的4个原子,后面在输入其他两个平面外的原子。 例如c1 c2 c3 c4 c5 n1中,c1 c2 c4 c5 共平面 mpla 4 c1 c2 c4 c5 c3 n1 txt 运行xcif 选择t 两次回车 输入文件名.txt 选择def 回车直到选择q 理论加氢 在ins中输入 HFIX 要加氢的原子 保存ins 运行XL 打开RES 拷贝相应的数据到ins中即可。 CHEMICAL DRAW 选中画笔 点出两个点 按ESC 点选择键 选中画笔 鼠标移动至出现小手

以太网的帧结构

以太网的帧结构 要讲帧结构,就要说一说OSI七层参考模型。 一个是访问服务点,每一层都对上层提供访问服务点(SAP),或者我们可以说,每一层的头里面都有一个字段来区分上层协议。 比如说传输层对应上层的访问服务点就是端口号,比如说23端口是telnet,80端口是http。IP层的SAP是什么? 其实就是protocol字段,17表示上层是UDP,6是TCP,89是OSPF,88是EGIRP,1是ICMP 等等。 以太网对应上层的SAP是什么呢?就是这个type或length。比如 0800表示上层是IP,0806表示上层是ARP。我 第二个要了解的就是对等层通讯,对等层通讯比较好理解,发送端某一层的封装,接收端要同一层才能解封装。 我们再来看看帧结构,以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap IFG长度是96bit。当然还可能有Idle时间。 以太网的帧是从目的MAC地址到FCS,事实上以太网帧的前面还有preamble,我们把它叫做先导字段。作用是用来同步的,当接受端收到 preamble,就知道以太网帧就要来了。preamble 有8个字节前面7个字节是10101010也就是16进制的AA,最后一个字节是 10101011,也就是AB,当接受端接受到连续的两个高电平,就知道接着来的就是D_mac。所以最后一个字节AB我们也叫他SFD(帧开始标示符)。 所以在以太网传输过程中,即使没有idle,也就是连续传输,也有20个字节的间隔。对于

大量64字节数据来说,效率也就显得不 1s = 1,000ms=1,000,000us 以太网帧最小为64byte(512bit) 10M以太网的slot time =512×0.1 = 51.2us 100M以太网的slot time = 512×0.01 = 5.12us 以太网的理论帧速率: Packet/second=1second/(IFG+PreambleTime+FrameTime) 10M以太网:IFG time=96x0.1=9.6us 100M以太网:IFG time=96x0.01=0.96us 以太网发送方式是一个帧一个帧发送的,帧与帧之间需要间隙。这个叫帧间隙IFG—InterFrame Gap 10M以太网:Preamble time= 64bit×0.1=6.4us 100M以太网:Preamble time= 64bit×0.01=0.64us Preamble 先导字段。作用是用来同步的,当接受端收到preamble,就知道以太网帧就要来了 10M以太网:FrameTime=512bit×0.1=51.2us 100M以太网:FrameTime=512bit×0.01=5.12us 因此,10M以太网64byte包最大转发速度=1,000,000 sec÷(9.6+6.4+51.2)= 0.014880952Mpps 100M以太网64byte包最大转发速度=1,000,000 sec÷(0.96+0.64+5.12)= 0.14880952Mpps

药物化学复习大纲

药物化学教学大纲 Medicinal Chemistry (供自考生使用) 前言 药物化学是一门以化学为基础来研究药物的专门学科。其内容包括:发现与发明新药;合成化学药物;研究和改进药物合成工艺;阐明药物化学性质;研究药物分子与机体细胞(生物大分子)之间相互作用规律等。它是药学领域中重要的带头学科。 药物化学的教学目的应该使学生能有效利用现有化学药物,在常用药物的结构、名称、性质、鉴别、制备、构效关系及新药研究的方法等各个方面获得系统的理论知识和必要的操作技能,从而能合理地调制配方,制备优质药剂,做好药品检验和保管工作,同时对药物研究和新药发展有一定的了解。 本课程需要有机化学、分析化学相关知识作基础;药物化学的知识为学生进一步学习天然药物化学、药理学、药物分析及药学专业课程打下基础。 本大纲与人民卫生出版社出版,郑虎主编的普通高等教育“十一五”国家级规划教材第五版《药物化学》配套使用,适用于自考生的教学。大纲所列教学内容可通过课堂讲授、计算机多媒体、自学、讨论、实验、实习等方式进行教学。划横线部分为要求学生重点掌握的内容,其他为一般熟悉和一般了解内容。总学时为80学时。 绪论 目的要求 了解药物的通用名、化学名、商品名的含义和要求。 教学内容 1、药物化学的定义。 2、药物化学的研究内容及任务。

3、药物化学发展史。 4、化学药物的命名。 中枢神经系统药物 目的要求 掌握异戊巴比妥的结构、性质、构效关系、合成和用途;盐酸吗啡的结构、性质和构效关系。 熟悉地西泮的结构、代谢和构效关系;苯妥英钠的结构、性质和用途。 了解镇静催眠药的结构类型;盐酸氯丙嗪的性质和构效关系;咖啡因的结构和性质。 教学内容 1、镇静催眠药。异戊巴比妥的结构、化学名、理化性质、合成、体内代谢及临床应用;巴比妥类药物构效关系;地西泮的结构、化学名、理化性质、体内代谢及应用;吩噻嗪药物的构效关系;酒石酸唑吡坦的结构及应用。 2、抗癫痫药。苯妥英钠的结构、化学名、理化性质、体内代谢及应用;卡马西平、卤加比的结构及应用。 3、抗精神病药。盐酸氯丙嗪的结构、化学名、理化性质、体内代谢及应用,氟哌啶醇的化学名及应用,氯氮平的结构及用途。 4、抗抑郁药。盐酸丙咪嗪、盐酸氟西汀的结构及应用。 5、镇痛药。吗啡的结构、化学名、理化性质、构效关系、结构改造、体内代谢、临床应用及其毒副作用;盐酸哌替啶的结构、化学名、理化性质、体内代谢及临床应用;盐酸美沙酮、喷他佐辛的结构及用途。 6、中枢兴奋药。咖啡因、可可碱、茶碱的结构及应用。 外周神经系统用药 目的要求 掌握硫酸阿托品的结构、性质和构效关系;盐酸普鲁卡因的结构、性质、合成和结构改造。 熟悉溴新斯的明的结构、性质和作用机制;盐酸利多卡因的结构和构效关系。 了解拟肾上腺素药的结构特点;肾上腺素的性质和代谢;盐酸麻黄碱的性质;马来酸氯苯那敏的结构、性质和用途。 教学内容 1、胆碱受体激动剂。氯贝胆碱的结构、化学名及应用;拟胆碱药的构效关系;毛果芸香碱的结构和应用。 2、乙酰胆碱酯酶抑制剂。溴新斯的明的结构、化学名、理化性质、作用机制、体内代谢及临床应用。 3、M受体拮抗剂。硫酸阿托品的结构、理化性质、构效关系及应用;溴丙胺太林的结构和应用。 4、N受体拮抗剂。苯磺酸阿曲库铵、泮库溴铵的结构及应用。 5、肾上腺素受体激动剂。肾上腺素的结构、化学名、理化性质、体内代谢及临床应用。去甲肾上腺素、异丙肾上腺素的结构及应用。盐酸麻黄碱、盐酸伪麻黄碱、沙丁胺醇的结构、化学名、性质及用途。 6、组胺H1受体拮抗剂。马来酸氯苯那敏的结构、化学名、理化性质、体内代谢及应用。盐酸西替利嗪、咪唑斯汀的结构及应用。 7、局部麻醉药。盐酸普鲁卡因的结构、化学名、理化性质、合成、结构改造、体内代谢及应用。盐酸利多卡因的结构、化学名、理化性质、构效关系、合成及应用。盐酸达克罗宁的结构、通用名及用途。局部麻醉药的构效关系。

LTE大气波导干扰缓解之特殊子帧配比回退方法外场测试规范(一阶段) -

LTE大气波导干扰缓解之特殊子帧配比回退方案外场测试规范(一阶段) 版本号:

目录

前言 近期以江苏为代表的多个省份F频段LTE小区经常受到大范围上行强干扰,综合考虑基站检测得到的干扰信号时域频域特征、频谱仪扫频结果、干扰发生的时间规律以及和全球波导预警信息的匹配程度,认为所受干扰为远端基站下行信号经大气波导远距离低损耗传输后对近端基站上行产生的干扰,即大气波导干扰。 大气波导干扰可大幅抬升上行底噪,严重影响KPI和用户体验,甚至引发断服情况。为减轻大气波导干扰造成的影响,可将F频段LTE小区特殊子帧配比由9:3:2回退为3:9:2。由于增大了下行与上行间的保护间隔(GuardPeriod,GP),理论分析可避免对220公里(信号传播距离)范围内的基站造成干扰。 考虑现网急迫程度和产业支持情况,特殊子帧配比回退方案的测试验证分两阶段进行: 第一阶段,集团网络部统一组织相关省公司固定将LTE小区的特殊子帧配比由9:3:2修改为3:9:2。 第二阶段,LTE基站根据上行干扰检测和特征序列检测情况,自适应的进行特殊子帧配比调整,在大气波导干扰发生时回退为3:9:2,在大气波导干扰消失时恢复为9:3:2。

范围 本标准规定了LTE大气波导干扰缓解之特殊子帧配比回退方案外场一阶段测试的测试步骤与测试方法,规定了测试需要输出的数据及结果,用于评估验证特殊子帧配比回退方案的效果。 术语、定义和缩略语 下列术语、定义和缩略语适用于本标准: 表2-1术语、定义和缩略语列表

测试环境 测试环境 参与测试的江苏、安徽、河南三省所有LTEF频段小区。 每省至少选择一个易受大气波导干扰且干扰程度较严重的LTEF 频段楼面站。江苏因全网已改为3:9:2,应选择主要干扰源方向为省外的站点,安徽、河南应选择主要干扰源方向为省内的站点。 配合测试设备 每省至少一台便携式频谱仪,用于从时域信号查看GP、UpPTS和上行子帧各符号的受扰情况 测试用例 特殊子帧配比回退效果全网定性分析

晶体结构解析的过程XP

晶体结构解析的过程 (2010-06-10 16:49:31) 转载 分类:晶体解析 标签: 杂谈 1、挑选直径大约为0.1–1.0mm的单晶。 CCD的准直管直径有0.3mm,0.5mm,0.8mm;分别对应得晶体大小是0-0.3mm, 0.3-0.5mm, 0.5-0.8mm. 2、选择用铜靶还是钼靶? 铜靶要求θmax〉=66度,最大分辨率是0.77埃 钼靶要求θmax〉=25度,最大分辨率是0.36埃 3、用smart程序收集衍射数据:得到大约一千张倒易空间的衍射图像,300M 大小。其中matrix图像45张,分成三组,每组15张,用以判定晶体能否解析。 4、用saint程序还原衍射数据:得到很多文件,但是只有三个文件是我们需要的:-ls,p4p,raw。 -ls文件中包含有最大的和最小的θ角,有效地精修衍射点数目。好像不同的机器或者还原程序得到的文件不同,有的是hkl,abs。 5、用shelxtl程序处理上述数据,并画出需要的图形。 5.1 装好shelxtl程序,新建一个project,输入要建立工程的名字,然后打开要解析的p4p或者raw文件。 5.2 用xprep程序确立空间群,建立指令文件 这个过程基本上是一直按回车键的过程(除了在要输入化学成分的时候改动一下和在是否建立指令文件的时候输入Y即可),一般不会出错。如果出错,那就要重新对空间群进行指认(出错可能是出现在下面的精修过程中)。 一般Mean(I/sigma)〉2才可以,越大越好。

得到ins,hkl,pcf三个重要数据文件。 其中ins文件:包含分子式,空间群等信息; hkl文件:包含的是衍射点的强度数据; pcf文件:记录了晶体物理特征,分子式,空间群,衍射数据收集的条件以及使用的相关软件等信息。 5.3 选择要解析的方法:直接法(TREF)还是帕特深法(PATT)? 如果晶体中含有重原子如金属原子,那就要用PATT法;如果晶体中没有原子量差异特别大的原子,就用TREF法。默认的方法是直接法。 5.4 用xs程序解析粗结构 得到res文件:包含了ins文件的内容和所有的Q峰信息。 5.5 用xp程序与xl程序完成原子的指认,付利叶加氢或理论加氢,画图等。 达到比较好的结果标准: A 化学上合理(键长、键角、价态) B R1 <0.08(0.06),wR2 <0.18(0.16),goof=S=1+-0.2(1.00) C R(int)<0.1,R(singma)<0.1 D Maximum=0.000 5.5.1 原子的指认 打开xp 输入fmol

LTE无线数据配置规范

目前中国移动使用的D频段频率是2575~2635MHZ,共计60MHZ 中国移动目前E频段的的频段是2320~2370,共50MHZ 2300~2320MHZ属于中国联通,共20MHZ 2370~2390MHZ属于中国电信,共20MHZ SA配置应用场景 SSP-特殊子帧配比 DWPTS:包含物理同步信号、控制信道、PDSCH,影响下行吞吐量 GP:保护周期,影响基站覆盖半径

UPPTS:包含上行随机接入信道,影响接入用户数量 LTE TDD约束使用 SSP0 SSP1 SSP2 SSP3 SSP4 SSP5 SSP6 SSP7 SSP8 SSP9 DwPTS 3 9 1 6 GP 10 4 3 2 1 9 3 2 1 6 UpPTS 1 1 1 1 1 2 2 2 2 2 特殊子帧是TDD特有的,FDD是没有的。 DE频段采用10:2:2,F频段采用3:9:2 现网中TDS上下行配比采用2:4;TDL上下行子帧;配 比采用1:3,可以有效降低TDS和TDL之间的干扰。

现网中主要采用格式0,覆盖半径主要取决于序列后面的保护窗的大小,预留保护窗的目的就是为了让远端的手机的信号能够发过来落在保护窗内。格式4(即短PRACH。 现场无线资源配置规范实例 子帧配比与频点信息: 频段上下行子帧配比特殊子帧配比 F频段SA2 1:3 SSP5 3:9:2 D频段SA2 1:3 SSP7 10:2:2 E频段SA2 1:3 SSP7 10:2:2 频段与中心频率、频点号的对应表

频段中心频率频点号 D 2585 37900 2605 38100 F 1890 38350 E 2330 38950 2350 39150 D频段有些地市37900与38100两个频点;E频段有些地市使用39050与39250 小区合并与分裂 小区合并场景主要针对室内覆盖 初期容量不大,使用多扇区小区,减少载频配置与干扰 中后期容量增大时,可按需分裂为多个单扇区小区,改造成本低

各种不同以太网帧格式

各种不同以太网帧格式 利用抓包软件的来抓包的人,可能经常会被一些不同的Frame Header搞糊涂,为何用的Frame的Header是这样的,而另外的又不一样。这是因为在Ethernet中存在几种不同的帧格式,下面我就简单介绍一下几种不同的帧格式及他们的差异。 一、Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准; 1982 DEC,Intel,Xerox又制订了Ehternet II的标准; 1982 IEEE开始研究Ethernet的国际标准802.3; 1983迫不及待的Novell基于IEEE的802.3的原始版开发了专用的Ethernet帧格式; 1985 IEEE推出IEEE 802.3规范; 后来为解决EthernetII与802.3帧格式的兼容问题推出折衷的Ethernet SNAP 格式。 (其中早期的Ethernet I已经完全被其他帧格式取代了所以现在Ethernet只能见到后面几种Ethernet的帧格式现在大部分的网络设备都支持这几种Ethernet 的帧格式如:cisco的路由器在设定Ethernet接口时可以指定不同的以太网的帧格式:arpa,sap,snap,novell-ether) 二、各种不同的帧格式 下面介绍一下各个帧格式 Ethernet II 是DIX以太网联盟推出的,它由6个字节的目的MAC地址,6个字节的源MAC地址,2个字节的类型域(用于表示装在这个Frame、里面数据的类型),以上为Frame Header,接下来是46--1500 字节的数据,和4字节的帧校验) Novell Ethernet 它的帧头与Ethernet有所不同其中EthernetII帧头中的类型域变成了长度域,后面接着的两个字节为0xFFFF用于标示这个帧是Novell Ether类型的Frame,由于前面的0xFFFF站掉了两个字节所以数据域缩小为44-1498个字节,帧校验不变。

药物分类及代表药物结构式.

药物分类及代表药物结构式 合成抗菌药 ①磺胺类药物:磺胺甲恶唑(Sulfamethoxazole ); ②氟喹诺酮药物:氧氟沙星(Ofloxacin )、环丙沙星(Ciprofloxacin )、帕珠沙星(Pazufloxacin )、加替沙星(Gatifloxacin ); ③恶唑烷酮类药物:利奈唑胺(Linezolid ) N O O COOH F N N N O COOH F N N H OM e N H 2SO 2NH N O N O COOH F N N H N O O COOH F N H 2N F N O O O NHCOCH 3 磺胺甲恶唑(Sulfamethoxazole ) 氧氟沙星(Ofloxacin ) 环丙沙星(Ciprofloxacin )帕珠沙星(Pazufloxacin ) 加替沙星(Gatifloxacin ) 利奈唑胺(Linezolid ) β-内酰胺类抗生素 ①青霉素类:氨苄西林(Ampicillin ); ②头孢菌素类:头孢氨苄(Cefalexin )、头孢塞利(Cefoselis )、头孢卡品酯(Cefcapene Pivoxil ); ③单环β-内酰胺类:卡芦莫南(Carumonam ); ④青霉烯和碳青霉烯类:法罗培南(Faropenem )、多尼培南(Doripenem ); ⑤β-内酰胺酶抑制剂:克拉维酸(Clavulanic acid )、舒巴坦(Sulbactam );

N S COOH H H O NH 2 NH O 氨苄西林(Ampicillin ) N S H H COOH O NH 2 NH O 头孢氨苄(Cefalexin ) S N S H H COO - O NH O N + N CH 2CH 2OH NH 2 N OC H 3 N H 2N 头孢塞利(Cefoselis ) N S H H O NH O O O O O O NH 2 O S N N H 2头孢卡品酯(Cefcapene Pivoxil ) N O O H COOH H CH 2OH 克拉维酸(Clavulanic acid ) 舒巴坦(Sulbactam )N S O H COOH O O 唑类抗真菌药物 酮康唑(Ketoconazole )、氟康唑(Fluoconazole )、伏力康唑(Vpriconazole )、伊曲康唑(Itraconazole ) O O O Cl Cl N N N N O F F N OH N N N N N OH N N F N N N F F O O O Cl Cl N N N N N N N N O 酮康唑(Ketoconazole ) 氟康唑(Fluoconazole ) 伏力康唑(Vpriconazole )伊曲康唑(Itraconazole )

LTE TDD中的帧格式

LTE TDD中的帧格式 LTE TDD中,帧的长度是10s,分成10个长度为1s的子帧。上行和下行的数据在同一个帧内不同的子帧上传输。LTE TDD中支持不同的上下行时间配比,可以根据不同的业务类型,调整上下行时间配比,以满足上下行非对称的业务需求。在同一帧内,不同的上下行子帧的配置如下图所示: 从图中可以看到,子帧0和5传输的总是下行子帧。子帧1传输的总是特殊子帧。并且特殊子帧后传输的总是上行子帧。 在上述的几种配置中,0-2和6的配置,从下行到上行的转化周期为5s,由于从下行转换为上行时,首先发送特殊子帧,意味着特殊子帧的出现周期为5秒,也就是说,子帧1和子帧6传输的是特殊子帧。 配置3,4,5中,下行到上行的转换周期为10 s。 这里经常会有疑问,为何只有下行subframe到上行subframe之间有隔离(GP),而在上行subframe到下行subframe之间没有有隔离(GP)? 在36.211,Section 8里面提到,上行发送的时间是: TA+TAoffset, TAoffset固定为624个Ts,前面是基站进行上行同步用的,后面这个就是上行提前了发送的时间了,也就是可以理解为上行到下行的时间间隔。 特殊子帧包含三个部分:DwPTS(downlink pilot time slot),GP(guard period),UpPTS(uplink pilot time slot)。DwPTS传输的是下行的参考信号,也可以传输一些控制信息。UpPTS上可以传输一些短的RACH和SRS的信息。GP 是上下行之间的保护时间。 同其他的子帧相同,特殊子帧的长度也是1S。但其中各个部分的长度是不同的,是可以通过高层信令配置的。如下图所示:

药物化学多选分析

四、多项选择题 1) 下列属于“药物化学”研究范畴的是() A.发现与发明新药 B.合成化学药物 C.阐明药物的化学性质 D.研究药物分子与机体细胞(生物大分子)之间的相互作用 E. 剂型对生物利用度的影响 2) 已发现的药物的作用靶点包括() A. 受体 B. 细胞核 C. 酶 D. 离子通道 E. 核酸 3) 下列哪些药物以酶为作用靶点() A. 卡托普利 B. 溴新斯的明 C. 降钙素 D. 吗啡 E. 青霉素 4) 药物之所以可以预防、治疗、诊断疾病是由于(ACD) A. 药物可以补充体内的必需物质的不足 B.药物可以产生新的生理作用 C.药物对受体、酶、离子通道等有激动作用 D.药物对受体、酶、离子通道等有抑制作用 E.药物没有毒副作用 5) 下列哪些是天然药物() A. 基因工程药物 B. 植物药 C. 抗生素 D. 合成药物 E. 生化药物 6) 按照中国新药审批办法的规定,药物的命名包括(ACDE) A. 通用名D. 常用名 B. 俗名 E. 商品名 C. 化学名(中文和英文) 7) 7)下列药物是受体拮抗剂的为() A. 可乐定 B. 普萘洛尔 C. 氟哌啶醇 D. 雷洛昔芬 E. 吗啡 8) 全世界科学家用于肿瘤药物治疗研究可以说是开发规模最大,投资最多的项目,下列 药物为抗肿瘤药的是() A. 紫杉醇 B. 苯海拉明 C. 西咪替丁 D. 氮芥 E. 甲氧苄啶 9) 下列哪些技术已被用于药物化学的研究() A. 计算机技术 B. PCR技术 C. 超导技术 D. 基因芯片 E. 固相合成 10) 下列药物作用于肾上腺素的β受体有() A. 阿替洛尔 B. 可乐定 C. 沙丁胺醇 D. 普萘洛尔 E. 雷尼替丁 11) 影响巴比妥类药物镇静催眠作用的强弱和起效快慢的理化性质和结构因素是() A. pKa B. 脂溶性 C.5 位取代基的氧化性质 D. 5 取代基碳的数目 E. 酰胺氮上是否含烃基取代 12) 巴比妥类药物的性质有(ABDE) A.具有内酰亚胺醇-内酰胺的互变异构体 B.与吡啶和硫酸酮试液作用显紫蓝色

药物化学结构式

地西泮 N N N O N Cl O O N N CH 3 佐匹克隆 普罗加比 氟哌啶醇 盐酸纳洛酮 盐酸美沙酮 奥沙西泮 苯妥英钠 盐酸氯丙嗪 舒必利 盐酸哌替啶 艾司唑仑 卡马西平 氯氮平 吗啡 枸橼酸芬太尼 喷他佐辛 H C 6H C 6H 2N CH 2CH 2CH 2N(CH 3)2HCl CH 3 N 2CH 2CH CH 32NH 2 N 2H 5CH HCl N 2H 5CH 3N C 6H CH 2CH 3O 2CH HO C CH 2COOH CH 2COOH COOH C C CH 2CHN(CH 3)2 CH 2CH 3O CH 3HCl CH 2CH C CH 3CH 3

咖啡因 盐酸甲氯酚酯 CH 3N CH 3CH 3 CH 2CH CH 3O C O NH 2Cl 氯贝胆碱 NH 2 石杉碱甲 A 氢溴酸山莨菪碱 OH CH 2 2HCl 盐酸苯海索 肾上腺素 吡拉西坦 溴新斯的明 溴丙胺太林 盐酸麻黄碱 毛果芸香碱 硫酸阿托品 沙丁胺醇 N H 2O 3 CH CH 3N CH 2CONH 222CH 2N(CH 3)2HCl N CH CH N 3CH 3 Br N 3C CH OH H 2SO 4H 2O N 3 C HBr Br N 3)23)2 3 2 Br 2NHCH 3

盐酸苯海拉明 氯雷他啶 盐酸利多卡因 盐酸达克罗宁 盐酸拉贝洛尔 盐酸普鲁卡因 马来酸氯苯那敏 H CH 2OH NH CH CH O CH 2 盐酸普萘洛尔 CH CH 2OH NH CH C CH 3 2CH 2C O O CH 3 盐酸艾司洛尔 硝苯地平 2CH 2CH 3CH 2CH 2CH 2CH 2CH 2 CH 2 CH 3 O HCl 2CH 23CH 3CH 2CH 2OCH 2COOH 2HCl N COOC 2H 5OCH 2CH 2N(C 2H 5)2HCl HCl 3C CH 22H 5C 2H 5 H CH 332

整理晶体结构解析步骤

晶体结构解析步骤Steps to Crystallographic Solution (基于SHELXL97结构解析程序和DOS版SHELXTL画图软件。在DOS下操作) 注意:1. 每一个晶体数据必须在D:/STRUCT下建立一子目录(如D:\STRUCT\AAA),并将最初的数据备份一份于AAA目录下的子目录ORG; 2. 此处用了STRUCT.BA T批文件,它存在于C:\根目录下,内有path= c:\nix; c:\exe; d:\ struct; c:\windows\system32 (struct为工作目录,exe为SHELXL97程序,nix为SHELXTL画图) 3. 在了解DOS下操作之后,可在WIN的WINGX界面下进行结构解析工作,画图可用XP 或DIAMOND软件进行。 一. 准备 1. 检查是否有inf、dat和f2(设为sss.f2)文件 2. 用EDIT或记事本打开dat或inf文件, 并于记录本上记录下相关数据(下面所说的记录均指记录于记录本上): ⊕从% crystal data项中,记下晶胞参数及标准偏差(cell);晶体大小(crystal size);颜色(crystal color);形状(crystal habit);测量温度(experiment temperature); ⊕从R merge项中,记下Rint=?.???? %; ⊕从total reflections项中,记下总点数; ⊕从unique reflections项中,记下独立点数 3. 双击桌面的DOS图标(或Win2000与WinNT的“命令提示符”) 4. 键入STRUCT(属于命令,大小写均可。下同) 5. 进入欲处理的数据所在的文件夹(上面的1~2工作也可在这之后进行) 6. 键入XPREP sss.f2 (屏幕显示DOS的选择菜单) 7. 选择[4],回车(下记为) 8. 输入晶胞参数(建议在一行内将6个参数输入,核对后) 9. 一系列运行(对应的操作动作均为按)之后,输入分子式(如, Cu2SO4N2C4H12。此分子式仅为估计之用。注意:反应中所有元素都应尽可能出现,以避免后续处理的麻烦) 10. 退出XPREP运行之前,机器要求输入文件名,此时一定要输入文件名,且不与初始的文件名同名。另外,不要输入扩展名。如可输入aaa 11. 检查是否产生有PRP、PAR和INS文件(PRP文件内有机器对空间群确定的简要说明) 12. 更名:REN aaa.f2 aaa.hkl 13. 用EDIT或记事本打开aaa.ins文件,在第二~三行中,用实际的数据更改晶胞参数及其偏差(注意:当取向改变了,晶胞参数也应随之对应),波长用实际波长。 二.解结构 14. 键入SHELXS aaa或XS aaa,(INS文件中, TREF为直接法,PATT为Pattersion法) 15. XP,(进入XP程序)(可能产生计算内址冲突问题,注意选择处理) 16. READ or REAP aaa (aaa.res 为缺省值,若其它文件应是文件名.扩展名,如aaa.ins) 17. FMOL, (不要H原子时,为FMOL LESS $H,或FMOL后,KILL $H, ) (读取各参数,屏幕上显示各原子的键合情况) 18. MPLN/N, (机器认为最好取向) 19. PROJ, (随意转动,直至你认为最理想取向)

TD-LTE帧结构及速率分析

TD-LTE帧结构及速率分析 TD-LTE帧结构与物理层 DwPTS S GP S Figure 4.2-1: Frame structure type 2 (for 5 ms switch-point periodicity). TDD采用2型帧,如上图所示,1个帧周期是10ms,分成10个子帧,1个子帧分成2个时隙,1个时隙0.5ms,这与FDD1型帧是一致的,差别主要是特殊时隙。 Table 4.2-2: Uplink-downlink configurations. 如上表,根据上下行不同的配比,分为7种不同的配置,注意配置3、4、5,在10ms周期内只有1个特殊时隙,这就是转换周期的概念,配置345是10ms转换周期,这种配置相对于5ms转换周期来说,时延的保证性略差些,但系统损失的容量相对较小。外场常用的上下行配置是2和3。

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS). PS:CP的概念:循环前缀(CP: Cyclic Prefix)实际上是一份附加在符号前面的数据符号的末尾部分。通过添加一个循环前缀,信道能够被制成表现好像传输波形是来自时间减去无穷大,从而保证了正交状态,其本质上防止了一个辅载波与另一个载波相混淆(叫做载波间干扰,或ICI )。

目前常用的特殊子帧配置是5和7,特别是7,可以提高下行吞吐量。 以上TDD 帧结构的2个重要概念已经总结完了,1个是上下行子帧配比,1个是特殊子帧配比。 资源栅格: One downlink slot T 0 =l 1 DL symb -=N l R B D L s u b c a r r i e r RB sc N ?resource elements Resource element ) ,(l k 1 RB sc -N 上图中,一个RB (Resource Block )即帧结构中的一个slot 。在使用常规CP 时,1个

相关文档
相关文档 最新文档