文档库 最新最全的文档下载
当前位置:文档库 › R90=5K B25-50=3950 NTC热敏电阻阻值与温度RT表

R90=5K B25-50=3950 NTC热敏电阻阻值与温度RT表

R90=5K B25-50=3950 NTC热敏电阻阻值与温度RT表
R90=5K B25-50=3950 NTC热敏电阻阻值与温度RT表

TEMPERATURE VS RESISTANCE TABLE Resistance 5k Ohms at 90deg. C Resistance Tolerance + / - 3 %

B Value 3950K at 25/50 deg.

C B Value Tolerance + / - 3 %

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

NTC热敏电阻温度传感器

APPLICATIONS Temperature test in all kinds of air-condition,refrigerator,water boiler,microwave oven. PART NUMBERING FEATURES High precision and high stability Quick temperature response Resistant to heat shock Moisture resistant Excellent quality and high stability Guang Dong Fenghua Advanced Technology (Holding)Co.,LTD.code NTC NTC temperature sensors code 25 Rated zero-power resistance R unit: The first two are significant figure of resistance and the third one expresses number of following zeros 25 FH -CWF XXX X XXXX X X /XXXX X % Tolerance of R % 25 B B value Code B %Tolerance of B value % B B value Temperature Code Length of the sensor unit:mm Termination shape code NTC NTC THERMISTOR TEMPERATURE SENSORS

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

热敏电阻

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值R T(Ω) R T指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

10KNTC热敏电阻对照表

10K NTC温度阻值对照表 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt 温度T1 阻值Rt -40 235.83075593 2 25.795966881 44 5. 1.4580779678 -39 221.67240981 3 24.673611964 45 4.9 1.4204703156 -38 208.47382602 423.6 ? 7428627464 88 1.3840329328 -37 196.16305694 5 22.594945784 47 4.5885344983 89 1.3487237721 -36 184.67403487 6 21.632463086 48 4. 44 ? 314502486 -35 173.94605364 7 20. 717416866 49 4.2974265762 91 1.2813303512 -34 163.92329912 8 19.847177965 50 4. 16 ?2491701959 -33 154.55442376 9 19. 4. 1.2179863314 -32 145.79216068 10 18.231399185 52 3.9 1.1877444861 -31 137.59297352 11 17.481363273 53 3.7785460774 95 1.1584117439 -30 129.91673843 12 16.767123414 54 3.66 ? 1299564843 -29 122.72645506 13 16. 3. 5472659437 97 1.1023483265 -28 115.9879839 14 15.438447903 56 3.4379794071 98 1.075558075 -27 109.66980711 15 14.820498836 57 3.3326915609 99 1.0495576687 -26 103.74281093 16 14.231304683 58 3.2312350849 100 1.024******* 0.9998195293 -25 98. 13.669355966 59 3. 01 2

NTC热敏电阻的基本特性

NTC热敏电阻的基本特性 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=R0 exp {B(1/T-1/T0)} R: 温度T(K)时的电阻值 Ro:温度T0(K)时的电阻值 B: B 值 *T(K)= t(oC)+273.15 exp:指数函数,e(无理数)=2.71828;exp {B(1/T-1/T0)} 指e 的{B(1/T-1/T0)} 次方。 但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。 此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) B T=CT2+DT+E 上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 ?常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。

?电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C 的电阻值。 ?步骤 (1) 根据电阻-温度特性表,求常数C、D、E。 T o=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入B T=CT2+DT+E+50,求B T。 (3) 将数值代入R=5exp {(B T1/T-1/298.15)},求R。 *T : 10+273.15~30+273.15 ?电阻-温度特性图如图1所示

热敏电阻 5K 3375 阻值表

深圳市富温传感技术有限公司 人性科技感知温度TEMPERATURE VS RESISTANCE CHARACTERISTICS Resistance 5k Ohms at 25deg. C B Value 3375K at 25/50 deg. C Temp. (deg. C) R (kOhms) Temp. (deg. C) R (kOhms) Temp. (deg. C) R (kOhms) Temp. (deg. C) R (kOhms) -3039.014018 6.427866 1.29191140.3702 -2937.561919 6.199467 1.25361150.3623 -2836.162620 5.979868 1.21671160.3546 -2734.814521 5.768469 1.18111170.3472 -2633.515922 5.565170 1.14671180.3400 -2532.265023 5.369471 1.11341190.3330 -2431.060224 5.181172 1.08131200.3262 -2329.900025 5.000073 1.05031210.3196 -2228.782826 4.825774 1.02041220.3132 -2127.707127 4.6579750.99151230.3070 -2026.671628 4.4965760.96351240.3010 -1925.674729 4.3411770.93651250.2952 -1824.715130 4.1916780.91041260.2895 -1723.791531 4.0476790.88521270.2840 -1622.902632 3.9091800.86081280.2786 -1522.047133 3.7757810.83731290.2735 -1421.223934 3.6473820.81451300.2684 -1320.431935 3.5237830.79251310.2635 -1219.669736 3.4046840.77121320.2588 -1118.936437 3.2900850.75061330.2542 -1018.231038 3.1797860.73061340.2497 -917.552339 3.0734870.71141350.2453 -816.899440 2.9710880.69271360.2411 -716.271341 2.8724890.67471370.2370 -615.667142 2.7775900.65731380.2330 -515.086043 2.6860910.64041390.2291 -414.527044 2.5978920.62401400.2254 -313.989445 2.5129930.60821410.2217 -213.472346 2.4311940.59291420.2181 -112.974947 2.3523950.57811430.2147 012.496648 2.2763960.56381440.2113

(完整word版)NTC热敏电阻5K,10K,50K,100K阻值与温度对应RT表.doc

TEMPERATURE VS RESISTANCE TABLE Resistance5k Ohms at 25deg. C Resistance Tolerance+ / - 1 % B Value3470K at 25/50 deg. C B Value Tolerance+ / - 1 % Temp. Rmax Rnor Rmin (deg. C) (k Ohms) (k Ohms) (k Ohms) -20 37.7588 36.6476 35.5656 -19 35.8710 34.8331 33.8218 -18 34.0895 33.1199 32.1745 -17 32.4076 31.5016 30.6178 -16 30.8191 29.9724 29.1460 -15 29.3184 28.5270 27.7542 -14 27.9000 27.1602 26.4374 -13 26.5589 25.8672 25.1911 -12 25.2904 24.6438 24.0113 -11 24.0903 23.4857 22.8939 -10 22.9545 22.3890 21.8353 -9 21.8790 21.3502 20.8321 -8 20.8605 20.3659 19.8810 -7 19.8954 19.4328 18.9791 -6 18.9808 18.5481 18.1235 -5 18.1137 17.7090 17.3115 -4 17.2913 16.9127 16.5408 -3 16.5111 16.1570 15.8089 -2 15.7708 15.4395 15.1138 -1 15.0679 14.7581 14.4533 0 14.4005 14.1108 13.8255 1 13.7666 13.4956 13.2286 2 13.1642 12.9108 12.6610 3 12.5917 12.3547 12.1210 4 12.0473 11.8258 11.6072 5 11.529 6 11.3226 11.1181 6 11.0372 10.8436 10.6524 7 10.5685 10.3877 10.2089 8 10.1225 9.9535 9.7863 9 9.6977 9.5399 9.3837 10 9.2932 9.1458 8.9998

热敏电阻B值

B值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个B值,所以种之为材料常数。 B值可以通过测量在25摄氏度和50摄氏度(或85摄氏度)时的电阻值后进行计算。B值与产品电阻温度系数正相关,也就是说B值越大,其电阻温度系数也就越大。 温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将B值换算成电阻温度系数: 电阻温度系数=B值/T^2 (T为要换算的点绝对温度值) NTC热敏电阻器的B值一般在2000K-6000K之间,不能简单地说B值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是B值大点好。因为随着温度的变化,B值大的产品其电阻值变化更大,也就是说更灵敏。 NTC热敏电阻B值公式的: B= T1T2 Ln(RT1/RT2)/(T2-T1) 其中的B:NTC热敏电阻的B值,由厂家提供; RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值; T1、T2:绝对温标。V NTC热敏电阻B值公式。 先更正昨天的帖子,我用的热敏电阻的精度是1%,不是3%。 B= T1T2 Ln(RT1/RT2)/(T2-T1) ——(1) B:NTC热敏电阻的B值,由厂家提供;

RT1、RT2:热敏电阻在温度分别为T1、T2时的电阻值,厂家提供的是温度为298.15K (25摄氏度)时的阻值。 T1、T2:绝对温标。 我还是针对昨天的原理图简单的说说:由(1)式可得: RT1/RT2=e B(1/T1-1/T2)————————(2) 取T1=298.15K,此时热敏电阻的阻值为RT1=10K,故取R1=10K,设温 度为T2时的分压值为V2,则:V2=RT2Vcc/(RT2+R1),得 RT2=V2R1/(Vcc-V2),所以 RT1/RT2=Vcc/V2-1 代入(2)式得 e B(1/T1-1/T2) =Vcc/V2-1 得 B(1/T1-1/T2)=Ln(Vcc/V2-1) T2=T1/(1-T1(Ln(Vcc/V2-1))/B)设8位ADC输出值为N,则 Vcc/V2-1=256/N-1 所以 T2=T1(1-T1(Ln(256/N-1))/B)换算为摄氏温度后则 T=T2-273.15 你可以用C或VB编个程序从N=0开始到N=255计算出温度表,然后以N为索引查表直接得到温度。也可以通过实际测试出温度值构成温度表格,采用插值等算法得到温度值。我这里是以T1=25度计算的,你可以通过调整T1的值来测试更高或更低温度。

PTC热敏电阻基础知识总结

热敏电阻的物理特性与表示 热敏电阻的物理特性用下列参数表示: 电阻值、B值、耗散系数、热时间常数、电阻温度系数。 1、电阻值:R〔Ω〕 电阻值的近似值表示为:R2=R1exp[1/T2-1/T1] 其中:R2:绝对温度为T2〔K〕时的电阻〔Ω〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕B:B值〔K〕 2、B值:B〔k〕 B值是电阻在两个温度之间变化的函数,表达式为: B= InR1-InR2 =2.3026(1ogR1-1ogR2) 1/T1-1/T2 1/T1-1/T2 其中:B:B值〔K〕R1:绝对温度为T1〔K〕时的电阻〔Ω〕R2:绝对温度为T2〔K〕时的电阻〔Ω〕 3、耗散系数:δ〔mW/℃〕 耗散系数是物体消耗的电功与相应的温升值之比。δ= W/T-Ta = I2 R/T-Ta 其中:δ:耗散系数δ〔mW/℃〕W:热敏电阻消耗的电功〔mW〕T:达到热平衡后的温度值〔℃〕Ta:室温〔℃〕I:在温度T时加热敏电阻上的电流值〔mA〕R:在温度T时加热敏电阻上的电流值〔KΩ〕在测量温度时,应注意防止热敏电阻由于加热造成的升温。 4、热时间常数:τ〔sec.〕 热敏电阻在零能量条件下,由于步阶效应使热敏电阻本身的温度发生改变,当温度在初始值和最终值之间改变63.2%所需的时间就是热时间系数τ。 5、电阻温度系数:α〔%/℃〕 α是表示热敏电阻器温度每变化1oC,其电阻值变化程度的系数〔即变化率〕,用α=1/R·dR/dT 表示,计算式为: α = 1/R·dR/dT×100 = -B/T2×100 其中:α:电阻温度系数〔%/℃〕R:绝对温度T〔K〕时的电阻值〔Ω〕B:B值〔K〕 PTC热敏电阻发热元件 一、PTC热敏电阻的简介: PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。 有恒温、调温、自动控温的特殊功能 当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。 不燃烧、安全可靠 PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。 省电 PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。 寿命长 PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。并且多孔型比无孔型寿命更长。 结构简单 PTC元件本身自动控温,不需另加自动控制温度线路装置。特别是我公司新产品棗多孔型PTC更不需要其他散热装置,也不需用导电胶。 使用电压范围广 PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。 二、PTC热敏电阻的应用: 低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。 高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手

NTC热敏电阻(25℃-100K)温度

T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max T (℃) R (ΚΩ) Min R (ΚΩ) Center R (ΚΩ) Max -30 1671.2 1721.2 1771.2 15 157.05 159.19 161.33 -29 1569.5 1615.9 1662.2 16 150.16 152.15 154.15 -28 1474.8 1517.8 1560.8 17 143.53 145.38 147.24 -27 1387.0 1426.8 1466.7 18 137.13 138.86 140.58 -26 1305.8 1342.8 1379.8 19 130.96 132.56 134.16 -25 1230.9 1265.3 1299.7 20 125.00 126.48 127.96 -24 1162.1 1194.1 1226.1 21 119.27 120.64 122.01 -23 1098.9 1128.7 1158.5 22 113.78 115.05 116.32 -22 1040.9 1068.8 1096.6 23 108.59 109.73 110.87 -21 987.82 1013.9 1039.9 24 103.63 104.71 105.79 -20 939.21 963.60 987.99 25 99.000 100.00 101.00 -19 878.25 900.70 923.16 26 94.648 95.629 96.609 -18 825.09 845.86 866.64 27 90.654 91.617 92.580 -17 778.08 797.36 816.64 28 87.037 87.985 88.932 -16 735.91 753.85 771.80 29 83.818 84.752 85.687 -15 697.56 714.30 731.04 30 81.015 81.940 82.865 -14 662.26 677.89 693.52 31 77.811 78.720 79.629 -13 629.37 643.98 658.58 32 74.679 75.571 76.463 -12 598.42 612.08 625.73 33 71.612 72.486 73.361 -11 569.05 581.81 594.57 34 68.611 69.467 70.323 -10 540.98 552.90 564.82 35 65.683 66.520 67.357 -9 514.01 525.13 536.26 36 62.837 63.654 64.471 -8 488.00 498.37 508.74 37 60.084 60.882 61.679 -7 462.85 472.51 482.16 38 57.438 58.216 58.994 -6 438.52 447.49 456.47 39 54.913 55.671 56.429 -5 414.97 423.30 431.63 40 52.521 53.260 53.999 -4 392.32 400.04 407.76 41 50.276 50.997 51.718 -3 371.74 378.91 386.08 42 48.190 48.894 49.598 -2 352.88 359.56 366.23 43 46.275 46.963 47.651 -1 335.49 341.70 347.91 44 44.541 45.215 45.889 0 318.95 325.10 331.25 45 42.998 43.660 44.322 1 303.83 309.58 315.33 46 41.279 41.926 42.573 2 289.63 294.99 300.35 47 39.656 40.288 40.920 3 276.20 281.20 286.21 48 38.122 38.740 39.357 4 263.46 268.13 272.81 49 36.669 37.273 37.877 5 251.34 255.70 260.06 50 35.289 35.880 36.471 6 239.77 243.84 247.92 51 33.976 34.554 35.132 7 228.72 232.52 236.32 52 32.724 33.289 33.854 8 218.14 221.68 225.23 53 31.524 32.077 32.630 9 208.02 211.32 214.62 54 30.372 30.913 31.454 10 198.33 201.40 204.47 55 29.261 29.790 30.319 11 188.70 191.55 194.40 56 28.186 28.703 29.220 12 179.94 182.59 185.25 57 27.142 27.647 28.152 13 171.84 174.31 176.78 58 26.124 26.617 27.111 14 164.25 166.55 168.85 59 25.128 25.610 26.091 R ---- T 分 度 表 R 25℃ =100.00KΩ±1% B 25/50: 3950 本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2009,版权所有,仅供试用。

NTC10K_热敏电阻温度阻值对应表

NTC热敏电阻R/T对照表 型号: mfh103-3950 T(℃) R(KΩ) T(℃) R(KΩ) T(℃) R(KΩ) -20.0 95.3370 20.5 12.2138 61.0 2.3820 -19.5 92.6559 21.0 11.9425 61.5 2.3394 -19.0 90.0580 21.5 11.6778 62.0 2.2977 -18.5 87.5406 22.0 11.4198 62.5 2.2568 -18.0 85.1009 22.5 11.1681 63.0 2.2167 -17.5 82.7364 23.0 10.9227 63.5 2.1775 -17.0 80.4445 23.5 10.6834 64.0 2.1390 -16.5 78.2227 24.0 10.4499 64.5 2.1013 -16.0 76.0689 24.5 10.2222 65.0 2.0644 -15.5 73.9806 25.0 10.0000 65.5 2.0282 -15.0 71.9558 25.5 9.7833 66.0 1.9928 -14.5 69.9923 26.0 9.5718 66.5 1.9580 -14.0 68.0881 26.5 9.3655 67.0 1.9240 -13.5 66.2412 27.0 9.1642 67.5 1.8906 -13.0 64.4499 27.5 8.9677 68.0 1.8579 -12.5 62.7122 28.0 8.7760 68.5 1.8258 -12.0 61.0264 28.5 8.5889 69.0

热敏电阻数字温度计的设计与制作

评分: 大学物理实验设计性实验 实《用热敏电阻改装温度计》实验提要 设计要求 ⑴通过查找资料,并到实验室了解所用仪器的实物以及阅读仪器使用说明 书,了解仪器的使用方法,找出所要测量的物理量,并推导出计算公式,在此基础上写出该实验的实验原理。 ⑵选择实验的测量仪器,设计出实验方法和实验步骤,要具有可操作性。 ⑶根据实验情况自己确定所需的测量次数。 实验仪器 惠斯通电桥,电阻箱,表头,热敏电阻,水银温度计,加热电炉,烧杯等实验所改装的温度计的要求 (1)要求测量范围在40℃~80℃。 (2)定标时要求测量升温和降温中同一温度下热敏温度计的指示值(自己确定测量间隔,要达到一定的测量精度)。 (3)改装后用所改装的温度计测量多次不同温度的热水的温度,同时用水银温度计测出此时的热水温度(作为标准值),绘制出校正曲线。 提交整体设计方案时间 学生自选题后2~3周内完成实验整体设计方案并提交。提交整体设计方案,要求电子版。用电子邮件发送到指导教师的电子邮箱里。 思考题 如何才能提高改装热敏温度计的精确度? 用热敏电阻改装温度计 实验目的: 1.了解热敏电阻的特性; 2.掌握用热敏电阻测量温度的基本原理和方法; 3.进一步掌握惠斯通电桥的原理及应用。 实验仪器:

惠斯通电桥,电阻箱,热敏电阻,水银温度计,滑动变阻器,微安表,加热电炉,烧杯等 实验原理: 1.惠斯通电桥原理 惠斯通电桥原理电路图如图1所示。当电桥平衡时,B,D之间的电势相等,桥路电流I=0,B,D之间相当于开路,则U B=U D;I1=I x,I2=I0; 于是I1R1=I2R2,I1R X=I2R0 由此得R1/R X=R2/R0 或R X=R0R1/R2 (1) (1)式即为惠斯通电桥的平衡条件,也是用来测量 电阻的原理公式。欲求R X,调节电桥平衡后,只要知道 R1,R2,R0的阻值,即可由(1)式求得其阻值。 2.热敏电阻温度计原理 热敏电阻是具有负的电阻温度系数,电阻值随温度升高而迅速下降,这是因为热敏电阻由半导体制成,在这些半导体内部,自由电子数目随温度的升高增加的很快,导电能力很快增强,虽然原子振动也会加剧并阻碍电子的运动。但这样作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥非平衡时通过桥路的电流大小来表征温度的高低。 热敏电阻温度计的设计电路图如图2示

NTC热敏电阻、温度传感器产品选型方法与应用.

NTC热敏电阻/温度传感器产品选型方法与应用 NTC是Negative Temperature Coefficient的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以过渡金属氧化物为主要原材料,采用先进陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。禾用这些特性,NTC热敏电阻器/温度传感器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 其阻值随温度变化的特性下: [A]、非线性的温度特性[B]、丫轴为对数坐标时非常接近实际的温度特性正:面方下以虑考要需器感传度/温阻电敏热CTN型选确 、首先明确产品应用功能: 1. 温度测量

2. 温度补偿 3. 浪涌电流抑制 点击了解更多:温度测量、控制用NTC 热敏电阻器/温度传感器―― 工作原理和应用电路温度补偿NTC 热敏电阻器/温度传感器―― 工作原理和应用电路浪涌电流抑制NTC 热敏电阻器/温度传感器―― 工作原理和应用电路 二.按产品应用场合分类: 1. 汽车:VT 系列——汽车温度传感器用热敏电阻 DTV 系列——汽车温度传感器用NTC 热敏芯片 VTS 系列——交通工具温度传感器/温度开关 2. 医疗:MT 系列——医疗设备温度传感器用NTC 热敏电阻 DTM 系列——医疗温度传感器用NTC 热敏芯片 IT 系列——电子温度计NTC 温度传感器 3. 家电:TS 系列——NTC 温度传感器 BT系列一一绝缘引线型NTC温度传感器 4. 通讯:CT 系列——片式负温度系数热敏电阻 AT系列一一非绝缘引线插件NTC热敏电阻 5. 计算机及办公自动化设备: OT 系列——办公自动化NTC 热敏电阻/温度传感器 GT系列一一玻璃封装NTC热敏电阻

502F NTC热敏电阻温度-阻值特性表

Sinloon Approval Customer: Approval No. : Product : NTC THERMISTOR SENSORS Mayloon Part No. : MLHT 502F- 3970 Customer’s Part No. : Specifications : R 25 5,000 ? ± 1 % B 25-85 3970 °K ± 1 % Date : 2007/05/10 Approved By: Checked By: Prepared By : Approved By: Examined By: Tested By : Company’s Stamp Company’s Stamp

1) SCOPE This specifications define ratings, dimension, insulation, climatic sequence and mechanical characteristics for (Lead-free) MLHT type thermistor. 2) PART NO. : MLHT502F-3970 3) RATING 3-1) Rated zero-power resistance R 25 : 5 k ? ±1 % (at 25)℃ 3-2) B value. B 25/85 : 3,970K ±1 % *The B value is calculated using the zero-power resistance values measured at 25 and 85.℃℃ 3-3) Dissipation factor. :Approx. 2 mW/(in air)℃ 3-4) Thermal time constant. :Approx. ≦12 Sec (in air) 3-5) Maximum power rating. : 10 mW (at 25)℃ 3-6) Category temperature range : -30 ~ 125 ℃ 3-7) Lead content : RoHs Compliant. 3-8) Cadmium : RoHs Compliant. 4) DIMENSIONS UNIT: mm Spec.No.: STANDARD REVISION Date: Note A B Approved Checked Drawn C

相关文档
相关文档 最新文档