文档库 最新最全的文档下载
当前位置:文档库 › 多普勒心肌组织成像

多普勒心肌组织成像

多普勒心肌组织成像

多普勒心肌组织成像(DTI)的临床应用简介

一、原理:

多普勒心肌组织成像又称组织多普勒超声心动图,是一种无创性分析室壁运动的技术。该技术根据多普勒原理将多普勒取样容积置于心脏组织内探查其运动方向和速度。在传统的多普勒一起的基础上,改变多普勒滤波系统,滤掉心腔内高速、低振幅的血流频移信号,保留心脏组织运动产生的低速、高振幅的频移信号,通过自相关信号处理技术,以彩色编码方法和频谱显示方法,将心肌室壁运动的信号实时展现在显示屏上。

二、主要常用指标:

DTI多普勒速度曲线

1、收缩期Sa波:反映心室在射血过程中,心室肌牵拉瓣环下移的速度。

2、舒张早期左室充盈波Ea波:由于心室快速充盈,二尖瓣开放,瓣环向心底移动产生

的第一个舒张早期波。

3、舒张晚期Aa波:心房收缩,瓣环再次向心底移动产生的第二个舒张晚期波。

正常值:Sm(收缩期Sa波峰值速度)平均值>5.4cm/s

Em(舒张早期Ea波峰值速度)/Am(舒张晚期Aa波峰值速度)>1

三、临床主要应用

(一)评价左室舒张功能:二尖瓣环运动频谱反映了左室的机械运动,它通过瓣环运动速度、时相和位移的改变从另一角度反映了左室的舒张功能。

1、对左室充盈异常进行分类,特别是能鉴别二尖瓣血流图假性正常化的舒张功能异常,是二尖瓣血流图和肺静脉血流图评价左室舒张功能的有效补充。DTI与二尖瓣血流图二者相结合使得左室舒张功能的评价更加客观准确。

2、与二尖瓣血流图E峰相结合,评价左室充盈压。

(二)评价左室整体收缩功能

(三)评价心肌局部功能及心肌活性

大鼠心肌梗死模型图解

大鼠心肌梗死模型制作图解 庄瑜制作 南京市第一医院 南京医科大学附属南京第一医院南京市心血管病医院心胸外科 https://www.wendangku.net/doc/855814051.html,/

制作前准备 1.器械:动物呼吸机,开胸制作心梗模型,维持呼吸至关重要。虽然据说某些牛人可以不用呼吸机,但是我想这是经验积累的结果,开始时必然要用;况且需要看此说明的人应该没有牛到这个程度。当然,如果你经费异常充足,不在乎死亡成千上万的大鼠也可以。 显微器械,最主要的是针持,大鼠胸腔、心脏均很小,常规器械无法进入胸腔缝扎。其他手术器械以眼科器械为主。 2.动物:应选择成年健康大鼠,耐受性较好。最重要的是要充分利用每一只动物,包括死亡的大鼠。许多人都知道制作大鼠模型需要多练习,但是练习不是买一大批大鼠,不停地缝扎,然后不停地扔掉死的大鼠;当然,制作心梗模型死亡一些大鼠是很正常的事情。练习的前提是对大鼠解剖及操作过程的熟悉,如果可能的话,最好先找一份大鼠的解剖图谱,熟悉手术区域的解剖结构;同时研究实验流程,熟悉每一个实验步骤。大鼠死亡后,不要急着扔掉,利用它练习每一个你不熟悉的操作步骤,直到熟练为止。 3.实验者:实验者必须具有一种平和的、耐得住寂寞的心态,制作模型需要时间,尤其是早期,需要耐心、仔细的摸索;必须对每一个步骤进行认真地研究。最熟练的制作者做一只大鼠模型也需要30到40分钟的时间,加上准备及扫尾的时间,制作十只模型就需要一天的时间,如果你废寝忘食多用用功也可能做到15只左右,这样一天下来腰酸背痛是必然的,你能坚持多久?不熟练的话,一只就要两、三个小时;同时还要看着大鼠在你的手中死亡,这是很揪心的事情。因此,实验者必须具备良好的心态,急于求成、难耐寂寞者不适合做此实验。 本人系气管切开插管,缝扎LAD制作模型。亦有人经口插管,液氮冷冻制作模型;不在本人讨论范围之内,哪位有经验的话可以传上来,一起讨论。最后祝各位早日成功!!

多普勒技术参数

技术参数 1、主要技术规格及系统概述: *1.1、≥19英寸高分辨、高亮度、无闪烁、彩色液晶监视器,自由臂,可任意旋转抬升,操作面板具有独立的液晶触摸屏。 1.2、全数字化超声平台,全数字多路波束形成器,可变孔径及动态变迹A/D 16bit。 1.3、数字化二维灰阶成像单元及M型显像单元。 1.4、数字化彩色多普勒单元, 方向性彩色多普勒能量图。 1.5、数字化频谱多普勒显示及分析技术(包含实时自动包络频谱测量与分析)。 1.6、组织谐波成像技术、造影谐波成像技术。 1.7、自适应图像处理技术,自动优化整幅图像,提高组织界面和边界回声,支持二维,彩色和多普勒。 1.8、脉冲编码群发射接收技术,根据不同检查深度,均衡发射脉冲频率,提高穿透性。 1.9、智能图像斑点噪声抑制技术。 1.10、智能图像扫描技术,作用于2D及Doppler,单键操作, 可自动调节增益,标尺等参数。 *1.11、实时多声束空间复合成像技术,作用于探头发射及接收,多角度可调,可结合多种成像模式使用于高频及腹部探头。 1.12、高密度血流显示,提高小血管彩色空间分辨率。 *1.13、组织多普勒成像技术组件(具有多种成像模式)。解剖M型技术组件(具有独立三线360度任意调节),可应用于心脏和腹部探头。 1.14、梯形扩展成像技术。 1.15、二维声束偏转技术-改变超声声束的偏转方向。 1.16、宽景成像技术,包括灰阶和彩色能量图,配备缩放功能和测量计算。 1.17、胎儿重量指数评估。 1.18、具备3D/4D成像技术,实时立体3D扫描,并具备自由臂3D,静态3D功能。 *1.19、多种三维显示模式,包括: 表面成像模式(多平面成像、4D实时成像); 骨骼成像模式; 感兴趣区域立体正交成像(轮廓成像、解剖成像); 透明成像模式(最大模式、最小模式) 1.20、曲线取样成像技术,曲线或直线切割3D平面。 1.21、对3D/4D图像具有“魔术剪”功能,可随意切除3D组织或伪像。 1.22、容积对比成像技术,对容积数据进行多切面采集和处理,有效地的抑制噪音,极大提高A、C平面的对比分辨率。所有容积探头均支持此技术。 1.23、正交断层成像技术:用于3D/4D的容积数据,能实时同屏显示至少5个相互交叉平面的图像,交叉角度可实时任意调节,观察感兴趣区的空间位置和内部结构,适合产前系统筛查、疑难病例会诊和科研教学。 1.24、平行断层成像技术:可实时多幅平行断层的超声图像,每个断层间隔≤0.5mm。 1.25、自动轮廓识别技术成像,可对任意形状体积进行显示计算分析。 1.26、组织弹性成像技术,根据不同组织弹性差别,完成彩色编码成像,并可以多种成像模式显示,具备实时纠错反馈功能。 1.27、数据连通可有多种选择:大容量内置硬盘存储、多USB接口输出、DVD光盘刻录、BLUETOOTH 蓝牙连接输出、无线传输和有线网络DICOM数据传输等。 2、二维成像主要参数: 2.1、二维成像灰阶≥256

常见大鼠心肌梗塞模型建立方法对比

常见大鼠心肌梗塞模型建立方法对比 心肌梗塞是危害人类健康的主要疾病之一,主要是由于某支冠状动脉持续缺血,其所支配的心肌发生不可逆转坏死而形成的病理过程。90%以上的心肌梗塞是由于冠状动脉粥样硬化病变基础上血栓形成而引起的,较少见于冠状动脉痉挛,少数由栓塞、炎症、畸形等造成管腔狭窄闭塞,使心肌严重而持久缺血达1小时以上即可发生心肌坏死。心肌梗塞的发生常有一些诱因,包括过劳、情绪激动、大出血、休克、脱水、外科手术或严重心律失常等。美国每年约有150万人发生心肌梗塞。而在中国,近年来心肌梗塞发生率呈明显上升趋势,每年新发至少50万名患者,现存至少200万名患者。 为了更好地筛选有效治疗心肌梗塞的药物并研究心肌梗塞的发病机理,实验人员常以大鼠、兔和实验用小型猪来建立标准化的心肌梗塞模型。相对于其他动物,大鼠有许多优势: 1.大鼠的品系纯正,组内差异较少; 2.大鼠饲养成本低,造模前后管理较容易; 3.大鼠的冠脉系统侧支循环比较少,结扎后易出现一个比较固定的缺血区,能很大程度上提高造模的成功率; 4.大鼠心肌梗塞模型手术较小,单人就能操作。 下面我们将就较常见的几种大鼠心梗造模方法来进行一一详细介绍。 a.传统冠状动脉结扎法 冠状动脉结扎是最常选用的大鼠心肌梗塞造模方法,其具体操作步骤为:将大鼠用氯氨酮麻醉后接上小动物呼吸机,经左侧第4肋间剪开皮肤,钝性分离肌肉组织,打开胸腔并剪开心包膜,挤压出心脏,在左心耳与肺动脉圆锥之间穿线,结扎左冠状动脉前降支(于分支的起点处约1~2mm),用Ⅱ导生理记录仪记录心电

图,心电图ST段弓背抬高示心肌梗塞造模成功。然后迅速将心脏放回胸腔,随即缝合胸腔及皮肤。假手术组(阴性对照组)除不结扎冠状动脉外,其余操作与手术动物相同,术后给予庆大霉素局部处理。 b.异丙肾上腺素注射法 除冠状动脉结扎法之外,药物注射法也常用于大鼠的心肌梗塞模型的建立。将大鼠用1%的戊巴比妥钠20~25mg/kg体重给予大鼠腹腔注射麻醉,直接按5mg/kg 体重,皮下注射4%异丙基肾上腺素(ISO),或直接将药物注入腹腔均可造模,每天注射1次,连续注射2-8天,可造成心梗、心衰、冠状动脉痉挛。一般在注射后4-8周发病。 c.反复冷冻法 沿大鼠胸骨左缘前外侧第4肋间进入胸腔打开,充分暴露心脏,用浸过液氮的直径6mm铜棒充分接触左室游离壁,持续时间5s/次,随即闭合胸腔,待自主呼吸恢复正常后,按分组情况再次原位反复共3、5次或8次进行心肌冷冻损伤。 这三种大鼠的心肌梗塞模型的建立方法各有优缺点,通过对这三种方法所建立疾病类型、手术实验技术要求、实验室仪器要求、术后死亡率及造模稳定性等方面的对比,我们对比总结了这三种造模方法(如表1所示)。 表1.三种心肌梗塞造模方法对比 模型类型造模类型实验技能要求仪器要求死亡率造模稳定性 冠状动脉前降支结扎法急性心梗高需要小动物 呼吸机 较高高 冷冻法急性心梗较高需要小动物 呼吸机 较高低 药物注射法慢性心梗低无要求低较高从上表可见,冠状动脉前降支结扎法与冷冻法类似,均会造成大鼠的急性心肌

多普勒超声伪像的识别及其意义说课讲解

多普勒超声伪像的识别及其意义

多普勒超声伪像的识别及其意义 多普勒血流显示的方式有彩色多普勒成像(CDI)和频谱图两种,它们在二维超声即声像图基础上增加了丰富的、很有用的血流信息。另一方面也应看到,无论彩色多普勒或频谱多普勒,超声伪像也是很多见的。认识多普勒超声有关的伪像,可以帮助我们对多普勒检查更好地解释和判断,正确地评价多普勒超声所见,避免误诊,甚至有可能适当地加以利用。 一. 怎样识别多普勒超声伪像? 从事多普勒超声诊断的超声工作者应当首先学习并掌握有关多普勒超声临床应用的基础知识,其次还应了解并熟悉仪器有关的各种调节功能和操作。这样,便容易理解多普勒超声伪像的多种表现及其处理。此外还应认识到,多普勒超声技术本身受所用设备条件如灵敏度的限制很大,也受操作者技术因素的影响,它们均可以成为伪差(伪像)产生的来源。 二. 多普勒超声伪像的分类 彩色多普勒超声伪像是多种多样的。大致可分为以下四类:1.有血流的部位无彩色或少彩色信号。2.有血流部位出现过多彩色信号。3.无血流的部位出现彩色信号。4.彩色信号或其鲜艳程度(shade of color)改变,因而引起血流方向和速度的误解(表1)。 表1 彩色多普勒超声伪像分类 一. 有血流,彩色信号过少或缺失 多普勒超声衰减伪像:彩色信号分布不均,即“浅表血供多,深方少血供或无血

供”;深部器官血流如肾实质、股深静脉较难显示 频谱滤波(filter)设置过高 测低速血流时,不适当的采用较低频率探头 二. 有血流,彩色信号过多 多普勒增益过高(彩色外溢) 仪器专门设置“彩色优先”(color priority) 使用声学造影剂 三. 无血流,出现彩色信号 频谱滤波(filter)设置过低 多普勒增益过高 镜面反射伪像 闪烁伪像:心搏、呼吸、大血管搏动 组织震颤(高速血流、被检者发音) 快闪伪像(twinkling artifact,尿路结石、人工骨表面等) 四. 血流方向、速度表达有误 彩色混叠(aliasing):PRF过低、测高速血流时采用过高频率探头或较高Doppler 频率 方向翻转键设置不当 / 探头倒置 血管自然弯曲走行(仪器不会识别θ角度)

超声多普勒成像原理

超声多普勒成像原理 当声发射源与声接收器有相对运动时,接收器所接收到的声波频率与发射频率有所不同,这一现象称为多普勒效应。超声多普勒法成像就是应用超声波的多普勒效应,从体外得到人体运动脏器的信息,进行处理和显示。现已普遍用于血流、心脏和产科等方面的检查。超声血流测量仪、起声胎心检测仪、超声血管显像仪以及超声血压计、超声血流速度剖面测试仪等多种仪器在临床上广为应用。 超声波对血管内流动的红血球接收散射,根据多普勒效应,即反射频率于 ,由下式给出:发射频率之间将产生偏移即多普勒频移f d f =2v f0cosθ/C d 式中v为红血球的运动速度,C为超声波的速度。由公式可以看出,与血流 就可求得v。 速度成正比,若检出f d 超声多普勒法分连续多普勒和脉冲多普勒。前者的缺点是没有距离分辨能力,在射线方向上的所有多普勒信号总是重叠在一起;后者具有距离分辨能力,能够捡出某特定深度的多普勒信号,可用于清洁箱内部和大血管血流信号的检测。但由于采用脉冲波,受重复频率产生的重叠幻像的影响,测定深部高速血流具有一定的困难。

现在的超声多普勒成像装置大多采用与B超相结合的方法,在B超上一边设立多普勒取样,一边捡出血流信息。多普勒波束是与B超超声波束一起发射的。由同一探头接收放大,经延迟线和加法器后,进入混频电路和低通滤波器进行相位检波,然后通过取样状态设定电路和带通滤波器取出特定深度的多普勒信号,并将从心脏壁和血管壁来的运动滞后的低频多普勒信号滤除。取出的多普勒信号一路可以送到扬声器进行监听,一路可以经过A/D转换送到频谱分析器进行快速傅里叶变换(FFT),通过变换后便可得到多普勒频谱。以横轴表示时间,纵轴表示多普勒频移(速度),各个多普勒频率强度(功率)用辉度显示。由于FFT变换频谱范围宽,可以判断是紊流还是层流。最后,经D/A变换后与B型、M型图像一起显示。 彩色多普勒成像装置

心肌生理特性包括 (1)

心肌生理特性包括:自律性、兴奋性、传导性和收缩性。 一、心肌的生物电现象(跨膜电位) 心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。 图1 各部分心肌细胞的跨膜电位 (一)、工作心肌的跨膜电位: 以心室肌为例说明之。 图2 心室肌细胞的跨膜电位及形成机制 心肌细胞的跨膜电位包括静息电位和动作电位。其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。 (1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。因此,K+顺浓度差由膜内向膜外扩散,达到K+的电一化学平衡电位。 (2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期 1、去极化:又称为0期。 在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。0期历时1~2 ms。 其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na+快速内流,使膜内电位急剧上升,达到Na+的电一化学平衡电位。 2、复极化:包括l期、2期、3期、4期。 1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。 2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。记录的动作电位曲线呈平台状,故此期称为平台期。2期的形成主要是由Ca2+内流与K+外流同时存在,二者对膜电位的影响相互抵消。 3期:膜内电位由0MV 左右下降到-90 ,3期是Ca2+内流停止,K+外流逐渐增强所致。 4期:此期膜电位稳定于静息电位,所以也称静息期。4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。 (二)、自律细胞的跨膜电位及其产生机制:

大鼠心肌梗死模型研究进展

大鼠心肌梗死模型研究进展 发表时间:2016-05-24T11:39:08.117Z 来源:《健康世界》2015年12期作者:徐陶锐1 李保2(通讯作者)王家璞1 闫文婷1 [导读] 山西医科大学山西省心血管病医院心肌梗死是现临床的多发病,是由于冠状动脉发生了闭塞,导致心肌缺血从而引起心肌细胞发生死亡。 1山西医科大学山西太原 030001 2山西省心血管病医院山西太原 030001心肌梗死是现临床的多发病,是由于冠状动脉发生了闭塞,导致心肌缺血从而引起心肌细胞发生死亡,已经成为中老年人群死亡的主要病因之一。心肌梗死动物模型是研究梗死性心脏病病理机制和相关治疗药物疗效评价的一个重要手段。目前心肌梗死的临床治疗有很多种方法,譬如药物治疗、细胞技术等。这些治疗方法在临床使用之前都要进行大量的动物实验,只有在动物实验出现了治疗的效果才能进而在临床应用。其中大鼠心肌梗死模型是研究心肌梗死病理生理变化的重要模型,它能够客观的反应治疗效果以及在心肌梗死过程中心电活动、室壁运动的变化,对临床进一步揭示心肌梗死的发病机理及对心肌缺血损伤防治具有重要的理论意义和实用价值。本文章就大鼠心肌梗死模型的建立进行一个简单的叙述。 1.结扎法 1.1麻醉方法的选择 大鼠的麻醉方法常见的有腹腔注射、静脉注射、吸入麻醉等方法,在实验中所用的麻醉药物常见的有水合氯醛、戊巴比妥钠、乙醚等。其中戊巴比妥钠或水合氯醛通过腹腔注射给药可以达到理想的麻醉效果【1】,它的优点是给药途径便利、麻醉起效快、麻醉深度适中,但在麻醉时要对麻醉剂量的选择要非常谨慎,应当按公斤体重来计算,从低剂量开始给药,譬如10%的水合氯醛按照0.3ml/100g为起始量,5~10min起效。麻醉太浅,大鼠容易清醒发生挣扎,不利于手术操作;麻醉太深,则术后大鼠不易清醒,呼吸道分泌物过多堵塞气道,会导致大鼠难以恢复正常的自主呼吸【2】,拔呼吸机插管较困难,容易导致实验大鼠的肺水肿、感染、呼吸肌麻痹等,会大大增加大鼠围手术期死亡率。 1.2建立气道的方法 有研究表明,在建立AMI模型过程中可以不进行气管插管,但要在短时间内迅速开胸并进行结扎,手术难度较大。这个方法在实际操作过程中有许多很难克服的技术弊端:操作难度大、围术期存活率低。现如今AMI模型制作时多采用小动物呼吸机维持呼吸,比较常用的大鼠气管插管方法有经口气管插管和气管切开插管。经口气管插管所造成的创伤较小,术后对大鼠的呼吸功能影响也比较小,但需要操作者有较高的操作技术。若一次插管不成功,操作者进行反复尝试,或者在插管时所用力度过大均可造成喉头黏膜急性水肿,最终导致窒息死亡。因此新手在使用这个方法时会增加大鼠死亡率。目前针对此法已有一些改良方法,增加了插管的成功率【3】。气管切开插管和经口气管插管相比较有以下优点,手术视野较好,非常直观,具有较高的成功率,但是在气管切开时非常容易损伤到血管,导致血管出血过多,这样可以造成术后呼吸道分泌物增多,气管容易塌陷,如果清理不及时将会导致大鼠发生窒息死亡。上述两种方法各有优劣,只要熟练操作死亡率并无明显差异。 1.3开胸体位及方法 在造模过程中大鼠的体位多为背位固定,于第4~5肋间开胸,挤压右侧胸壁将心脏挤出或用小匙将心脏舀出【4】。还有一些人在操作时将肋骨剪断,用手挤压胸腔或腹腔将心脏从胸腔内挤出,结扎冠脉后再将心脏放回,同时抽出胸腔内的气体,这种方法在操作过程中非常容易导致心脏和大血管在受到外力的牵拉下而发生变形,可增加恶性心律失常的发生率,同时对胸腔内空气的排空以及剪断的肋骨容易对肺部造成进一步的损伤,增加术后大鼠的死亡率【5】。近年来,有研究表明有部分操作者在造模过程中让大鼠保持右侧卧位固定,用眼科剪沿肋骨方向作斜行切口,并不剪断肋骨及肌肉组织,所造成的创伤较轻,在使用开胸器暴露心脏的过程变的非常容易,术后可保持大鼠胸部的正常结构,不影响呼吸功能,有利于其存活【4,6,7】。 1.4冠脉结扎部位 观察大鼠心脏解剖图可知,左冠状动脉前降支位于心肌组织中,肉眼观察不易分辨。在暴露心脏后,肉眼可观察到左冠状静脉主干位于心脏表面走形,它与左冠状动脉前降支相互伴行,位于于左心耳和肺动脉圆锥之间,可作为定位标志。结扎冠脉位置的高低对心梗模型的存活率有着至关重要的作用。结扎位置较低时,可能会导致模型建立不成功,心梗面积小,对实验的稳定性有一定的影响;结扎位置较高时,模型成功率高,但动物死亡率也明显提高【8】。 1.5术后护理 术后的护理是非常重要的,对大鼠的呼吸和温度进行有效的管理可以减低手术的死亡率。造模后,放回鼠笼单独饲养,保温灯照射,待大鼠完全清醒后转至普通鼠笼中,置于空调房内正常饲养。术后连续肌注青霉素钠5d(40万U/d)防止切口感染。 2.药物法 药物法制作心梗模型,常用是异丙基肾上腺素和垂体后叶素,它们可导致血管发生强烈的收缩,导致冠状动脉痉挛,从而形成血栓导致心肌梗死。这个造模方法操作简单,但是对冠状动脉选择性较差,容易引起心肌弥漫性损伤,不能对梗死区域进行有效的固定,所以不能进行一些定量的研究。 3.血栓法 通过血栓法来制作心肌梗死模型的操作方法有很多,譬如电刺激法、机械损伤法等。其中电刺激法是这些方法中使用较多的一种。在操作过程中,术者将电极放置于左冠状动脉前降支的开口处,增大电流强度,通过刺激冠脉血管外膜导致损伤形成,进而形成血栓发生堵塞,最终导致心肌梗死形成。电刺激法能够准确定位所需要堵塞的血管,造成的梗死区域较固定,同时对大鼠的损伤较小,比较真实的模拟了心肌梗死的发生过程。 4.高脂饮食法

第三节 心肌的生理

第三节心肌的生理 在循环系统中,心脏起着泵血的功能,推动血液循环。心脏的这种功能是由于心肌进行节律性的收缩与舒张及瓣膜的活动而实现的。心肌的收缩活动又决定心肌具有兴奋性,传导性等生理特性。心肌细胞膜的生物电活动是兴奋性和传导性等生理特性的基础。故本节先讨论心肌细胞的生物电活动,进而阐明心肌的生理特性。在此基础上,再进一步讨论心脏的生理功能。 心肌的生理特性 心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。兴奋性、自律性和传导性是以肌膜的生物电活动为基础的,故又称为电生理特性。 心肌细胞的生物电现象 和神经组织一样,心肌细胞在静息和活动时也伴有生物电变化(又称跨膜电位)。研究和了解心肌的生物电现象,对进一步理解心肌生理特性具有重大意义。从组织学,电生理特点和功能可将心肌细胞分为两大类。 一类是普通细胞,含有丰富的肌原纤维,具有收缩功能,称为工作细胞,工作细胞属于非自律性细胞,它不能产生节律性兴奋活动,但它具有兴奋性和传导兴奋的能力。它们包括心房肌和心室肌。 另一类是一些特殊分化了的心肌细胞,它们含肌原纤维很少或完全缺乏;故已无收缩功能,它们除具有兴奋性、传导性外,还具有自动产生节律性兴奋的能力,故又称自律细胞。主要包括P细胞和浦肯野细胞。它们与另一些既不具有收缩功能又无自律性,只保留很低的传导性的细胞组成心脏中的特殊传导系统。特殊传导系统是心脏中发生兴奋和传导兴奋的组织,起着控制心脏节律性活动的作用。特殊传导系统包括窦房结、房室交界、房室束和末梢浦肯野纤维。 一、心肌的兴奋性

心肌细胞有两类,一类是具有收缩能力的心房肌和心室肌,称工作细胞即非自律细胞;另一类是特殊分化的细胞,自律细胞,构成心脏的特殊传导系统 (一)心室肌细胞跨膜电位(非自律细胞) 静息电位(Rp)及其形成机制 心肌细胞和骨骼肌一样在静息状态下膜内为负,膜外为正,呈极化状态。这种静息状态下膜内外的电位差称为静息电位。不同心肌的静息电位的稳定性不同,人和哺乳类动物心脏的非自律细胞的静息电位稳定,膜内电位低于膜外电位/90mV左右(以膜外为零电位,膜内侧为-90mV)。在自律性细胞如窦房结细胞和浦肯野细胞的静息电位不稳定,称为舒张期电位,不同部位的自律细胞舒张期最大电位不同,浦肯野细胞的最大舒张电位为-90mV,窦房结细胞的最大舒张电位较小,约为-70mV左右。心肌细胞静息电位产生的原理基本上与神经、骨骼肌相似,主要是由于K+外流所形成。 动作电位(Ap) 心肌细胞兴奋过程中产生的並能扩布出去的电位变化称为动作电位。与骨骼肌相比心肌细胞动作电位升支与降支不对称。复极过程比较复杂。不同部分心肌细胞动作电位形态波幅都有所不同。按照心肌细胞电活动的特点,可以分为快反应细胞和慢反应细胞。快反应细胞包括:心室肌、心房肌和浦肯野细胞,前二者属非自律细胞,后者属自律细胞。快反应细胞动作电位的特点是去极化速度快,振幅大,复极过程缓慢並可分几个时相(期)。由于去极速度快、波幅大,所以兴奋传导快。慢反应细胞包括窦房结和房室结。慢反应细胞的主要特点是去极化速度慢,波幅小,复极缓慢且无明显的时相区分,传导速度慢。 1.快反应细胞动作电位及其形成机制 快反应细胞的动作电位可分为五个时相(期): 0期又称除极或去极过程,心肌细胞受到刺激发生兴奋时出现去极。膜内电位迅速由静息状态的-80~-90mV上升到+30mV左右,即膜两侧原有的极化状态被消失並呈极化倒转,从去极化到倒极化形成动作电位的升支,其超过0电位的电位称为超射。0期短暂,仅占1~

距离多普勒成像算法分析

距离多普勒成像算法分析 距离多普勒(Range-Doppler, RD)算法是SAR成像处理中最直观,最基本的经典方法,目前在许多模式的SAR,尤其是正侧视SAR的成像处理中仍然广为使用,它可以理解为时域相关算法的演变。 一、距离迁移 距离迁移是合成孔径雷达成像中的一个重要问题,产生的原因是SAR载机 与照相目标间的相对运动。随着载机的运动,对地面某一静止的目标来说,其与雷达载机间的距离不断变化,如图1。而雷达将距离量化为距离门,随着载机运动,同一点目标在雷达接收机中位于不同的距离门,即随着载机平台的移动,目 标与雷达间的距离变化超过一个距离单元时,目标的回波就分散于相邻的几个距离门内。 方侍向方向 ~— ------------------------------ ------------------ -- ? ■■ra\T" " M * ** ■ ■ ■ MM■ i 虚…一 -------------- — 齐” .. . 产. -- ---------------------- --- 忙…--一------------ - ---- -- ----- 1 ................. .... .......................................................................................................................................... .. 图1雷达与点目标距离变化 、处理方法 距离迁移的存在使方位向处理成为一个二维处理,即使回波信号在距离向和 方位向上产生耦合。成像处理的基本思想是将二维处理分解为两个级联的一维处理。距离向直接将接受到的回波信号进行脉冲压缩即可,但在方位向处理,由于距离迁移现象

大鼠急性心肌梗死动物模型的建立和评估

大鼠急性心肌梗死动物模型的建立和评估 【摘要】目的建立一种稳定可重复的大鼠急性心肌梗死模型。方法SD大鼠经氯胺酮麻醉后,经口人工呼吸,开胸结扎左冠状动脉前降支。4周后行超声心动图、血流动力学和组织病理学检查。结果①心电图和组织病理学检查证实,成功建立了大鼠急性心肌梗死模型,梗死面积40%~45%(平均42%);②与假手术组比较,心肌梗死大鼠左室收缩末径、左室舒张末径和非梗死区增厚指数明显增加(P<0.01),左室后壁、左室前壁、梗死区变薄指数、左室射血分数和左室短轴缩短率显著降低(P<0.05,P<0.01);③心肌梗死大鼠动脉收缩压、舒张压、左室收缩压、左室内压最大上升和下降速率均低于假手术组(P<0.01),心率和左心室舒张末压高于假手术组(P<0.01);④两组大鼠左、右心室实际和相对重量以及胶原容积积分之间的差异有统计学意义(P<0.01)。结论本文建立心肌梗死动物模型的方法操作简单、重复性好、结果可信。 【Abstract】Objective To develop a steady and reproducible myocardial infarction(MI) model in rats.Methods SD rats were anaesthetized with ketamine.After linking with respiration machine,left anterior decending coronary artery was ligated.Echocardiogram,haemodynamics and histopathology were done four weeks after ligation.Results ①The model of MI was established successfully and proved by electrocardiogram and histopathology.Infarct sizes were 40%~45%(average 42%).②Compared with sham operation group,MI rats had higher left ventricular systolic diameter,left ventricular diastolic diameter and non-infarcted region thickening index (P<0.01),and lower posterior wall diameter,anterior wall diameter,infarcted region thinningz index,left ventricular ejection fraction and fractional shortening (P<0.05,P<0.01).③Systolic blood pressure,diastolic blood pressure,left ventricular systolic pressure and the maximum rising and dropping rates of left ventricular pressure decreased,while heart rate and left ventricular end-diastolic pressure increased after MI.④There were significant differences in left ventricular actual weight,right ventricular actual weight,left ventricular relative weight,right ventricular relative weight and collagen volume fraction between sham operation group and MI rats (P<0.01).Conclusion This experiment provided an easy way to establich the MI model,which was reproducible and credible. 【Key words】Coronary artery;Myocardial infarction;Modelanimal;Rats 心肌梗死(myocardial infarction,MI)是21世纪医学亟待解决的难题之一[1]。由于MI的许多病理生理资料难以从临床研究中获得,其防治上的进展有赖于基础研究上的突破。MI动物模型的建立是开展基础研究的第一步,它对于研究人类MI的病理生理变化、心电生理改变以及评价各种治疗方法具有重大价值。结扎左前降支制作MI模型,是一个被广泛接受近于成熟的动物实验模型。但随着实验技术的发展,它的一些操作步骤、评价指标等方面仍需进一步改进。本实验在传统方法的基础上作了相应的改进,以SD大鼠为实验对象建立MI动物模型,方法操作简单、模型成功率高、重复性好,为下一步的实验研究奠定了基础。

距离多普勒成像算法分析

距离多普勒成像算法分析 距离多普勒(Range-Doppler,RD)算法是SAR成像处理中最直观,最基本的经典方法,目前在许多模式的SAR,尤其是正侧视SAR的成像处理中仍然广为使用,它可以理解为时域相关算法的演变。 一、距离迁移 距离迁移是合成孔径雷达成像中的一个重要问题,产生的原因是SAR载机与照相目标间的相对运动。随着载机的运动,对地面某一静止的目标来说,其与雷达载机间的距离不断变化,如图1。而雷达将距离量化为距离门,随着载机运动,同一点目标在雷达接收机中位于不同的距离门,即随着载机平台的移动,目标与雷达间的距离变化超过一个距离单元时,目标的回波就分散于相邻的几个距离门内。

图1 雷达与点目标距离变化 二、处理方法 距离迁移的存在使方位向处理成为一个二维处理,即使回波信号在距离向和方位向上产生耦合。成像处理的基本思想是将二维处理分解为两个级联的一维处理。距离向直接将接受到的回波信号进行脉冲压缩即可,但在方位向处理,由于距离迁移现象的存在,是同一点目标回波位于不同的距离门内,不能直接进行压缩处理。 图2表示对某点目标回波进行距离压缩向后,方位向压缩前的图像,可以看出不同方位向的信号是按照距离迁移曲线排列的。 图2 点目标一维距离向压缩后图像 为了使方位向也可以进行压缩处理,距离压缩后的图像应进行距离迁移校正,将距离压缩后的信号压缩为图3所示。

最后再进行方位向压缩,处理后如图4,得到一个点目标。 图4 方位向压缩后图像

以下对距离迁移做理论分析。设合成孔径时间中点为0t t =,将雷达与目标的瞬时距离()r t 按泰勒公式展开,取前三项: 00''2 001()()()()()2 t t t t r t r t t t r t t t ==≈?-+ ?- 引起的回波相位变化为: 24() ()c t r t t ππφλ λ -??-= = 这个相位称为多普勒相位。它的一节导数为多普勒中心频率dc f ,二阶导数为多普勒调频率dr f ,故有: 0200()()()()2 4 dc t t f fdr r t r t t t t t λλ=≈?- -- - ()r t 与0()t t r t =?的差值是t 时刻相对与0t 时刻相对于0t 时刻的距离变化量,也就 是距离迁移量。上式右边的线性项称为距离走动,二次项称为距离弯曲,即距离迁移可以分解为距离走动和距离弯曲。 三、距离多普勒算法 距离多普勒算法(RD 算法)的基本思想是根据上述将二维处理分解为两个一维处理的级联形式,其特点是只考虑相位展开的一次项,将距离压缩后的数据沿方位向作FFT ,变换到距离多普勒域,然后完成距离迁移校正和方位向压缩。算法流程如图五:

多普勒超声伪像的识别及其意义

多普勒超声伪像的识别及其意义 多普勒血流显示的方式有彩色多普勒成像(CDI)和频谱图两种,它们在二维超声即声像图基础上增加了丰富的、很有用的血流信息。另一方面也应看到,无论彩色多普勒或频谱多普勒,超声伪像也是很多见的。认识多普勒超声有关的伪像,可以帮助我们对多普勒检查更好地解释和判断,正确地评价多普勒超声所见,避免误诊,甚至有可能适当地加以利用。一. 怎样识别多普勒超声伪像? 从事多普勒超声诊断的超声工作者应当首先学习并掌握有关多普勒超声临床应用的基础知识,其次还应了解并熟悉仪器有关的各种调节功能和操作。这样,便容易理解多普勒超声伪像的多种表现及其处理。此外还应认识到,多普勒超声技术本身受所用设备条件如灵敏度的限制很大,也受操作者技术因素的影响,它们均可以成为伪差(伪像)产生的来源。 二. 多普勒超声伪像的分类 彩色多普勒超声伪像是多种多样的。大致可分为以下四类:1.有血流的部位无彩色或少彩色信号。2.有血流部位出现过多彩色信号。3.无血流的部位出现彩色信号。4.彩色信号或其鲜艳程度(shade of color)改变,因而引起血流方向和速度的误解(表1)。 表1 彩色多普勒超声伪像分类 一. 有血流,彩色信号过少或缺失 多普勒超声衰减伪像:彩色信号分布不均,即“浅表血供多,深方少血供或无血供”;深部器官血流如肾实质、股深静脉较难显示 频谱滤波(filter)设置过高 测低速血流时,不适当的采用较低频率探头 二. 有血流,彩色信号过多 多普勒增益过高(彩色外溢) 仪器专门设置“彩色优先”(color priority) 使用声学造影剂 三. 无血流,出现彩色信号 频谱滤波(filter)设置过低 多普勒增益过高 镜面反射伪像 闪烁伪像:心搏、呼吸、大血管搏动 组织震颤(高速血流、被检者发音) 快闪伪像(twinkling artifact,尿路结石、人工骨表面等) 四. 血流方向、速度表达有误 彩色混叠(aliasing):PRF过低、测高速血流时采用过高频率探头或较高Doppler 频率 方向翻转键设置不当/ 探头倒置 血管自然弯曲走行(仪器不会识别θ角度) 临床常用的多普勒超声有:1.常规彩色多普勒成像(CDI);2.彩色多普勒能量图(CDE 或DPI);3.多普勒频谱图(Doppler spectrum)。三维多普勒能量图目前尚少临床应用。上

一种调频连续波SAR的非线性距离-多普勒算法

万方数据

万方数据

万方数据

万方数据

?1398?系统工程与电子技术第32卷图5非线性误差校正前点目标的仿真成像结果 图6非线性误差校正后点目标的仿真成像结果 写 \ 瑙 馨 薯 1 丑 鲁 \ 恻 馨 晕 1 丑 图7点目标方位压缩结果 4结束语 距离向/m 图8点目标距离压缩结果 调频连续波SAR是一种新体制的成像雷达,具有体积小、重量轻、成本低、分辨率高等特点,非常适合有效载荷受严格限制的小型无人机平台,受到各个国家越来越多的科研机构的关注,有着广阔的应用前景,而系统频率非线性误差是制约调频连续波SAR应用的一个关键因素。本文通过理论推导和仿真实验,建立了存在频率非线性误差的调频连续波SAR信号模型,分析了去调频接收模式下调频连续渡SAR系统频率非线性误差对成像处理的影响。对去调频接收的调频连续波SAR非线性误差的估计和校正进行了深入的研究,提出了针对频率非线性误差校正的调频连续波SAR的距离一多普勒算法,该算法计算量小,处理精度高,适合实时成像处理,并通过实验仿真分析,验证了该算法的正确性和有效性,为轻小型调频连续波SAR的实用化提供了参考依据。 参考文献: [13陆必应,粱甸农.调频线性度对线性调频信号性能影响分析[J].’系统工程与电子技术,2005,27(8):1384—1386.(LuBiying,LiangDiannong.EeffectsofFMlinearityontheperformanceofLFMsignalsEJ].SystemsEngineeringandElectronics,2005,27(8):1384—1386.) [2]MetaA,HoogeboomP,Lig;hartLP.SignalprocessingforFMCWSARfJ].IEEETrans.onGeoscienceandRemoteSens— ing,2007,45(11):3519—3532. [3]江志红,赵懿,皇甫堪,等.调频连续波SAR的研究进展口].现代雷达,2008,30(2):20—24. [43耿淑敏,江志红,程翥,等.FM—CWSAR距离一多普勒成像算法研究口].电子与信息学报,2007,29(10);2346—2349. [63MetaA,HoogeboomP,LighartLP.CorrectionoftheeffectsinducedbythecontinuousmotioninairborneFMCWSAREC]}}IEEEInternationalRadarConference,2006:24—27. [63曲文长,王颖,苏峰,等.LFMCWSAR非线性校正成像方法研究EJ].中国电子科学研究院学报,2009,4(I):50:53. [73MetaA,HoogeboomP,LighartLP.Non-linearfrequencyseal—ingalgorithmfor FMCWSARdataEC]{}EuropeanRadarCon一厅r8nce,2006;9—12. [83杨蒿,蔡竟业.线性调频连续波合成孔径雷达成像算法[J].信息与电子工程,2008,6(3):167—171. [9]梁毅,王虹现,邢孟道,等.调频连续波sAR信号分析与成像研究口].电子与信息学报,2008,30(5):1017—1021. [10]张军。毛二可.线性调频连续波SAR成像处理研究[J].现代雷达。2005,27(4)142—45. [113万永伦.姒强,汪学刚.超宽带线性调频信号线性度的测量方法[J].电子测量与仪器学报,2007,21(4):55—58. [123矫伟。梁兴东,丁赤飚.基于内定标信号的合成孔径雷达系统幅相误差的提取和校正[刀.电子与信息学报,2005,27(12); 1883—1886. [131姚迪,龙腾.合成孔径雷达实时距离徙动校正算法研究[J].系统工程与电子技术[J].2006,28(8):1128—1130.(YaoDi。 LongTeng.StudyonSARreal—timerangmigrationcorrectionalgorithm[J].SystemsEngineeringandElectronics,2006,28(8):1128—1130.) [14]EdrichMUltra-lightweightsyntheticapertureradarbasedOila35GHzFMCWsenforConceptandonlinerawdatatransmission[J]. 1EERadar,SonarandNavigation,2006,153(2):129—134. [15]MetaA,HoogeboomP.HighresolutionairborneFM—CW SAR tdigital signalprocessingaspects[C]|}InternationalGeo—scienceandRemoteSensingSymposium,Toulouse,France,2003:4074—4076. [163deWitJJM,MetaA,HoogeboomP.Modifiedrange-dopplerprocessingforFM-CWsyntheticapertureradar[J].IEEEGeo—scienceandRemote SensingLetters。2006,3(I):83—87.万方数据

超声多普勒成像仪VI

第6节超声多普勒成像仪 一、多普勒效应 1842年奥地利物理学家多普勒(Doppler)发现并研究了声波的“频移”现象,后被命名为“多普勒效应”。此效应是指波源将某一频率f的波以一种固定的传播速度向外辐射时,如果发射波的波源与接收波的接收系统产生相对运动,则所接收到的波的频率f′会发生变化(即频移),两个频率的差值Δf=f′-f。在声源与接收系统之间的运动为相向的情况下,Δf为正值(f′>f,接收频率提高);而相背运动的情况下,Δf为负值(f′<f,接收频率降低)。 产生多普勒效应的原因可以这样来简单地解释,以声波为例:当声波在某种介质中以固定的传播速度c前进时,声速c(m2s-1)为波长λ(m)和频率f(s-1)的乘积,即c=λ2f;但如果声源与接收系统之间存在着相对运动,相对运动的速度为 v(v是一个具有方向性的矢量单位,相向运动时v取正值,相背运动时v取负值),则声波向接收系统的相对传播速度c′为:原来传播速度c与相对运动v的迭加,即c′=c+v。在前式c=λ2f中波长λ不会因相对运动的存在而改变,只是声速c改变为c′。此时,只有f也随之改变为f′才能维持 c′=λ2f′成立,于是有: f′=c′/λ=(c+v→)/λ Δf=f′-f=(c+v→)/λ-c/λ=v→/λ 将λ=c/f代入上式,有 Δf=f2v→/c 此意为频移量Δf为相对运动速度与原声速的比值。 多普勒效应并非仅仅存在于声波传递中,任何以波动形式行进的能量传递过程,均可产生多普勒效应,如无线电波、高能X射线(或γ射线)、可见光线以及其他电磁辐射等。只是这里所列举的各种波动的传递速度太快,而波源与接收系统间相对运动速度v→与波的原有传递速度(光速)的比值极小,因此频移量Δf 很难测出,尤其不能被人体直接感受到。不过现代天文学正是借助多普勒效应通过检测、辨认宇宙深处恒星发光颜色的变化来判定天体的运动状态的。人类之所以最先在声波范畴内发现并研究出多普勒效应,是由于声波本身属于人耳的可听闻波动,且声波在空气中的传播速度不高(341m/s,15℃,1个大气压),以及声源与人耳的相对运动速度常常使声频率变化f′(=f+Δf)落在人耳的敏锐辨识 区内。例如火车从我们身旁的铁路上呼啸而过时,会使我们非常明显地听出鸣叫着的汽笛声突然间由尖锐变得低沉起来。也就是说当火车驰向我们时(v→为正),我们所听到的汽笛声(f1′)要比火车固定不动时的声音(f)尖锐一些(Δf1=f1′-f>0);当火车背向我们驰去时(v→为负),所听到的汽笛声(f2′)要比原来的声音(f)低沉一些(Δf2=f2′-f<0)。 二、多普勒原理在超声医学诊断中的应用 在经过30多年以来的临床实践后,超声多普勒方法的应用价值已愈加明显。尤其在以运动器官为主要研究对象的心血管内、外科,超声多普勒诊断成像仪器更成为不可或缺的有力诊断工具;大多数应用运动结构(如心脏瓣膜)或散射子集合(如血管中的红细胞群体)反射回来的超声波束,检测出其中的多普勒频移,作为探查目标的运动速度信息,然后用耳去监听、用仪器去分析、用图像去显示或者用影像去显现人体内部器官的运动状态。 以人体内血流的运动状态检测为例,声波的发射源与接收器均为超声探头自

相关文档