文档库 最新最全的文档下载
当前位置:文档库 › 2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析

2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析

2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析
2006_全国数学建模C题易拉罐形状和尺寸的最优设计.解析

易拉罐形状和尺寸的最优设计

摘要

本题在建立数学模型的基础上,用LINGO实证分析了各种标准下易拉罐的优化设计问题,并将实测数据和模型摸拟结果进行了对比分析。结论表明,易拉罐的设计不但要考虑材料成本(造价),还要满足结构稳定、美观、方便使用等方面的要求。

在第二个问题中,易拉罐被假定为圆柱体,针对材料最省的标准,得到了不同顶部、底部与侧面材料厚度比时的最优设计方案。针对材料厚度的不同,建立两个模型:模型一,设易拉罐各个部分厚度和材料单价完全相同,最优设计方案为半径与高的比:1:2

R H=(H为圆柱的高,R为圆柱的半径);模型二,设易拉罐顶盖、底部厚度是罐身的3倍,通过计算得到半径与高:1:6

R H=时,表面积最小。一般情况下,当顶盖、底部厚度是罐身的b倍时,最优设计方案为:2

=。

R H b 在第三问中,针对圆柱加圆台的罐体,本文也建立了两个模型:模型三,设易拉罐整体厚度相同,利用LINGO软件对模型进行分析,得出当24

+==(h为

H h R r

圆台的高,r为圆台上盖的半径)时,设计最优;模型四,假设罐顶盖、底部的厚度是罐身的3倍,同样利用软件LINGO对其进行分析,得出 4.5

r→时

H h R

+≈,0

材料最省,即顶部为圆锥时材料最省,模型的结果在理论上成立,但与实际数据不符。原因是厂商在制作易拉罐时,不仅要考虑材料最省,还要考虑开盖时所受到的压力、制造工艺、外形美观、坚固耐用等因素。

在第四问中,本文根据第三问中模型最优设计结果与实测数据的误差,调整了的设计标准,在材料最省的基础上,加入了方便使用,物理结构更稳定等标准。通过比较发现,前面四个模型中,模型二和模型四体现了硬度方面的要求。进一步对模型二、四进行比较,发现模型四的结论更优。为此,将模型四结论中的底部也设计为圆锥。此时,材料最省。但是,两端都设计为圆锥时,无法使用。因此,将项部和底部设计为圆台,并考虑拉环长度和手指厚度(易于拉动拉环)时,得到圆台顶端和底部半径都为2.7。此时,易拉罐形状和尺寸最优。如果设计为旋转式拉环,====时,可以得到优于现实中易拉罐的设计方案。

r h R H

2.2,0.75,

3.93, 6.86

最后,本文总结了此次数学建模中有益的经验--在数学建模过程必须灵活应用从简到繁、由易到难不断扩展的研究方法,并且要充分发挥数学软件在优化设计中无可比拟的优势;同时,通过此次数学建模比赛深刻体会到了数学工具在生产实践中的重要作用。

关键词:易拉罐最优设计材料体积 lingo软件

文中符号注解

R:圆柱半径

r:圆台半径

H:圆柱高

h:圆台高

S:易拉罐表面积

V:易拉罐体积

MIN:最小化

为方便在LINGO软件中计算,定义:

X1:在软件LINGO中的圆柱半径(R)

X2:在软件LINGO中的圆柱高(H)

X3:在软件LINGO中的圆台半径(r)

X4:在软件LINGO中的圆台高(h)

第一问:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量你们以为验证模型所需要的数据,例如易拉罐各部分的直径、高度、厚度等,并把数据列表加以说明:如果数据不是你们自己测量得到的,那么你们必须注明出处。

表1:数据测量结果

1(mm) 2(mm) 3(mm) 4(mm) 平均(mm)D1(罐盖直径) 57.84 58.30 58.04 58.60 58.20

D2(罐身直径)65.70 65.56 65.51 65.58 65.60

D3(罐底直径)47.56 47.62 47.18 47.74 47.53

X1(罐盖厚度)0.314 0.302 0.315 0.310 0.310

X2(罐身厚度)0.108 0.110 0.114 0.110 0.111

X3(罐底厚度)0.327 0.320 0.339 0.344 0.333

H1(罐盖高度)10.30 10.98 10.42 9.96 10.42

H2(罐身高度)101.98 102.06 102.36 101.92 102.08

H3(罐底高度) 5.62 5.30 5.12 4.86 5.23

L(罐盖斜边长度)0.193 0.204 0.210 0.201 0.202 拉环长度42.53 42.48 42.48 42.51 42.50

注:数据由测量可口可乐355ml易拉罐所得。

本文测量以上数据是为了在以下建模中,提供数据和验证结果。重要的是,拉环长度与易拉罐项部直径相差约1.53厘米左右,正好是指头厚度。显然是使用方便设计的。

第二问设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。

一问题重述

一个饮料量为355毫升的易拉罐,找出易拉罐的最优设计。假设它是一个正圆柱体,在不考虑易拉罐受外界影响下,求在正圆柱体的表面积最小时,底半径r与高度h的比值。

二问题分析

假设最优化条件为保证容积的情况下,使制作易拉罐所需材料最省(表面积为最小)。在表面积为最小时,设圆柱形的体积V为常数,求底半径r与高度h的比值,如果能求出一定比例,就能找出模型最优设计。在建立模型之前,必须考虑易拉罐的厚度,一种是在考虑节约材料前提下,另一种是在考虑材料受力的情况。

三模型假设、建立与求解

(一)易拉罐整体厚度相同时的最优设计模型

1、假设:(1)易拉罐是正圆柱体

(2)易拉罐整体厚度均相同

2、 确定变量和参数:设易拉罐内半径为R ,高为H ,,厚度为a ,体积为V ,其中r 和h 是自变量,所用材料的面积S 是因变量,而V 是固定参数,则S 和V 分别为:

()()2

2

22S R a a R a H R H πππ=+?++?-

22332422aR a R a HRa Ha πππππ=++++

2V R H π=, 2

V

H R π=

设()2,g R H R H V π=- 3、 模型建立:

()min ,0,0

S r h R H >> (),0g R H =

其中S 是目标函数,(),0g R H =是约束条件,V 是已知的,即要在体积一定的条件下求S 的最小值时,r 和h 的取值是多少

4、模型求解

因为按照实际测量数据可知a r ,所以带2a ,3a 的项可以忽略,且2

V

H R

π=,则有 ()()22,2aV

S R H R aR R

π=+

求()(),S r h r 的最小值,令其导数为零,即()(),0S R H R '=,解得临界点为

3

2V

R π

=,则3

2

32222V V

H R V π

ππ==?=?? ?

??

因为()344aV S R a R π''=+,则31202V S a ππ??''=> ? ???

,所以当R:H=1:2时,是S 最优解

5.模型结论

在假设易拉罐是正圆柱体且厚度均相同的条件下,当体积为固定参数,而表面积最小时,通过对面积求导,得到高是半径的两倍,r:h=1:2,此时,模型最优。

(二) 易拉罐顶盖、底盖厚度与罐体厚度不同时的最优设计模型

1、假设:(1)易拉罐是正圆柱体

(2)易拉罐顶盖、底盖厚度为3a,其它部分厚度为a

2、确定变量和参数:设饮料内半径为R ,高为H ,体积为V ,易拉罐顶盖、 底盖厚度为a,其它部分厚度为b 。其中r 和h 是自变量,所用材料的体积S 是因变量,而a,b,c 和V 是固定参数。则S 和V 分别为:

()()2

2

223S R a a R a H R H πππ=+?++?-

223261262a R a R a RaH a H πππππ=++++

2V R H π=,2

V

H R π=

设()()2

12V x x π=()2,g R H R H V π=-

3、模型建立:

()min ,0,0

S R H R H >> (),0g R H =

其中S 是目标函数,(),0g R H =是约束条件,厚度比例与V 是已知的,即要在体积V 一定的条件下求r 和h 的取值是多少时体积S 最小

4、模型求解

因为按照实际测量数据可知a R ,所以带2a ,3a 的项可以忽略,且2

V

H R

π=

,则 226aV

S a R R

π=+

求()(),S r h r 的最小值,令其导数为零,即()(),0S R H R '=,解得临界点为

3

6V

R π

=,则3

2

3

6626V

V

H R V π

ππ==?=?

? ???

因为()3412aV S R a R π''=+,则34806V S a ππ??''=> ? ???

,因此当H=6R 时,S 为最优解

观察模型(一)与模型(二),可见当厚度比例不同时,半径与高的比不同,似

乎有一定的联系,因此我们假设顶与底盖厚度为ab ,壁的厚度为a ,其中b 为比例系数,则

()()2

2

22S R a ba R a H R H πππ=+?++?-

22322422abR a bR a b HRa Ha πππππ=++++

因为按照实际测量数据可知a R ,所以带2a ,3a 的项可以忽略,且2

V

H R π=,则有 222aV

S ab R R

π=+

求()(),S r h r 的最小值,令其导数为零,即()(),0S R H R '=,解得临界点为

3

2V

R b

π=

,则3

2

32222V V

H b bR V b π

ππ==?=?? ?

??

因为()344aV S R ab R π''=+,则31202V S ab b ππ??''=> ? ???

,因此当R:H=1:2b 时,S 为最优解

5.模型结论

在假设易拉罐是正圆柱体,且顶盖、底部的厚度是罐身的三倍的条件下,当体积为固定参数,而表面积最小时,通过对表面积求导,得到半径与高的比是一比六,R:H=1:6,此时,,观察模型(一)与模型(二),可见当厚度比例不同时,半径与高的比不同,似乎有一定的联系,因此本题假设顶与底盖厚度为ab ,壁的厚度为a ,其中b 为比例系数,则R:H=1:2b

四、模型评价

在不考虑厚度的情况下,考虑节约材料前提下得到,底半径r是高度h的一半时,圆柱的表面积最小。考虑易拉罐顶盖、底盖厚度与罐体厚度不同的情况下,考虑了材料的厚度,因此,建立顶端是侧壁的三倍厚度(因为此比例有利于罐身受力,便于开盖),高度h是底半径r的6倍时,圆柱的表面积最小。第一二种模型相较之下,第二种模型更费材料,第一种模型设计更优。所以,在不受力的情况下,假设易拉罐是一个正圆柱体,当底半径r是高度h的一半时,模型最优。不过,本文通过实际数据发现,厂商制作易拉罐时,不单单是考虑材料最省,可能还考虑到开盖时所受到的压力,外形美观等因素,由于能力有限暂时无法解释。

第三问:设易拉罐的中心纵断面如下图所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。

一、问题描述

通常,在现实生活中,本文所见地易拉罐都不是单纯的正圆柱体,一般都是混合的三维图形。由于实际生活中,易拉罐是受到外力的影响(如开盖时的拉力,堆放时的压力等等),因此,本文依照生活中的易拉罐,设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆台,下面部分是一个正圆柱体。通过计算和测量,在理论的基础上,建立易拉罐最优设计的模型。

图1

二、问题分析

本文假设最优化条件为保证容积的情况下,使制作易拉罐所需材料最省(表面积为最小)。由于易拉罐形状不是单纯的正圆柱体,所以本文建立模型时,先假设易拉罐上部分是一个正圆台,下部分是一个正圆柱体。然后,考虑易拉罐的厚度,在厚度一致时,利用lingo 软件,计算出模型的最优解;通过本文观察发现易拉罐顶盖的厚度是罐身的三倍,所以,假设另一种模型当易拉罐顶盖、底盖厚度为a ,其余部分为b ,且a:b=3:1,体积V=355ml 时,同样利用lingo 软件,计算出模型的最优解。

三 模型假设、建立与求解

(一)第三种易拉罐形状和尺寸的最优设计模型

1、假设:(1)易拉罐上部分是一个正圆台,下部分是一个正圆柱体 (2)易拉罐整体厚度均相同

2、确定变量和参数:设易拉罐顶盖、底部半径为R ,正圆柱体高为H ,正圆台高为h,体积为V ,其中R,r,H,h 是自变量,所用材料的体积S 是因变量,而V 是固定参数,则S 和V 分别为:

()()()2

2222S R r RH R r h R r πππ=+++++-

()2221

3

V R H R Rr r h ππ=+++

设()()2221

,,,3

g R r H h R H R Rr r h V ππ=+++-

3、模型建立:

()min ,,,0,0,0,0

S R r H h R r H h >>>> (),,,0g R r H h =

其中S 是目标函数,(),,,0g R r H h =是约束条件,V 是已知的,即要在体积一定的条件下求表面积最小值时,R ,r ,H ,h 的取值各是多少

4、模型求解

利用LINGO 求解,设R=x1,r=x3,H=x2,h=x4,则

()()

()

()()()()()()()()()

2

2

2

2

1321213413S x x x x x x x x x π

ππ=+++++-

()()()

()()()

()()2

2

2

112113343

V x x x x x x x ππ

=+++

利用LINGO 计算结果(见附表一),得 H+h=2R=4r 时,S 为最优解

5.模型结论

在易拉罐上部分是一个正圆台,下部分是一个正圆柱体,且厚度均相同的前提下,当体积为固体参数,表面积最小时,利用软件(LINGO )计算,得到圆台的高与圆拄的高等于两倍圆拄的半径,同时也等于四倍的圆台的半径,H+h=2R=4r ,模型最优。

(二) 第四种易拉罐形状和尺寸的最优设计模型

1、(1)易拉罐上部分是一个正圆台,下部分是一个正圆柱体 (2)易拉罐整体厚度 (3)V=355ml

2、确定变量和参数:设易拉罐顶盖半径为,底盖半径为R ,正圆柱体高为H ,正圆台高为h,体积为V ,其中R,r,H,h 是自变量,所用材料的体积S 是因变量,而V 是固定参数,则S 和V 分别为:

()()()2

2222S a R r RHb b R r h R r πππ=+++++-

()2221

3

V R H R Rr r h ππ=+++

设()()2221

,,,3

g R r H h R H R Rr r h V ππ=+++-

3、模型建立:

()min ,,,0,0,0,0

S R r H h R r H h >>>> (),,,0g R r H h =

其中S 是目标函数,(),,,0g R r H h =是约束条件,V 是已知的,即要在体积一定的条件下求表面积最小值时,R ,r ,H ,h 的取值各是多少

4、模型求解

利用LINGO 求解,设R=x1,r=x3,H=x2,h=x4,且a=0.333,b=0.111 则

()()(

)

()()()()()

()()()()

2

2

2

2

0.333132120.1110.11113413S x x x x x x x x x π

ππ=++?+?++-()()()

()()()

()()2

2

2

112113343

V x x x x x x x ππ

=+++

利用LINGO 计算结果(见附表二),得 4.5H h R +≈,0r →时,S 为最优解

5.模型结论:

在假设易拉罐上部分是一个正圆台,下部分是一个正圆拄体,且厚度不同,顶盖、底部半径是罐身3倍的条件下,当体积为固定参数,而表面积最小时,通过软件(LINGO )得到H+h 约等于4.5R ,0r →,模型最优。

四、模型评价

以材料节约、实用为基础,建立易拉罐的形状和尺寸最有设计的模型。第三个模型优点在于实用,第四个模型更为优化。因为,本文在建立模型时发现,模型四在制作过程中,所用材料更为节约,造价更低,所以,第四种模型更为优化。

第四问:利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的

关于易拉罐形状和尺寸的最优设计。

一、对现有易拉罐的解释

如果增加两个标准,考虑易拉罐的稳定性和使用的方便性。考虑稳定性时,只能采用模型二与模型四的设计。将厚度比例本题视为已知条件时,代入测量所得的数据,并利用LINGO 求解模型二

目标:求()22min 61262S a r ar a rh ah π=++++

条件:2V r h π=

设r=x1,h=x2,V=355,a=0.111,在LINGO 求解(见附录三)。比较模型二与第三问中模型四的结果,易见模型四比较优化。但模型四脱离了实际,因为实际中需要在顶盖设计一个拉环,所以r 必需大于零。

下面考虑r 取不同值时,模型的优化程度。模型仍为:

()()(

)

()()()()()

()()()()

2

2

2

2

min 0.333132120.1110.11113413S x x x x x x x x x π

ππ=++?+?++- ()()()

()()()

()()2

2

2

112113343

V x x x x x x x ππ

=+++

r 分别取0.5,1.0,1.5,2.0,2.5,2.6,2.7,2.8,2.9,3.0,3.5,4.0,5.0,6.0时,利用LINGO 计算模型中R ,H ,h ,S 的最优值(见表2):

表2

r 0.5

1.0

1.5

2.0

2.5

2.6

2.7

R 3.113 3.115 3.121 3.133 3.161 3.170 3.180 H 10.70 10.61 10.49 10.35 10.21 10.19 10.16 h 2.43 2.19 1.96 1.70 1.36 1.28 1.18 S 38.13 38.61 39.46 40.73 42.49 42.91 43.36

表2(续)

由表2可见当r 大于3时,图形已非最优,省去后面的结果。即当r 小于3时,S 的值都小于模型二的结果,因此可以得出结论:模型四比模型二的设计更优。 既然模型四比模型二省材料,那么是否可以把模型四的正圆柱底部也改成一个正圆台?

考虑上、下都为圆台的设计方案(模型五),材料体积S 的方程如下:

r 2.8

2.9

3.0

3.5

4.0

5.0

6.0 R 3.192 3.206 2.394 1.942 1.401 0 0

H 10.14 10.12 0

5.93 4.48

h 1.08 0.96 15.47 14.86 14.38 13.56 9.42 S 43.83 44.33 44.53 45.11 46.32 51.35 61.02

()()2

22min 222S a r RHb b R r h R r πππ=++++-

()2221

3

V R H R Rr r h ππ=+++=355

利用软件(LINGO )计算(见附录四),得S=30.20864

将上述S 与模型四的结果比较, 易见上下都为圆台的设计方案更优。但考虑到存放方便时,,这样易拉罐“站”不稳,同时“易拉罐”一定需要有一个拉环,如果设计在项部(考虑使用方便),r 必需大于零。

进一步考虑上下都为圆台时,r 的合理取值。 因为 ()()2

22222S a r RHb b R r h R r πππ=++++-

()2221

3

V R H R Rr r h ππ=+++=355

利用LINGO 分析r 分别取0.5,1.0,1.5,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3.0得出最优解时R ,H ,h ,S 的值(结果见表3):

表3

r 0.5

1.0

1.5

2.0

2.1

R 3.913441 3.914476 3.917370 3.923457 3.925208 H 6.910628 6.894053 6.874774 6.859196 6.857093 h 1.226539 1.091285 0.9587582 0.8163935 0.7859263 S 30.54926 31.58040 33.31585 35.77072 36.34952

表3(续)

r 2.2

2.3

2.4

2.5

2.6

R 3.927176 3.929377 3.931830 3.934555 3.937572 H 6.855451 6.854324 6.853768 6.853836 6.854586 h 0.7546560 0.7225317 0.6895060 0.6555352 0.6205793 S 36.95794 37.59614 38.26429 38.96255 39.69110

表3(续)

r 2.7

2.8

2.9

3.0

3.5

R 3.940901 3.944566 3.948587 3.952987 3.981513 H 6.856072 6.858353 6.861485 6.865526 6.901350 h 0.5846014 0.5475681 0.5094494 0.4702186 0.2566850

S 40.45011 41.23977 42.06027 42.91179 47.64180

在现实中,拉环的测量值为4.25,手指的大小约为1.11,则最优设计就是拉环穿过直径,所以r=(4.25+1.11)/2=2.68,近似为r=2.7,此时H=6.85。

二、比现实更优的设计方案

因为上项半径越小,材料越省,我们尽量减小上底半径。一种可行方案是将设计旋转型的拉环(现实中的拉环不可旋转,是直的,导致上底半径大),拉环长度可减小半,即r=4.25/2=2.125,近似为2.2

r=时,设计最优。设计方案为

2.2,0.75,

3.93, 6.86

====时,此时S=36.96,材料更省,优于现实中的设计。r h R H

第五问:用你们做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超出1000字,你们的中心必须包括这篇短文),阐述什么是数学建模、它的关键步骤,以及难点。

开始接触数学建模就让笔者感觉到困惑——不知道它是什么;有什么用。经过一段时间的学习才对它有初步的了解,简单来说数学建模就是生活“数学化”。

在这3天时间里本文体会到原来生活的一切都离不开数学,一个看似和自然形成的东西,却要经过许多步骤才实现的,如本文研究的易拉罐,要经过力学,美学和工程学等等。自己将所学的数学知识活用到经济,管理,工程等各个领域,感受到体会不到的成就感。这个过程中,本文的软件应用水平,文章写作水平,特别是数学思维能力大幅度得到提高。

此次,我们在数学建模中得到有益得经验,在数学建模过程必须灵活应用,从简到繁、由易到难,不断扩展的研究方法,并且要充分发挥到数学软件在优化设计

中无可比拟地优势;同时,通过此次数学建模比赛深刻体会到了数学工具在生产实践中的重要作用。

就拿着次数学建模为例,本文建立模型首先假设易拉罐是一个正圆柱体,然后考虑罐身厚度,其次假设易拉罐是上面部分是正圆台,下面部分是正圆柱体,之后再考虑厚度,最后建立我们认为最优化设计。在建立模型的过程中,利用数学软件,使我们能顺利完成。

数学建模的全过程大体上可归纳为以下步骤:1、对某个实际问题进行观察、分析(是否抓住主要方面); 2、对实际问题进行必要的抽象、简化,作出合理的假设;3、确定要建立的模型中的变量和参数;4、根据某种“规律”(已知的各学科中的定律, 甚至是经验的规律) 建立变量和参数间确定的数学关系 (明确的数学问题或在这个层次上的一个数学模型), 这可能是一个非常具有挑战性的数学问题;5、解析或近似地求解该数学问题. 这往往涉及复杂的数学理论和方法, 近似方法和算法;6、数学结果能否展示、解释甚至预测实际问题中出现的现象, 或用某种方法 (例如,历史数据或现场测试数据等) 来验证结果是否正确, 这也是很不容易的;7、如果第 6 步的结果是肯定的,那么就可以付之试用; 如果是否定的,那就要回到第 1 – 6 步进行仔细分析,重复上述建模过程。

数学建模过程中难点是:1、怎样从实际情况出发做出合理的假设, 从而得到可以执行的合理的数学模型;2、怎样求解模型中出现的数学问题, 它可能是非常困难的问题;3、怎样验证模型是正确、可行的

参考文献

[1]叶其孝,对一些问题的思考。网址:

https://www.wendangku.net/doc/875934977.html,:85/~kjqk/bjlydxxb/bjly2003/0303pdf/030312.pdf

[2] 王绵森、马知恩,《工科数学分析基础》(上册),高等教育出版社,1998

[3] 吴英桦、俞加梁,《容器设计》,中国轻工业出版社,1995

[4] 解可新、韩立兴、林友联,《最优化方法》,天津大学出版社,1997

[5] 陈国桓,《机械基础》,化学工业出版社,2001

[6] 卢险峰,《最优化方法应用基础》,同济大学出版社,2003

附录一

LINGO最优化软件:

在LINGO输入

min=(x1^2+x3^2+2*x1*x2+(x1+x3)*(x4^2+(x1-x3)^2)^(1/2))*3.1415926;

3.14159*x1^2*x2+(1/3)*3.14159*(x1^2+x1*x3+x3^2)*x4=355;

init:

x1=2;

x2=4;

x3=2;

x4=1;

endinit

图2

附录二

LINGO最优化软件:

在LINGO输入

min=(0.333*x1^2+0.333*x3^2+2*x1*x2*0.111+0.111*(x1+x3)*(x4^2+(x1-x3)^2)^ (1/2))*3.1415926;

3.14159*x1^2*x2+(1/3)*3.14159*(x1^2+x1*x3+x3^2)*x4=355;

init:

x1=3.3;

x2=10.2;

x3=2.9;

x4=1;

endinit

图3

附录三

LINGO最优化软件:

在LINGO输入

min=0.111*3.14159*(6*x1^2+12*0.111*x1+6*0.111^2+2*x1*x2+0.111*x2);

3.14159*x1^2*x2=355;

图4

附录四

利用LINGO求最优值

在LINGO输入:

min=(2*0.333*x3^2+2*x1*x2*0.111+2*0.111*(x1+x3)*(x4^2+(x1-x3)^2)^(1/2))* 3.1415926;

3.14159*x1^2*x2+(1/3)*3.14159*(x1^2+x1*x3+x3^2)*x4=355;

图5

2010高教社杯全国大学生数学建模竞赛C题评阅要点

2010高教社杯全国大学生数学建模竞赛C题评阅要点 [说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 (1) 如图1,设P的坐标为(x, y) (x≥ 0,y≥ 0),共用管道的费用为非共用管道的k倍,模型可归结为 2 2 2 2) ( ) ( ) ( ) , ( min y b x c y a x ky y x f- + - + - + + = 图1 只需考虑2 1< ≤k的情形。对上述二元费用函数求最小值可得(不妨假设b a≤) (a) 当) ( 42 a b k k c- - ≤时,) ,0( *a P=,ka c a b f+ + - =2 2 m in ) (; (b) 当) ( 4 ) ( 42 2 a b k k c a b k k + - < < - - 时, ? ? ? ? ? ? - - + + - - =) 4 ( 2 1 , 2 ) ( 2 4 2 2 *c k k b a c b a k k P, ()c k k b a f2 m in 4 ) ( 2 1 - + + =; (c) 当) ( 42 a b k k c+ - ≥时,)0, ( * b a ac P + =,2 2 m in ) (c b a f+ + =。 对共用管道费用与非共用管道费用相同的情形只需在上式中令k = 1。 本小题的评阅应注意模型的正确性,结果推导的合理性及结果的完整性。 (2) 对于出现城乡差别的复杂情况,模型将做以下变更: (a) 首先考虑城区拆迁和工程补偿等附加费用。根据三家评估公司的资质,用加权平均的方法得出费用的估计值。注意:公司一的权值应大于公司二和公司三的权值,公司二和公司三的权值应相等。 (b) 假设管线布置在城乡结合处的点为Q,Q到铁路线的距离为z(参见图2)。

2004年中国大学生数学建模竞赛C题 饮酒驾车问题

2004年全国大学生数学建模竞赛C题及建模论文 C题饮酒驾车 据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。 针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。 大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢? 请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题: 1.对大李碰到的情况做出解释; 2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答: 1)酒是在很短时间内喝的; 2)酒是在较长一段时间(比如2小时)内喝的。 3.怎样估计血液中的酒精含量在什么时间最高。 4.根据你的模型论证:如果天天喝酒,是否还能开车? 5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。 参考数据 1.人的体液占人的体重的65%至70%,其中血液只占体重的7%左右;而药物(包括酒精)在血液中的含量与在体液中的含量大体是一样的。 2.体重约70kg的某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下: 0.250.50.751 1.52 2.53 3.54 4.55 时间(小 时) 酒精含量306875828277686858515041时间(小 678910111213141516 时) 酒精含量3835282518151210774

数学建模C题

2015年第十二届五一数学建模联赛 承诺书 我们仔细阅读了五一数学建模联赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、 网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问 题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公 开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引 用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞 赛规则的行为,我们愿意承担由此引起的一切后果。 我们授权五一数学建模联赛赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号为(从A/B/C中选择一项填写): C 我们的参赛报名号为: 参赛组别(研究生或本科或专科):本科 所属学校(请填写完整的全名) 参赛队员 (打印并签名) :1. 2. 3. 日期: 2015 年 5 月 3 日获奖证书邮寄地址邮政编码:

收件人姓名:联系电话: 2015年第十二届五一数学建模联赛 编号专用页 竞赛评阅编号(由竞赛评委会评阅前进行编号): 裁剪线裁剪线裁剪线竞赛评阅编号(由竞赛评委会评阅前进行编号): 参赛队伍的参赛号码:(请各参赛队提前填写好): 2015年第十二届五一数学建模联赛 题目“二孩政策”问题 摘要 本文针对于生态文明建设的评价问题,选取了评价生态建设文明的具有代表性的几个指标,并且通过建立城市生态文明建设指标预测模型,来判断地区生态文明建设程度。 对于第一问,针对我国现有的生态文明建设的评价指标问题,我们首先查阅了全国在省级生态文明建设评价方面较为权威的北京林业大学生态文明研究中心公布的中国省级生态文明建设评价报告,以及其他具体于各地区省市的生态文明建设的论文,在此基础上,列举出来了6大类,18个较为重要的评价指标。 对于第二问,我们首先根据罗列出的指标中的重要程度以及数据获取的可行性和权威性和反映大类指标程度选择了单位GDP能耗、单位GDP水耗和单位GDP 废水、废气排放量、绿化覆盖率、人均公共图书藏书量。然后通过熵值法确定了

1.全国大学生数学建模历年试题分析

1992-2010年全国大学生本科数学建模试题分析: 此分析主要针对相关问题的主要解法分类,首先我们来看历年试题的相关解法: 赛题解法 92A题施肥效果分析回归分析数据拟合 92B题实验数据分解离散模型、组合最优化 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 公交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划 06A出版社书号问题整数规划、数据处理、优化 06B Hiv病毒问题线性规划、回归分析 07A 人口问题微分方程、数据处理、优化 07B 乘公交,看奥运多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化 08B大学学费问题数据收集和处理、统计分析、回归分析09A 制动器试验台的控制方法分析微元分析法 09B 眼科病床的合理安排层次分析法整数规划动态规划 10A 储油罐的变位识别与罐容表标定非线性规划多元拟合 10B 2010年上海世博会影响力的定量评估数据收集和处理,层次分析法时间序列分析

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究 【摘要】 本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。 首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。 然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。 为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。在模型求解的过程中,还对政府部门提出了一些有针对性的建议。此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。 在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。 最后,本文对模型进行了评价,特别指出了各个模型的优缺点,同时也对模型进行了合理性分析,针对我国的人口情况给政府提出了建议。 关键字:Logistic模型灰色预测动态模拟 Compertz函数

数学建模比赛总结

数学建模比赛总结 我是广西电力职业技术学院发电厂及电力系统专业的一名学生,我很高兴有机会参加20XX年的数学建模竞赛并幸运地获得了广西二等奖。首先要感谢的是学校、学院领导及老师对我们队的支持和帮助。特别要感谢施宁清老师、覃州老师、麦宏元老师、陶国飞老师等老师一直以来对我们精心的辅导和鼓励,才有我们队获奖的机会。参加数学建模竞赛是一件很有意义的事情,它不仅能锻炼每个参赛者连续工作的能力、创造性的思维、把各方面的知识综合运用的能力、熟练使有用计算机以及计算机软件的能力,而更重要的是锻炼了参赛者与伙伴合作、共同完成某项工作的能力。 今年的这个暑假是个不平凡的暑假,我们参加20XX全国数目竞赛的同学都只有一般的时间,因为还有一半的时间是用来进行培训的。起初参加学校的数学建模选修课,我只是对于数学的爱好,那是的我根本不知道什么是数学建模,更不知道它的魅力何在?我们有一个30多人组成数模之家,其中有几个大家长,那就是我们的指导老师。他们为了我们花了很多功夫和时间。我们培训只有短短的一个月,而要在一个月内让一个初学者变成一个能参加全国比赛的选手,是多么大的挑战啊?老师在图书馆的阅览室为我们上模模培训课,从最数模软件Lingo到Mathematic,再到Spss等,

从简单的线性规划到层次分析法,从牛奶配送问题到NBA赛事分析,老师指导我们一步一步走向数模,去零落数模的魅力! 在这次竞赛当中,我们队的三个人我,黄国志,张高做了很好的分工,一个人主要写论文、另一个人主要收集资料还要协助写论文,而我主要在计算机上编程序进行计算。我们队首先选择了题目C,开赛第一天我们就在讨论C题,确定了基本思路,但是到了下午,我们的思路断了,3个人都没了思路然后我开始看题目D,题目D是学生宿舍的分析,这个题很类似于我们培训时老师讲评过的NBA赛事分析题,于是我们想可不可以运用相同或者类似的方法思路去求解D 题呢?我们就开始集中全力对D题展开分析进行计算。下午我们已经有了比较清晰的思路去求解D题了,最后在晚上决定悬着D题来做。第二天,我们在网上查阅了很多相关的资料,数据。然后我进行计算机模拟,即根据我得到的数据用数学软件如Matlab把我们要的图形模拟出来,把实际的东西转化为数字来计算,然后我负责编辑图形和输入软件进行求解,而他们两个人负责去讨论并把他们想到的新思路告诉我,然后开始写论文。写论文是一件很繁琐的事,因此要用的时间也多,这样等到我把一些基本的结果得出来时正好给他们加到论文里面去,在模拟时要用很多时间,而这些时间都是计算机在工作,所以我就利用这段时间去他们写论文,

数学建模2010c题答案

输油管布置的优化模型 摘要 本文建立了关于布置输油管管线费用最省的优化模型,针对问题,我结合实际情况做出了合理的简化假设,利用lingo 软件,最终对问题进行了求解。 对于第一问我利用费马点的相关知识,结合图形的相关性质把本题分成三个部分, 分别为 )l b a ≤ - 、)l a b ≥+ 和 ))b a l a b -<<+这三种情况时最短管线的 铺设方案。设()a b <且非共用管线的费用为每千米t 万元,共用管线的费用是是非共用管线的k 倍即为kt 万元(1k 2≤<)。用费马点的论述得出三种最短的铺设路线,画出图像1—3列式子得出其费用结果。 对于问题二,首先把所给的条件即三个公司的鉴定的赔偿费用赋予权值,按甲级的占40%,乙级的每个占30%得出大概要陪的费用为得出要陪的费用 () 0.40210.30240.302021.4w =?+?+?=万元/千米 接着把a = 5,b = 8,c = 15,l = 20 把数据带入判定式中得到 ) )853 5820-=+=<< 适用第一题中的第三种情况得到图5用Lingo 计算得坐标E(1.701345,1.852664),车站设在F(1.701345,0),得到最少的费用为282.1934万元。 最后对于问题三,建立在问题二的模型上,赋予各段管线相印的费用送A 厂成品油的每千米5.6万元,输送B 厂成品油的每千米6.0万元,共用管线费用为每千米7.2万元,得到 min 5.6 6.027.47.2P y =? 用Lingo 计算得 6.7354770.13767691 7.276818x y y =?? =??=? 得到最后结果为 min 251.4633P =万元 关键词 Lingo 费马点 费用 权值

数学建模竞赛统计回归分析相关练习题

1. 一个班有7名男性工人,他们的身高和体重列于下表 请把他们分成若干类并指出每一类的特征。这里身高以米为单位,体重以千克为单位。 2.有两种跳蚤共10只,分别测得它们四个指标值如表。 样本号甲种乙种 X3 X4 X1 X2 X3 X4 X1 X 2 1 189 245 137 163 181 305 184 209 2 192 260 132 217 158 237 13 3 188 3 217 276 141 192 18 4 300 166 231 4 221 299 142 213 171 273 162 213 5 171 239 128 158 181 297 163 224 1)用距离判别法建立判别准则。 2)问(192, 287, 141,198 和(197, 303, 170, 205 各属于哪一种? 3.考察温度x对产量y的影响,测得下列10组数据: 求y关于x的线性回归方程,检验回归效果是否显著,并预测 x=42C时产量的估值 4. 在研究化学动力学反应过程中,建立了一个反应速度和反应物 %-备 含量的数学模型,形式为y — 1 +卩2为+ P3X 2 +P4X3 其中i…,飞是未知参数,X1,X2,X3是三种反应物(氢,门戊烷, 异构戊烷)的含量,y是反应速度?今测得一组数据如表,试由此确定参数订…宀

序号反应速度y 氢X1 n戊烷X2 异构戊烷X3 1 8.55 470 300 10 2 3.79 285 80 10 3 4.82 470 300 120 4 0.02 470 80 120 5 2.75 470 80 10 6 14.39 100 190 10 7 2.54 100 80 65 8 4.35 470 190 65 9 13.00 100 300 54 10 8.50 100 300 120 11 0.05 100 80 120 12 11.32 285 300 10 13 3.13 285 190 120 5. 主成分与卡方检验已课件为主

2010年全国大学生数学建模C题优秀论文

论文来源:无忧数模网 输油管的布置 摘要 “输油管的布置”数学建模的目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普遍的最短路径问题,该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等等。我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。 问题一:此问只需考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,我们基于光的传播原理,设计了一种改进的最短路径模型,在不考虑共用管线价格差异的情况下,只考虑如何设计最短的路线,因此只需一个未知变量便可以列出最短路径函数;在考虑到共用管线价格差异的情况下,则需要建立2个未知变量,如果带入已知常量,可以解出变量的值。 问题二:此问给出了两个加油站的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,将输油管路线横跨两个不同的区域考虑为光在两种不同介质中传播的情况,输油管在城区和郊区的铺设将不会是直线方式,我们将其考虑为光在不同介质中传播发生了折射。在郊区的路线依然可以采用问题一的改进最短路径模型,基于该模型,我们只需设计2个变量就可以列出最低费用函数,利用Matlab和VC++ 都可以解出最小值,并且我们经过多次验证和求解,将路径精度控制到米,费用精度控制到元。 问题三:该问的解答方法和问题二类似,但是由于A管线、B管线、共用管线三者的价格均不一样,我们利用问题二中设计的数学模型,以铁路为横坐标,城郊交汇为纵坐标建立坐标轴,增加了一个变量,建立了最低费用函数,并且利用VC++解出了最低费用和路径坐标。 关键字:改进的最短路径光的传播 Matlab 数学模型

_高教社杯_数学建模竞赛题分析与参赛培训_曾庆茂

教育现代化·2015年11月(下半月)233 职 业技术教育 DOI :10.16541/https://www.wendangku.net/doc/875934977.html,ki.2095-8420.2015.15.自1992年举办第一届全国大学生数学建模竞 赛(China Undergraduate Mathematical Contest in Modeling ,缩写为CUMCM )以来,以“高教社杯”冠名的CUMCM 逐渐成为我据报道,2014年,参加该赛事的院校达1338所之多,参赛队达25347个(其中本科组22233个、专科组3114个),参赛人数达7万多[1,2]。 本文在分析近10年(2005年~2014年)“高教社杯”数学建模竞赛(本科组)赛题的基础上,结合作者所在学校对学生进行参赛培训的具体做法,从数学建模教师团队的建设、数学建模课程建设与教学内容的设置以及数学建模竞赛模拟等三方面探讨指导老师应该如何进行参赛培训的相关问题。 一、历届竞赛题浏览 2005年:(A )长江水质的评价和预测;(B )DVD 在线租赁; 2006年:(A )出版社的资源配置;(B )艾滋病疗法的评价及疗效的预测; 2007年:(A )中国人口增长预测;(B )乘公交,看奥运; 2008年:(A )数码相机定位;(B )高等教育学费标准探讨; 2009年:(A )制动器试验台的控制方法分析;(B )眼科病床的合理安排; 2010年:(A )储油罐的变位识别与罐容表标定;(B )2010年上海世博会影响力的定量评估; 2011年:(A )城市表层土壤重金属污染分析;(B )交巡警服务平台的设置与调度; “高教社杯”数学建模竞赛题分析与参赛培训 曾庆茂,魏福义 (华南农业大学数学与信息学院应用数学系,广东广州,510642) 摘 要:“高教社杯”冠名赞助的全国大学生数学建模竞赛是我国高校最具影响力的学科竞赛之一。数学建模竞赛不但有利于培养学生的创新能力,而且有利于培养学生的团队合作精神。本文在分析2005-2014年本科组赛题的基础上,将数学建模竞赛试题分为优化类、评价类、预测类和其他类等四大类型。基于这种分类,结合作者所在学校对学生进行参赛培训的具体做法,从数学建模教师团队的建设、数学建模课程建设与教学内容的设置以及数学建模竞赛模拟等三方面探讨了指导教师在对学生进行参赛培训时应注意的相关问题。 2012年:(A )葡萄酒的评价;(B )太阳能小屋的设计; 2013年:(A )车道被占用对城市道路通行能力的影响;(B )碎纸片的拼接复原; 2014年:(A )嫦娥三号软着陆轨道设计与控制策略;(B )创意平板折叠桌。 二、历届竞赛题分析 根据解决问题所需建立模型的目的,近10年的CUMCM 赛题最常见的有三大类,即优化类,评价类和预测类。此外,近年的还出现了一些直接来源于工程技术、工业设计和数学之外的其他学科为背景的赛题,我们将其归为“其他类”。近10年的二十道赛题具体分类如表1所示。 由表1不难统计得到,近10年的二十道竞赛题中,“优化类”赛题所占比例为;“评价类”赛题占;“预测类”赛题占;“其他类”占。 “优化类”作为一大类,解决问题的实际方法又各不相同。例如,图论方法;排队论;规划方法(包括整数规划、线性规划、非线性规划、动态规划和多目标规划等[3,4]);网络优化方法和仿真计算方法等。 对于“评价类”问题,也有不同的解决方法。例如,模糊综合评价方法、统计假设检验方法和层次分析法等。 对于“预测类”问题,采用的方法可以是曲线拟合法、回归分析法、微分方程法、差分方程法、神经网络方法、灰色预测法和时间序列方法等。 基金项目: 本文系“2014年广东省研究生示范课程建设项目”(项目编号:2014SFKC05);“2014年度华南农业大学教育教学改革与研究 项目”(项目编号:JG14043)的研究成果。 作者简介: 曾庆茂(1973-),男,江西赣州人,华南农业大学数学与信息学院讲师,硕士,研究方向:应用数学和数学建模.(广东广 州 510642) 083

数学建模期末考试2018A试的题目与答案.doc

. . 华南农业大学期末考试试卷(A 卷) 2012-2013学年第 二 学期 考试科目:数学建模 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、(满分12分) 一人摆渡希望用一条船将一只狼.一只羊.一篮白菜从河岸一边带到河岸对面.由于船的限制.一次只能带一样东西过河.绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起.怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分 别记为i = 1.2.3.4.当i 在此岸时记x i = 1.否则为0;此岸的状态下用s =(x 1.x 2.x 3.x 4)表示。该问题中决策为乘船方案.记为d = (u 1, u 2 , u 3, u 4).当i 在船上时记u i = 1.否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分) (3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊.然后回来.带狼过河.然后把羊带回来.放下羊.带白菜过去.然后再回来把羊带过去。 或: 人先带羊过河.然后自己回来.带白菜过去.放下白菜.带着羊回来.然后放下羊.把狼带过去.最后再回转来.带羊过去。 (12分)

2014年全国数学建模a题解析

承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

嫦娥三号软着陆轨道设计与控制策略 摘要 嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。 问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出 。 所求速度33 ?? (=1.692210m/s,=1.613910m/s) v v 远 近 采用轨道六根数[2]来建立近月点,远月点位置的模型。轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM) E。 问题二“嫦娥三号”软着陆过程中需要经历6个不同的阶段,对于主减速阶段,在极坐标系下建立其运动方程。结合Pontryagin极大值原理[3]和哈密顿函数[4],化简出燃料最省的软着陆轨道方程,得出最优控制变量的变化规律。对于其它各阶段,将其简化为加速度不同的线性运动模型,利用动能定理得出相应轨道方程和控制策略。 问题三对第二问中求出的“嫦娥三号”推力和速度切线方向夹角?,给?增加或减小一个角度?,分别求出各个对应的近月点坐标'y。之后求各个坐标与其原始值之间的变化量'y并求其平均值'y,得到其敏感性因数,敏感性系数越大,说明该属性对模型的影响越大。 关键字:活力公式轨道六根数 Pontryagin极大值原理燃料最省

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模全国大赛历年题目分析以及参赛成功方法

建模更是一种精神:数学建模全国大赛历年题目分析以及参赛成功方法 数学建模竞赛的赛题分析 1. CUMCM历年赛题简析 2. “彩票中的数学”问题 3. 长江水质的评估、预测与控制问题 4. 煤矿瓦斯和煤尘的监测与控制问题 5. 其他几个数学建模的问题 数学建模竞赛的规模越来越大,水平越来越高; 竞赛的水平主要体现在赛题水平; 赛题的水平主要体现: (1)综合性、实用性、创新性、即时性等; (2)多种解题方法的创造性、灵活性、开放性等; (3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。 纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。 一、CUMCM历年赛题的简析 1. CUMCM 的历年赛题浏览: 1992年:(A)作物生长的施肥效果问题(北理工:叶其孝) (B)化学试验室的实验数据分解问题(复旦:谭永基) 1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁) (B)足球甲级联赛排名问题(清华:蔡大用) 1994年:(A)山区修建公路的设计造价问题(西电大:何大可) (B)锁具的制造、销售和装箱问题(复旦:谭永基等) 1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等) (B)天车与冶炼炉的作业调度问题(浙大:刘祥官等) 一、CUMCM历年赛题的简析 1. CUMCM 的历年赛题浏览: 1996年:(A)最优捕鱼策略问题(北师大:刘来福) (B)节水洗衣机的程序设计问题(重大:付鹂) 1997年:(A)零件参数优化设计问题(清华:姜启源) (B)金刚石截断切割问题(复旦:谭永基等) 1998年:(A)投资的收益和风险问题(浙大:陈淑平) (B)灾情的巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化机床控制管理问题(北大:孙山泽) (B)地质堪探钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰)

数学建模C题优秀论文 (2)

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): C 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2010 年 9 月 10 日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

输油管的布置 摘要 “输油管的布置”数学建模的目的是设计最优化的路线,建立一条费用最省的输油管线路,但是不同于普遍的最短路径问题,该题需要考虑多种情况,例如,城区和郊区费用的不同,采用共用管线和非公用管线价格的不同等等。我们基于最短路径模型,对于题目实际情况进行研究和分析,对三个问题都设计了合适的数学模型做出了相应的解答和处理。 问题一:此问只需考虑两个加油站和铁路之间位置的关系,根据位置的不同设计相应的模型,我们基于光的传播原理,设计了一种改进的最短路径模型,在不考虑共用管线价格差异的情况下,只考虑如何设计最短的路线,因此只需一个未知变量便可以列出最短路径函数;在考虑到共用管线价格差异的情况下,则需要建立2个未知变量,如果带入已知常量,可以解出变量的值。 问题二:此问给出了两个加油站的具体位置,并且增加了城区和郊区的特殊情况,我们进一步改进数学模型,将输油管路线横跨两个不同的区域考虑为光在两种不同介质中传播的情况,输油管在城区和郊区的铺设将不会是直线方式,我们将其考虑为光在不同介质中传播发生了折射。在郊区的路线依然可以采用问题一的改进最短路径模型,基于该模型,我们只需设计2个变量就可以列出最低费用函数,利用Matlab和VC++ 都可以解出最小值,并且我们经过多次验证和求解,将路径精度控制到米,费用精度控制到元。 问题三:该问的解答方法和问题二类似,但是由于A管线、B管线、共用管线三者的价格均不一样,我们利用问题二中设计的数学模型,以铁路为横坐标,城郊交汇为纵坐标建立坐标轴,增加了一个变量,建立了最低费用函数,并且利用VC++解出了最低费用和路径坐标。 关键字:改进的最短路径光的传播 Matlab 数学模型

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。 (15分) 解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。 因此对这个问题我们假设 : (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。以长方桌的中心为坐标原点作直角 坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D 的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令 ()f θ为A 、B 离地距离之和, ()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ 的连续函数。又由假设(3),三条腿总能同时着地, 故 ()f θ()g θ=0必成立(?θ )。 不妨设 (0)0f =,(0)0g >g (若(0)g 也为 0,则初始时刻已四条腿着地,不必再旋转),于是问题归 结为: 已知 ()f θ,()g θ均为θ 的连续函数, (0)0f =,(0)0g >且对任意θ 有 00()()0f g θθ=,求证存 在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。作()()()h f g θθ θ=-,显然,() h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定 理,存在0θ,0 0θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有 00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则

历年数学建模赛题题目

历年数学建模赛题题目 1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝) (B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁) (B) 足球排名次问题(清华大学:蔡大用) 1994年 (A) 逢山开路问题(西安电子科技大学:何大可) (B) 锁具装箱问题(复旦大学:谭永基.华东理工大学:俞文此) 1995年 (A) 飞行管理问题(复旦大学:谭永基.华东理工大学:俞文此) (B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福) (B) 节水洗衣机问题(重庆大学:付鹂) 1997年 (A) 零件参数设计问题(清华大学:姜启源) (B) 截断切割问题(复旦大学:谭永基.华东理工大学:俞文此) 1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平) (B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年 (A) 自动化车床管理问题(北京大学:孙山泽) (B) 钻井布局问题(郑州大学:林诒勋) (C) 煤矸石堆积问题(太原理工大学:贾晓峰) (D) 钻井布局问题(郑州大学:林诒勋) 2000年 (A) DNA序列分类问题(北京工业大学:孟大志) (B) 钢管订购和运输问题(武汉大学:费甫生) (C) 飞越北极问题(复旦大学:谭永基) (D) 空洞探测问题(东北电力学院:关信) 2001年 (A) 血管的三维重建问题(浙江大学:汪国昭) (B) 公交车调度问题(清华大学:谭泽光) (C) 基金使用计划问题(东南大学:陈恩水) (D) 公交车调度问题(清华大学:谭泽光) 2002年

数学建模数据分析题

中国矿业大学数学建模常规赛竞赛 承诺书 我们仔细阅读了中国矿业大学数学建模常规赛论文格式规范和2016年中国矿业大学数学建模常规赛通知。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或资料(包括网上资料),必须按照规定的参考文献的表述方式列出,并在正文引用处予以标注。在网上交流和下载他人的论文是严重违规违纪行为。 我们以中国矿业大学大学生名誉和诚信郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权中国矿业大学数学建模协会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们的参赛队号:25 参赛队员(打印并签名):1. 易阳俊 2. 令月霞 3. 刘景瑞 日期: 2016 年 10 月日 (请勿改动此页内容和格式。此承诺书打印签名后作为纸质论文的封面。以上内容请仔细核对,如填写错误,论文可能被取消评奖资格。)

中国矿业大学数学建模常规赛竞赛 编号专用页 评阅统一编号(数学建模协会填写):

题目:数据的分析问题 摘要 本文需要解决的问题是如何根据就诊人员体内7种元素含量来判别某人是否患有疾病G和确定哪些指标是影响人们患疾病G的主要因素。通过解读题目可知,此类问题为典型的分析判别问题。我们先对数据进行了预处理,剔除了有异常数据的样本,然后采用元素分布判别法、马氏距离判别法和Fisher判别法,应用Excel、SPSS和MATLAB等软件来对某人是否患病进行判别,并通过绘制7种元素含量的折线图等来确定患该疾病的主要因素,最后应用综合判别法对之前的结论进行了检验。 对于问题一,在对数据预处理之后,我们删除了序号为10这个高度异常数据样本,然后我们分别采用元素分布判别法、马氏距离判别法和Fisher判别法对49个已知病例进行判别。对于元素分布判别法,我们通过数据预处理知道7种元素含量分布均符合正态分布,然后我们确定了以均值为大致中心的元素正常含量范围,得出其判别准确度为96%;对于马氏距离判别法,通过编写MATLAB程序(见附录)来进行判别,得出其判别准确度为90%;对于Fisher判别法,通过SPSS软件来进行判别,得到线性判别函数,其判别准确度为96%; 针对问题二:我们运用问题一中建立的三个判别模型对25名就诊人员(见附录)的化验结果进行检验,判别结果如下表1: 行对分析,我们初步判定元素4与元素5是影响人们患疾病G的主要因素,然后用方法一的三种判别方法进行检验,其准确度在85%以上; 对于问题四,我们根据问题三得出的主要因素,分别用三种判别方法对25名就诊人员进行判别,再与问题二的判别结果进行对比,可知它们判断结果之间的差异性最高为24%。 对于问题五,由于三种判别法都有不足,所以我们采用了综合判别法,将三种判别方法的结果进行综合判断,最终我们通过主要因素进行判别的差异性下降到了12%,与问题一的判断结果的一致性达到了88%。 关键词:马氏距离判别,Fisher判别,综合判别,MATLAB,SPSS

2012年数学建模C题全国一等奖作品

脑卒中发病环境因素分析及干预 摘要 环境因素已被证实与脑卒中的诱发密切相关,本文从定量角度给出了脑卒中的发病率与环境因素之间的关系,并提出发病预警和干预的建议方案。 问题一要求对发病人群进行统计描述,我们首先对原始数据进行再加工整理,得到不同性别、不同职业及不同年龄段的发病率数据,通过计算发病人群分布的众数、四分位差、偏度、峰度等统计指标,得到了发病人群分布的特征:如发病人群的年龄呈左偏、平峰分布等。 针对问题二,为全面分析发病率与环境因素的关系,我们增加考虑温度差、和湿度差因素,通过建立统计回归模型,得到了脑卒中发病率与气压、温度、湿度、温度差和湿度差之间的量化关系,结果分析显示拟合优度和显著性检验都令人满意。 最后,根据问题一和问题二得到的结果,我们对不同的年龄层次、职业人群,气候条件等提出了相应的预警干预方案。 关键词:众数、四分位数、偏度、峰度、统计回归

问题的重述 脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。这种疾病的诱发已经被证实与环境因素,包括气温和湿度之间存在密切的关系。对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。同时,通过数据模型的建立,掌握疾病发病率的规律,对于卫生行政部门和医疗机构合理调配医务力量、改善就诊治疗环境、配置床位和医疗药物等都具有实际的指导意义。 数据来源于中国某城市各家医院2007年1月至2010年12月的脑卒中发病病例信息以及相应期间当地的逐日气象资料。根据题目提供的数据,回答以下问题: 1.根据病人基本信息,对发病人群进行统计描述。 2.建立数学模型研究脑卒中发病率与气温、气压、相对湿度间的关系。 3.查阅和搜集文献中有关脑卒中高危人群的重要特征和关键指标,结合1,2中所得结论,对高危人群提出预警和干预的建议方案。 问题假设 1.脑卒中发病因素只考虑气压、温度、湿度、温度差、湿度差,不考虑其它非环境因素; 2.在07至10年的相应时间段上,当环境因素稳定时,脑卒中人群的发病率服从正态分布; 3.忽略数据统计过程中的微小误差。 符号的假设 M——脑卒中发病人群年龄分布的众数 M——脑卒中发病人群年龄分布的中位数 e Q——脑卒中发病人群年龄分布的上四分位数 L Q——脑卒中发病人群年龄分布的下四分位数 U V——脑卒中发病人群年龄分布的异众比率 r X——脑卒中发病人群年龄分布的均值 Q——脑卒中发病人群年龄分布的四分位数差 D ——脑卒中发病人群年龄分布的偏态系数 3

相关文档
相关文档 最新文档