文档库 最新最全的文档下载
当前位置:文档库 › 大功率LED热管散热的热阻分析

大功率LED热管散热的热阻分析

大功率LED热管散热的热阻分析
大功率LED热管散热的热阻分析

散热器的散热量计算

冀州市冀暖北方暖气片厂 本标准参照采用国际标准ISO3147—1975(E)《热交换器—供水或蒸汽主环路的热平衡实验原理和试验方法》、ISO3148—1975《用空气冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3149—1975《用液体冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3150—1975(E)《辐射散热器、对流散热器和类似设备—散热量计算和结果的表达式》。 1、主题内容与适用范围本标准规定了在闭式小室内测试采暖散热器(简称散热器,暖气片)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。本标准适用于以热水或蒸汽为热媒的采暖散热器。 2、术语 2.1辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。 2.2对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。 3、测试原理 3.1散热器的散热量散热器的散热量应由下式求得:Q=Gp(h1—h2) 式中:Q——散热器的散热量,W;Gp——热媒的平均流量,Kg/s;h1——散热器进口处热媒的焓,J/Kg;h2——散热器出口处热媒的焓,J/Kg。注:h1、h2 的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得。 3.2热媒参数的测量3.2.1热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。3.2.2热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2~5℃的过热度,测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过1℃。3.2.3热媒温度系指散热器进出口处的温度。如不可能在该处测量时,则测温点与散热器进(出)口之间的距离不得大于0.3m。应对这段管道严格保温,并在计算散热量时减去这部分散热量。保温层应延伸到测温点之外0.3m以上。3.2.4热媒参数测量的准确度应符合以下要求:流量:±0.5% 温度:±0.1℃压力(绝对):±1%压差:当压差大于1KPa时±5% 当压差小于1KPa时±0.05%KPa 4、测试装置和要求 4.1测试装置测试装置应包括:a、安装被测散热器的闭式小室;b、小室六个壁面外的循环空气或水夹层;c、冷却夹层内循环空气或水的设备d、供给被测散热器能量的热媒循环系统。此系统应符合本标准的要求;e、检测和控制的仪表及设备。 4.2闭式小室的要求4.2.1小室内部的净尺寸应为:地面:(4±0.2m)×(4±0.2m) 高度:2.8±0.2m 4.2.2小室在任何情况下应为气密的。4.2.3小室的内表面应涂不含金属涂料的油漆。4.2.4小室采用空气冷却时,其构造应符合下列要求:4.2.4.1小室周围应设夹层,夹层内应维持稳定的温度环境。4.2.4.2小室的四壁、门、窗(若采用)、屋顶和地面的热阻偏差应在20%以内。4.2.4.3小室门应直接对着夹层外门。夹层外门必须气密,并宜具有和夹层墙相同的热阻。4.2.4.4夹层外围护层的墙、屋顶和地面总热阻应大于或等于1.73m3.K/W。4.2.4.5夹层内由可控温的送回风系统形成的循环空气,使小室的六个面得到均匀冷却。夹层的宽度宜为0.5m(不得小于0.3m);夹层内冷却空气的平均速度宜为0.1~0.5m/s。4.2.5采用水冷却时,小室的构造应符合下列要求:4.2. 5.1冷却水的循环方式应使小室表面温度均匀。4.2.5.2安装被测散热器的墙壁内表面,应在整个宽度离地面1.25m的高度内贴以保温板,保温板的厚度宜为6mm,其热阻应为0.05±0.05m2.K/W。板的外表面若刷油漆,应采用不含金属涂料的油漆。4.2.5.3冷却水的总流量应不小于6000Kg/h,每面墙的水流量应可分别控制。 5、闭式小室内各参数的测试及准确度 5.1小室内的空气温度小室内的空气温度应采用屏蔽的敏感元件在下列各点进行测量。5.1.1在内部空间的中心垂直轴线上a.基准点离地面0.75m高,准确到±0.1℃;b.离地面0.05、0.50、1.50m;距屋顶0.05m的四点,准确到±0.2℃。 5.1.2在每条距两面相邻墙1.0m处的垂直线上,离地面0.75、1.50m高的两点(共八点),准确到±0.2℃。} 5.2小室内表面温度小室的内表面温度应在下列各点进行测量:a.六个内表面的中心点,准确到±0.2℃;b.安装被测散热器的墙壁内表面的垂直中心线上,距地面0.30m的点,准确到±0.2℃。 5.3其他参数的测量除5.1和5.2所规定的各点外,还应测量下列参数;a.小室内空气的相对湿度;b.采用空气冷却时夹层内的空气温度,准确到±0.5℃; c.采用水冷却时,冷却系统入口处的水温准确到±0.2℃; d.大气压力,准确到±0.1KPa。

热阻计算

热阻计算 一般,热阻公式中,Tcmax =Tj - P*Rjc的公式是在假设散热片足够大而且接触足够良好的情况下才成立的,否则还应该写成Tcmax =Tj - P*(Rjc+Rcs+Rsa)。Rjc表示芯片内部至外壳的热阻,Rcs表示外壳至散热片的热阻,Rsa表示散热片的热阻。没有散热片时,Tcmax =Tj - P*(Rjc+Rca)。Rca 表示外壳至空气的热阻。 一般使用条件用Tc =Tj - P*Rjc的公式近似。厂家规格书一般会给出,Rjc, P等参数。一般P是在25度时的功耗。当温度大于25度时,会有一个降额指标。 一、可以把半导体器件分为功率器件和小功率器件。 1、大功率器件的额定功率一般是指带散热器时的功率,散热器足够大时且散热良好时,可以认为其表面到环境之间的热阻为0,所以理想状态时壳温即等于环境温度。功率器件由于采用了特殊的工艺,所以其最高允许结温有的可以达到175度。但是为了保险起见,一律可以按150度来计算。适用公式:Tc =Tj - P*Rjc。设计时,Tj最大值为150,Rjc已知,假设环境温度也确定,根据壳温即等于环境温度,那么此时允许的P也就随之确定。 2、小功率半导体器件,比如小晶体管,IC,一般使用时是不带散热器的。所以这时就要考虑器件壳体到空气之间的热阻了。一般厂家规格书中会给出Rja,即结到环境之间的热阻。(Rja=Rjc+Rca)。 同样以三级管2N5551为例,其最大使用功率1.5W是在其壳温25度时取得的。假设此时环境温度恰好是25度,又要消耗1.5W的功率,还要保证结温也是25度,唯一的可能就是它得到足够良好的散热!但是一般像2N5551这样TO-92封装的三极管,是不可能带散热器使用的。所以此时,小功率半导体器件要用到的公式是: Tc =Tj - P*Rja Rja:结到环境之间的热阻。一般小功率半导体器件的厂家会在规格书中给出这个参数。 2N5551的Rja,厂家给的值是200度/W。已知其最高结温是150度,那么其壳温为25度时,允许的功耗可以把上述数据代入Tc =Tj - P*Rja 得到: 25=150-P*200,得到,P=0.625W。事实上,规格书中就是0.625W。因为2N5551不会加散热器使用,所以我们平常说的2N5551的功率是0.625W而不是1.5W! 还有要注意,SOT-23封装的晶体管其额定功率和Rja数据,是在焊接到规定的焊盘(有一定的散热功能)上时测得的。

散热器的选型与计算

散热器的选型与计算 以7805为例说明问题. 设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W 按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出. 正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻. 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足. 散热器的计算: 总热阻RQj-a=(Tjmax-T a)/Pd Tjmax :芯组最大结温150℃ Ta :环境温度85℃ Pd : 芯组最大功耗 Pd=输入功率-输出功率 ={24×0.75+(-24)×(-0.25)}-9.8×0.25×2 =5.5℃/W

总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C 其中k:导热率铝为2.08 d:散热器厚度cm A:散热器面积cm2 C:修正因子取1 按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13 算得散热器热阻RQd-a=4.1℃/W, 散热器选择及散热计算 目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。进行大功率器件及功率模块的散热计算,其目的是在确定的散热条件下选择合适的散热器,以保证器件或模块安全、可靠地工作。 散热计算 任何器件在工作时都有一定的损耗,大部分的损耗变成热量。小功率器件损耗小,无需散热装置。而大功率器件损耗大,若不采取散

灯珠结温和散热面积计算理论

灯珠结温和散热面积计算理论 灯珠结温和散热面积计算理论 一、基础理论 大功率LED的散热问题: LED是个光电器件,其工作过程中只有15%~25%的电能转换成光能,其余的电能几乎都转换成热能,使LED的温度升高。在大功率LED中,散热是个大问题。例如,1个10W白光LED若其光电转换效率为20%,则有8W的电能转换成热能,若不加散热措施,则大功率LED的器芯温度会急速上升,当其结温(TJ)上升超过最大允许温度时(一般是

150℃),大功率LED会因过热而损坏。因此在大功率LED灯具设计中,最主要的设计工作就是散热设计。 另外,一般功率器件(如电源IC)的散热计算中,只要结温小于最大允许结温温度(一般是125℃)就可以了。但在大功率LED散热设计中,其结温TJ要求比125℃低得多。其原因是TJ对LED的出光率及寿命有较大影响:TJ越高会使LED的出光率越低,寿命越短。 K2系列白光LED的结温TJ与相对出光率的关系。在TJ=25℃时,相对出光率为1;TJ=70℃时相对出光率降为0.9;TJ=115℃时,则降到0.8了;TJ=50℃时,寿命为90000小时;TJ=80℃时,寿命降到34000小时;TJ=115℃时,其寿命只有13300小时了。TJ在散热设计中要提出最大允许结温值TJmax,实际的结温值TJ应小于或等于要求的TJmax,即TJ≤TJmax。 大功率LED的散热路径. 大功率LED在结构设计上是十分重视散热的。图2是Lumiled公司K2系列的内部结构、图3是NICHIA公司NCCW022的内部结构。从这两图可以看出:在管芯下面有一个尺寸较大的金属散热垫,它能使管芯的热量通过散热垫传到外面去。 大功率LED是焊在印制板(PCB)上的,如图4所示。散热垫的底面与PCB的敷铜面焊在一起,以较大的敷铜层作散热面。为提高散热效率,采用双层敷铜层的PCB,所示。这是一种最简单的散热结构。热是从温度高处向温度低5其正反面图形如图 处散热。大功率LED主要的散热路径是:管芯→散热垫→印制板敷铜

损耗与散热设计

第8章 损耗与散热设计 开关电源是功率设备,功率元器件损耗大,损耗引起发热,导致元器件温度升高,为了使元器件温度不超过最高允许温度,必须将元器件的热量传输出去,需要散热器和良好的散热措施,设备的体积重量受到损耗限制。同时,输出一定功率时损耗大,也意味着效率低。 8.1热传输 电子元器件功率损耗以热的形式表现出来,热能积累增加元器件内部结构温度,元器件内部温度受最高允许温度限制,必须将内部热量散发到环境中,热量通过传导、对流和辐射传输。当损耗功率与耗散到环境的功率相等时,内部温度达到稳态。 1. 传导 传导是热能从一个质点传到下一个质点,传热的质点保持它原来 的位置的传输过程,如图8-1固体内的热传输。热量从表面温度为T 1 的一端全部传递到温度为T 2的另一端,单位时间传递的能量,即功 率表示为 T R T l T T A P ?=-= )(21λ (8-1) 式中 A l R T λ= (8-2) 称为热阻(℃/ W );l -热导体传输路径长度(m);A -垂直于热传输路径的导体截面积(m 2);λ-棒材料的热导率(W/m ℃),含90%铝的热导率为220W/ m ℃,几种材料的热导率如表8-1所示;ΔT =T 1-T 2温度差(℃)。 例:氧化铝绝缘垫片厚度为0.5mm ,截面积2.5cm 2,求热阻。 解:由表8-1查得λ=20 W/m ℃,根据式(8-2)得到 3 4 0.5100.120 2.510t R --?==??℃/ W 式(8-1)类似电路中欧姆定律:功率P 相当于电路中电流,温度差;ΔT 相当于电路中电压。 半导体结的热量传输到周围空气必然经过几种不同材料传输,每种材料有自己的热导率,截面积和长度,多层材料的热传输可以建立热电模拟的热路图。图8-2是功率器件由硅芯片的热传到环境的热通路(a)和等效热路(b)。由结到环境的总热阻为 sa cs jc js R R R R ++= (8-3) 上式右边前两个热阻可以按式(8-2)计算,最后一项的热阻在以后介绍的方法计算。如果功率器件损耗功率为P ,则结温为 a sa cs jc j T R R R P T +++=)( (8-4) 式中R jc , R cs 及R sa 分别表示芯片结到管壳,管壳到散热器和散热 器到环境热阻。除了散热器到环境的热阻R sa 外,其余两个热阻可以按式(8-2)计算。 (a) (b) 图8-2功率器件热传输和等效热路图

散热器如何选型及计算

散热器如何选型及计算 散热器如何选型及计算;【1】散热器基础;1、散热量计量单位的W是什么?;散热器技术性能中的W是热功率计量单位;金属热强度Q(W/KG.℃):是指金属散热器内热;各种散热器的金属热强度比较表;3、什么是散热器的传热系数?;散热器的传热系数K(W/㎡.℃):是指散热器内热;4、散热器的散热过程是什么样的?;当温度较高的热媒在散热器内流过时,热媒所携带的热;1、散热器如何选型及计算【1】散热器基础 1、散热量计量单位的W 是什么? 散热器技术性能中的W 是热功率计量单位。是指每米或每片(柱)散热器在不同工况下每小时的散热量(瓦)。 2、什么是金属热强度?其在工程中的实际意义是什么? 金属热强度Q(W/KG .℃):是指金属散热器内热媒的平均温度与室内空气温度相差1℃时,每公斤质量的金属单位时间所散出的热量. Q值越大,说明散出同样的热量所耗用金属越少.这个指标是衡量散热器节能和经济性的一个指标。 各种散热器的金属热强度比较表 3、什么是散热器的传热系数? 散热器的传热系数K(W/㎡.℃):是指散热器内热媒的平均温度与室内气温相差为1度时,每平方米散热面积所传出的热量.该值与散 热面积的乘积,再乘标准传热温差(64.5℃)就是该散热器的标准散热 量.即Q=K.F.64.5,在散热面积一定的情况下,K值越大,则散热器的

散热量就越大.K值为整个传热过程的综合系数(包括对流传热和辐射传热),与散热器本身的特点和使用条件有关,如水流情况,内外表面 情况等。 4、散热器的散热过程是什么样的? 当温度较高的热媒在散热器内流过时,热媒所携带的热量通过散 热器不断地传给温度较低的室内空气,其散热过程为: 1、金旗舰铜铝复合散热器88/95散热器内的热媒通过对流换热把热量传给散热器内壁面(内表面放热系数) 2、内壁面靠导热把热量传给外壁; 3、外壁靠对流换热把大部分热量传给空气,又靠辐射把一小部分热量传给室内的物体和人. 5、散热器的水容量对采暖的影响如何? 散热器水容量对采暖的影响: 1、散热器的水容量大,采暖系统热惰性比较大,在锅炉间断供热时,水冷却时间稍长一些,采暖房间仍可以保持相当长时间的一定温度. 但再供水时,水升温也比较慢.大水容量的系统调节反映速度较慢.在连续供热时,对供暖质量无影响; 2、散热器的水容量小,启动时间短,温度调节灵敏,居室升温快, 便于分户计量供热,既省钱又方便; 3、热量是靠流动的水携带和运输的,水容量大小对热量无直接影响,只是调节时间有长短分别。

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

散热器扩散热阻的计算

散热器扩散热阻的计算 Accident? Consider the scenario where a designer wishes to incorporate a newly developed device into a system and soon learns that a heat sink is needed to cool the device. The designer finds a rather large heat sink in a catalog which marginally satisfies the required thermal criteria. Due to other considerations, such as fan noise and cost constraints, an attempt to use a smaller heat sink proved futile, and so the larger heat sink was accepted into the design. A prototype was made which, unfortunately, burned-out during the initial validation test, the product missed the narrow introduction time, and the project was canceled. What went wrong? The reasons could have been multi-fold. But, under this scenario, the main culprit could have been the spreading resistance that was overlooked during the design process. It is very important for heat sink users to realize that, unless the heat sink is custom developed for a specific application, thermal performance values provided in vendor's catalogs rarely account for the additional resistances coming from the size and location considerations of a heat source. It is understandable that the vendors themselves could not possibly know what kind of devices the users will be cooling with their products. Figure 1 - Normalized local temperature rise with heat sources of different size; from L to R, source area = 100%, 56%, 25%, 6%, of heat-sink area Introduction Spreading or constriction resistances exist whenever heat flows from one region to another in different cross sectional area. In the case of heat sink applications, the spreading resistance occurs in the base-plate when a heat source of a smaller footprin footprint area is mounted on a heat sink with a larger base-plate area. This results in a higher local temperature at the location where the heat source is placed. Figure 1 illustrates how the surface temperature of a heat sink base-plate would respond as the size of the heat source is progressively reduced from left to right with all other

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

芯片散热的热传导计算

芯片散热的热传导计算(图) 讨论了表征热传导过程的各个物理量,并且通过实例,介绍了通过散热过程的热传导计算来求得芯片实际工作温度的方法 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G奔腾4终极版运行时产生的热量最大可达115W,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的 最高温度以内正常工作。 如图1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温 度的方法。 图1散热器在芯片散热中的应用 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 图2芯片的散热 表征热传导过程的物理量

图3一维热传导模型 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L 为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如 下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 图4芯片的工作温度 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材 料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻。芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2。 实例 下面通过一个实例来计算芯片的工作温度。芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃。导热材料

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

散热器散热量计算

散热器散热量计算 散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷ 散热器散热量计算 散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。 现介绍几种简单的计算方法: (一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是: Q=5.8259×△T (十柱) 1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃

十柱散热量: Q=5.8259×64.5 =1221.4W 每柱散热量 1224.4 W÷10柱=122 W/柱 2.当进水温度80℃,出水温度60℃,室内温度18℃时: △T =(80℃+60℃)/2-18℃=52℃ 十柱散热量: Q=5.8259×52 =926W 每柱散热量 926 W÷10柱=92.6W/柱 3.当进水温度70℃,出水温度50℃,室内温度18℃时: △T =(70℃+50℃)/2-18℃=42℃ 十柱散热量: Q=5.8259×42 =704.4W 每柱散热量 704.4W ÷10柱=70.4W/柱 (二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量: 我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。 (三)利用传热系数Q=K·F·△T

关于钢制散热器选择的计算方法

关于钢制散热器选择的计算方法 关于钢制散热器选择的计算方法;首先确定要散热的电子元器件,明确其工作参数,工作;关于金旗舰散热器选择的计算方法;参数定义:;Rtj───半导体器件内热阻,℃/W;;Rtc───半导体器件与散热器界面间的界面热阻,;Tc───半导体器件壳温,℃;;R t───总内阻,℃/W;;Rtf───散热器热阻,℃/W;;Tf───散热器温度,℃;;Ta───关于散热器选择的计算方法关于散热器选择的计算方法;首先确定要金旗舰散热的电子元器件,明确其工作参数,工作;关于散热器选择的计算方法;参数定义:;Rtj───半导体器件内热阻,℃/W;;Rtc───半导体器件与散热器界面间的界面热阻,;Tj───半导体器件结温,℃;;Tc───半导体器件壳温,℃;;Rt───总内阻,℃/W;;Rtf───散热器热阻,℃/W;;Tf───散热器温度,℃;;T关于散热器选择的计算方法首先确定要散热的电子元器件,明确其工作参数,工作条件,尺寸大小,安装方式,选择散热器的底板大小比元器件安装面略大一些即可,因为安装空间的限制,散热器主要依靠与空气对流来散热,超出与元器件接触面的散热器,其散热效果随与元器件距离的增加而递减。对于单肋散热器,如果所需散热器的宽度在表中空缺,可选择两倍或三倍宽度的散热器截断即可。 关于散热器选择的计算方法 参数定义:

Rtj───半导体器件内热阻,℃/W; Rtc───半导体器件与散热器界面间的界面热阻,℃/W; Tj ───半导体器件结温,℃; Tc───半导体器件壳温,℃; Rt───总内阻,℃/W; Rtf───散热器热阻,℃/W; Tf───散热器温度,℃; Ta───环境温度,℃; Pc───半导体器件使用功率,W; ΔTfa ───散热器温升,℃; 散热计算公式: Rtf =(Tj-Ta)/Pc – Rtj -Rtc 散热器热阻Rff 是选择散热器的主要依据。Tj 和Rtj 是半导体器件提供的参数,Pc是设计要求的参数,Rtc 可从热设计专业书籍中查表。 (1)计算总热阻Rt:Rt= (Tjmax-Ta)/Pc (2)计算散热器热阻Rtf 或温升ΔTfa:Rtf = Rt-Rtj-Rtc ΔTfa=Rtf×Pc (3)确定散热器:按照金旗舰钢制暖气片70/63 散热器的工作条件(自然冷却或强迫风冷),根据Rtf 或ΔTfa 和 Pc 选择散热器,查所选散热器的散热曲线(Rtf 曲线或ΔTfa线),曲线上查出的值小于计算值时,就找到了合适的散热器。

散热器散热量计算

客厅用散热器价格散热量计算 关于金旗舰散热器的价格 散热器的最后成交价格与所选散热器的规格型号、数量、交货方式、付款方式有关,有一点需要用户 特别注意铝散热器通常采用纯铝或6063合金来制造,这两种材质都有很好的导热性与之相比杂铝的导热性 则差数倍;(其导热系数请见【相关数据】)由于散热器成本一半以上是材料费,杂铝的价格是低廉的; 因此对特别便宜的散热器,购买时要考虑因材质造成的散热性能的损失。 关于散热器的订购 选择好散热器的型号后,根据散热计算结果确定截断长度,及表面处理方式;需要订购请提供如下内 容: (1)散热器型号及长度例如:50DQ140-200(型号50DQ140;长度200mm) (2)表面处理方式(银白色黑色其他颜色) (3)散热器上需要机加工的部位、加工数量及技术要求 关于散热器分类 为了方便用户查找选购,按照散热器的制造工艺分为型材散热器、插片散热器、组合散热器及热管散热器;其中对用量极大的型材

散热器按其形状分为单肋、双肋、异型并在网页左侧列出;以便用户快速查找。 关于散热器的选择 首先确定要散热的电子元器件,明确其工作参数,工作条件,尺寸大小,安装方式,选择散热器的底板大小比元器件安装面略大一些即可,因为安装空间的限制,散热器主要依靠与空气对流来散热,超出与元器件接触面的散热器,其散热效果随与元器件距离的增加而递减。对于单肋散热器,如果所需散热器的宽度在表中空缺,可选择两倍或三倍宽度的散热器截断即可。 关于散热器选择的计算方法 参数定义: Rt─── 总内阻,℃/W; Rtj─── 半导体器件内热阻,℃/W; Rtc─── 半导体器件与散热器界面间的界面热阻,℃/W; Rtf─── 散热器热阻,℃/W; Tj─── 半导体器件结温,℃; Tc─── 半导体器件壳温,℃; Tf─── 散热器温度,℃; Ta─── 环境温度,℃; Pc─── 半导体器件使用功率,W; ΔTfa ─── 散热器温升,℃; 散热计算公式:

电源功率器件散热器计算

电源功率器件散热器计算 一、7805 设计事例 设I=350mA,Vin=12V,则耗散功率 Pd=(12V-5V)*0.35A=2.45W。按照TO-220 封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么 将会达到7805 的 热保护点150℃,7805 会断开输出。 二、正确的设计方法是: 首先确定最高的环境温度,比如60℃,查出民品7805 的最高结 温 Tj(max)=125℃,那么允许的温升是65℃。要求的热阻是 65℃/2.45W=26℃/W。 再查7805 的热阻,TO-220 封装的热阻θJA=54℃/W, TO-3 封装(也就是大家说的“铁壳”)的热阻θJA=39℃/W,均 高于要求值,都不能使用(虽然达不到热保护点,但是超指标使用还 是不对的),所以不论那种封装都必须加散热片。资料里讲到加散热片 的时候,应该加上4℃/W 的壳到散热片的热阻。 计算散热片应该具有的热阻也很简单,与电阻的并联一样,即 54//x=26, x=50℃/W。其实这个值非常大,只要是个散热片即可满足。 三、散热片尺寸设计 散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。 基本的计算方法是:

1.最大总热阻θja =(器件芯的最高允许温度TJ -最高环境 温度 TA )/ 最大耗散功率 其中,对硅半导体,TJ 可高到125℃,但一般不应取那么高,温度太高会降 低可靠性和寿命。 最高环境温度TA 是使用中机箱内的温度,比气温会高。 最大耗散功率见器件手册。 2.总热阻θja=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环 境的θsa 其中,θjc 在大功率器件的DateSheet 中都有,例如3---5 θcs对TO220 封装,用2 左右,对TO3 封装,用3 左右,加导热硅脂后, 该值会小一点,加云母绝缘后,该值会大一点。 散热片到环境的热阻θsa 跟散热片的材料、表面积、厚度都有关系,作为 参考,给出一组数据例子。 a.对于厚2mm 的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是: 中间的数据可以估计了。

相关文档