文档库 最新最全的文档下载
当前位置:文档库 › 热电偶

热电偶

热电偶
热电偶

计量检定员考核试题(热电偶)

单位姓名得分

一、填空(每题4′)

1.目前国际上采用的温标是温标,于起开始实行。

—铂热电偶的正极成分名义是含铂 %和含铑 %。2.铂铑

10

3.热电偶的测量原理是基于热电效应,而它所产生热电动势的大小只取决于热电偶

,而与热电偶的没有关系。

4.检定工作中用廉金属热电偶时,应使炉温偏离检定温度不超过℃,测量读数时,炉温变化不得超过℃。

5.工作用廉金属热电偶和工作用铂铑

—铂热电偶检定规程号分别为

10

和。

—铂,分度号代号分别为6.热电偶镍铬—镍硅,镍铬硅—镍硅,镍铬—铜镍,铂铑

10

K,N,和。

—铂热电偶时,可采用和法。7.检定工作用铂铑

10

—铂热电偶检定应在锌(419.58),和三个检定8.铂铑

10

点进行。

9.经外观检查合格的新制热电偶,在检定示值前,应在温度下,退火(时间),随炉冷却250℃以下。

10.在检定热电偶时,应先把的热电偶捆成一束,热后将它们的测量端放入的位置之后,才能开始检定。

二、选择题(每题3′)

1.热电偶测量温度基于什么理论,下列哪一个定律和效应与热电偶测温有关。()A)光电效应 B)维恩位移定律

C)克希霍夫定律 D)塞贝克定律

2.在测量1100附近的温度时,下列哪种温度计测温精度最高,最常用:()

—铂热电偶

A)钨铼热电偶 B)铂铑

10

C)镍铬—镍硅热电偶 D)射感温计

3.铂铑

—铂热电偶,不适用于下列哪种环境下工作。()10

A)真空中 B)中性介质

C)还原性气氛及侵蚀性物质 D)氧化性气氛

4.开展检定工作用热电偶工作所需要的低电势直流电位差计的准确度应不低于

()A)0.01级 B)0.02级

C)0.05级 D)0.1级

5.使用中的工作用Ⅱ级S热电偶,它的检定周期一般不超过()A)两年 B)一年

C)半年 D)三个月

三、简答题(30′)

1.简述热电偶的测温原理

2.在检定廉金属热电偶时,为什么将贵金属标准热电偶用保护管保护起来?

3.热电偶在测温时,补偿导线有什么作用?

四、计算题(15′)

在900℃附近时,测得S型标准热电偶的热电动势算术平均值e

′=8.420mV,工作

用K型热电偶e

′=37.064mV,此时用水银温度计测出热电偶参考端温度为8℃,

求被检热电偶的误差,并判断是否合格?(查得:标准热电偶900℃证书值e

=8.448 mV、S

标=11.21uV/℃、参考端8℃为0.044 mV,K型--e

=37.326 mV、S

=40.00uV/℃、参考端8℃为0.317 mV。)

参考答案:

1.1: 1990年国际温标/1990.1.1

2.1:90/10

3.1:材料的性质和两端温度/长短和直径

4.1:±5/±0.25

5.1:JJG351-96/ JJG 141-2000

6.1:J/S

7.1:双极比较法/同名双极比较法 8.1:锌凝固点/铝凝固点/铜凝固点

9.1:最高检定点/2h 10.1:标准和被检定/炉子轴线中央附近温度最高

2.1:d 2.2:b 2.3:c 2.4;b 2.5:c

3.1:热电偶测温原理是基于物体的热电效应.将两种电子密度不同的金属首尾相接组成闭合回路.如果两端温度不同,在回路中就会产生热电动势,形成热电流.这现象就是热电效应或塞贝克效应, 热电偶测温就是利用热电动势与温度间的函数关系来实现的.可用下式表示:E AB(t·t0)= E AB(t)- E AB(t0).通常把热电偶参考端温度维持在t0=0℃或恒定不变,这样热电动势仅为工作端温度的函数,即:E AB(t·t0)= E AB(t)+常数.由此可知, 热电动势的大小只与两种金属材料的性质和工作端温度,而与热电偶长短和直径无关,当工作端温度改变时, 热电动势也随着改变,利用这种关系即测量出温度.

3.2:在检定工作用廉金属热电偶时,为了防止对标准热电偶的腐蚀和污染,保证标准热电偶在检定周期内,热电特性稳定,确保量值传递的准确可靠,为此准标热电偶必须长采取有利措施严加保护,一般多用石英管作为标热电偶的保护套管,检定时被检热电偶一起放入炉内.

3.3:a、在实际测温时,它作为热电偶的二次仪表的连接导线,将热电偶参考端移至温度恒定的地方,起到延长热电偶的作用。b、用贵金属热电偶测温时,可选择廉金属材料周围补偿导线,节约大量的贵金属。c、对于线路较长的热电偶,可采用多股粗线直径补偿导线,以便于安装和敷设。d、利用补偿导线远距离安装,可避开测温场合,以便于遥控和集中管理。

4.1 △e= e被′+[(e标-e标′)×S被÷S标]- e分=(37.046+0.317)+[8.448-(8.420+0.044)]×40.00÷11.21-37.326=-0.020 mV

△t=△e/ S被=-0.020/0.040=-0.5℃

合格

表面温度测量方法

表面温度测量方法 表面热电偶在结构上坚固得多,并且不受因安装材料或方法所引起的应变的影响。它们具有设计简单的固有特点,从而使成本较低。所有热电偶表面传感器都具有能够在与表面热电阻传感器相比高出很多的温度下正常工作以及响应更加快速的特定。但是,热电偶传感器生成的电压信号较低,可能需要进行附加放大,这在电气噪声很高的环境中是一个缺点。 与表面热电偶传感器不同,表面热电阻传感器不需要参考点、冰浴或温度补偿电路。这些传感器具有非常低的热质量,因此可提供真实的表面温度测量值以及快到50ms的响应时间。铂传感器被公认为是一种精密温度测量传感器,它可在-190℃~660℃温度范围来定义国际温标(ITS-90)。将铂温度计选择作为首要标准的主要原因是,它的电阻温度参数具有优异的稳定性和重复性。表面热电阻的信号输出大小是热电偶输出的50~200倍。这意味着温度测量常常可使用标准仪表来进行。 TOBTO拓必拓TM-1300A微型测温笔主要用于物体表面温度的精确测量。 TOBTO拓必拓TM-1300A微型测温笔特点: 1、LCD4位数字液晶显示 2、采用集成电路稳定可靠 3、使用充电锂电池,使用周期长

TOBTO拓必拓TM-1300A微型测温笔技术指标: 1、分辨率:1℃;单位:℃ 2、精度:±(2%+1℃) 3、测量范围:TP─01-20℃──300℃ 比例系数:12:1; 4、测量环境:0℃──50℃相对湿度≤80%RH; 5、保存环境:-30℃──60℃相对湿度≤75%RH; 6、电池连续使用寿命720小时。 TOBTO拓必拓TM-1300A微型测温笔使用方法: 1、按开关键开机,红外对准要测量的设备,再按“M”执行键开始 测量,仪器显示采集到的数值后测量完成。 2、手动开/关机。

热电偶种类与区别

J型热电偶 J型热电偶)又称铁-康铜热电偶,也是一种价格低廉的廉金属的热电偶。 它的正极(JP)的名义化学成分为纯铁,负极(JN)为铜镍合金,常被含糊地称之为康铜,其名义化学成分为:55%的铜和45%的镍以及少量却十分重要的锰,钴,铁等元素,尽管它叫康铜,但不同于镍铬-康铜和铜-康铜的康铜,故不能用EN和TN来替换。铁-康铜热电偶的覆盖测量温区为-200~1200℃,但通常使用的温度范围为0~750℃ J型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,广为用户所采用。 J型热电偶可用于真空,氧化,还原和惰性气氛中,但正极铁在高温下氧化较快,故使用温度受到限制,也不能直接无保护地在高温下用于硫化气氛中。 热电偶是由两种不同成分的导体两端接合成回路时,当两接合点温度不同时,就会在回路内产生热电流。如果热电偶的工作端与参比端存有温差时,显示仪表将会指示出热电偶产生的热电势所对应的温度值。 热电偶的热电动热将随着测量端温度升高而增长,它的大小只与热电偶材料和两端的温度有关,与热电极的长度、直径无关。 各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成。 主要技术特性 测量范围及基本误差限 注:t为感温元件实测温度值(℃) 热电偶时间常数

热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。 热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外) 绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。 具有防溅式接线盒的热电偶,当相对温度为93± 3℃时,绝缘电阻≥0.5兆欧(电压100V) 高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极 之间的绝缘电阻(按每米计)应大于下表规定的值。 K型热电偶 K型热电偶概述 K型热电偶作为一种温度传感器,K型热电偶通常和显示仪表,记录仪表和电子调节器配套使用。 K型热电偶可以直接测量各种生产中从0℃到1300℃范围的液体蒸汽和气体介质以及固体的表面温度。 K型热电偶通常由感温元件、安装固定装置和接线盒等主要部件组成。 镍铬-偶(K型热电偶是目前用量最大的廉金属热电偶,其用量为其他热电偶的总和。K型热电偶丝直径一般为1.2~4.0mm。 正极(KP)的名义化学成分为:Ni:Cr=92:12,负极(KN)的名义化学成分为:Ni:Si=99:3,其使用温度为-200~1300℃。 K型热电偶具有线性度好,热电动势较大,灵敏度高,稳定性和均匀性较好,抗氧化性能强,价格便宜等优点,能用于氧化性惰性气氛中广泛为用户所采用。 K型热电偶不能直接在高温下用于硫,还原性或还原,氧化交替的气氛中和真空中,也不推荐用于弱氧化气氛.

热电偶标准 SAE AMS 2750D(chinese)09-5-6

航空航天材料规范SAE AMS 2750D 1. 范围: 该规范描述了对热处理设备的温度要求。包括温度传感器、仪器、热处理设备、系统精确度测试和温度均匀性测试。这些对确保零件或原材料按照适用规范进行热处理,是必要的。 除非材质或过程规范特别规定,否则该规范不适用于加热或中间热处理,。 该规范适用于实验炉,参见第3.6节。 2. 适用文件: 以下文件从订单发布之日起生效,并构成了该规范的一部分。除非对使用的文件版本有专门的规定,否则供应商要使用最新版本的文件。当参考文件取消,而且没有文件替代时,使用最新发行的那版文件。 ASTM文件 可以从ASTM, 100 Barr Harbor Drive, 邮箱C700,West Conshohocken,PA19428-2959或https://www.wendangku.net/doc/8d5988472.html,获得。 ASTME 207,ASTM E 220,ASTM E 230,ASTM E 608,ASTM E 1129,ASTM MNL 7,ASTM MNL 12。 3. 技术要求 温度传感器: 温度传感器必须符合表1要求和如下要求。一些例外情况在下文中有提到。

温度应该用此规范中规定的热电偶来测量,或用其他的精度相同或更高的热电偶或温度传感器来测。热电偶用裸线或涂装线或MIMS线(矿物绝缘,金属铠装的)制成。没有特殊说明的话,要求适用于所有温度传感器材料。此规范中的“传感器”即指“温度传感器”。从传感器首次校准或后来校准所得到的修正系数可以用来提高温度的精确度,且在此规范要求下要被使用。 校准:传感器应该有合格证明,注明校准数据的来源、理论测试温度,实际测试温度读数、校准方法和每个可追溯到NIST或其他认可的国家标准的校准温度的修正系数。校准方法应符合ASTM E 220,ASTM E 207或其他国家标准的要求。 从毫伏到度或从度到毫伏的转化,应该遵守ASTM E 230或其他国家标准。 温度传感器必须在使用的温度范围内校准。所有热电偶的校准点间隔不能超过250 o F(140 o C) ,不包括那些按照ASTM MNL 12或其他国家标准要求,在固定点上校准的热电偶。K型和E型热电偶在500 o F (260 o C)温度以上使用后不允许再次校准。对超过最高校准温度和低于最低校准温度的修正系数不允许用外插法来预测。 热电偶及其使用:热电偶只能在ASTM MNL 12 表3.1(对保护性热电偶的最高建议温度范围)或3.5(对保护性热组件的最高建议温度范围),ASTM E 230 表6(对保护性热电偶的最高建议温度范围),ASTM E 608 表1(对铠装的热电偶的最高建议温度范围)或其他国家标准规定的以及传感器供应商建议的范围内使用。对于不符合以上温度要求的热电偶,应该按该规范中表格1所要求的校准和重新校准的温度间隔来使用。

热电偶海关编码

39172900 热电偶保护管 68151000 碳化硅再结晶热电偶保护管68159910.99 热电偶保护管 69039000.00 热电偶保护管 69141000 测温热电偶用保护管 69149000 热电偶保护管 71159010.90 铂铑热电偶丝 71159010.90 热电偶丝 72189900.00 热电偶接头材料 73049000 热电偶保护套管 73069000 热电偶保护管 73269010 热电偶保护套管 76169910 铝水测温热电偶保护套管81129900.00 热电偶材料 82042000 硬质合金热电偶套筒 85141010 热电偶退火炉 85143000.90 热电偶/热电阻检定炉85144000.90 宽温区热电偶检定炉85144000.90 铂热电偶检定炉85168000.00 防腐型热电偶 85168000.00 隔爆型热电偶 85168000.00 隔爆热电偶 85168000.00 机电一体化热电偶85168000.00 锅炉炉壁热电偶85168000.00 表面热电偶 85333900.00 铠装式热电偶热电阻85359000.00 热电偶接线盒 85365000.00 热电偶退火炉定时控温仪85366900.00 热电偶插头 85369000.00 热电偶快速接头85369000.00 热电偶调理端子板85369000.00 热电偶端子 85371090.00 热电偶开关盒 85371090.90 端子式隔离热电偶信号转换器85415000.00 热电偶保护管 85423900.00 热电偶模块 85437099.90 热电偶信号调节器85437099.90 热电偶信号调理器85437099.90 智能热电偶信号调理器85439090 热电偶端子盒 85439090 8通道热电偶输入模块85439090 碳化硅再结晶热电偶保护管85444219 热电偶用补偿导线

热电偶的分度号分类

热电偶的分度号有哪几种、有什么区别 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。 t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。 在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶; R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同; B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃,短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。 N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶; K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。在所有热电偶中使用最广泛; E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度0-800℃; J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,

多用于炼油及化工; T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度 补偿导线工作原理: 在一定温度范围内,具有与其匹配的热电动势标称值相同的一对带绝缘包覆的导线叫补偿导线。用它们连接热电偶与测量装置,以补偿热电偶连接处的温度变化所产生的误差。 补偿导线特点: ①热电特性稳定,电绝缘性能好,使用寿命长。 ②柔软,弯曲性能能好,使用方便。 ③包覆层材料稳定可靠,具有一定的耐温性和耐寒性能。 铂铑热电偶 产品型号:WRP(WRR)--130 S型小铂铑热电偶为各类小型箱式电阻炉或井式炉使用,也可以用于同类产品上。WR系列工业用热电偶作为温度测量传感器 ,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以

热电偶的好坏如何判断

热电偶的好坏如何判断? 热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 判断热电偶的好坏方法一:仪器检测:首先确定热电偶的外观没有问题,是好是坏,得通过检测才能确定。将待测热电偶穿上热电偶专用的瓷套管,和标准铂铑热电偶一起放入管式电炉中,将热端插入管式电炉中的一个多孔的均热用的金属镍制成的圆柱体中。将各自的补偿导线的冷端放入由冰水混合物保持的零摄氏度的容器中。将管式电炉保持在该热电偶的许用最高温度,并稳定保持这个范围。这时候用经过检测合格的惠司登电位差计,测出标准热电偶和待测热电偶产生的热电势差并记录。根据记录的热电势差,查表查出各自对应的温度,如果待测热电偶超差,可以判定为不合格。这种管式电炉,不是分析化学用的硅碳棒管式电炉。对于不合格的热电偶,可以从热端切断一小段,重新焊接。焊接的方法很简单,对普通的镍铬热电偶,可以用自耦变压器调至较低电压,用热电偶的两根丝并成一极,另一极用碳棒,直接引燃电弧,两根热电偶丝会在头上熔成一个小球状。这种操作不难,可以调整电压,很快就会掌握。这种焊接使用的是自耦

变压器,千万注意绝缘以保安全。对贵重的铂铑热电偶的焊接,是另一种方法。将调压后的电源一极插入氯化钠水溶液,另一极是拧在一起的热电偶,用绝缘钳夹住热电偶,轻点溶液表面,热电偶两端就能够熔合。这两种焊接方式,要注意安全和练习,容易掌握的。重新焊接的热电偶,可以再检测,确定合格与否。 判断热电偶的好坏方法二:万用表检测:在用万用表检测前,我们先通过肉眼观察,保护管是否腐蚀穿透,是否漏水等。然后在扩用万用表测量通断,装配式热电偶电阻一般不大于2欧姆,网线式电阻一般不大于50欧姆。一般大于1K就可以确定是坏了。郑重提示:1,以上只是简单判断,长期在高温环境下工作,容易出现温度漂移,如K 型长期工作在1000度以上,E型长期工作在800度以上,S型长期工作在1250度以上,就会发生漂移,1000度漂移2–5度很见常。根据相关技术规程要求,是强制检定的标准计量器具,牵涉到节约能源和安全生产,一般规定使用一年必须送流量计流量计计量测试中心检定。用万用表测量电阻值.电阻超过100K就是坏的. 用万用表欧姆测量法来测,调好电阻量,接通两端,用打火机稍微烫下,如果万用表指针明显变大或变小这说明该是好的,指针不动说明已经坏了。可以用万用表毫伏档测量两端电压,如无电压则坏。

热电偶型号及不锈钢牌号

热电偶型号及不锈钢牌号

热电偶分度号 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC 国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶,N、K、E、J、T属于廉金属热电偶。 以下是对热电偶分度号的解释 S 铂铑10 纯铂 R 铂铑13 纯铂 B 铂铑30 铂铑6 K 镍铬镍硅 T 纯铜铜镍 J 铁铜镍 N 镍铬硅镍硅 E 镍铬铜镍 (S型热电偶)铂铑10-铂热电偶 铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,“ITS-90”虽规定今后不再作为国际温标的内查仪器,但国际温度咨询委员会(CCT)认为S型热电偶仍可用于近似实现国际温标。 S型热电偶不足之处是热电势,热电势率较小,灵敏读低,高温下机械强度下降,对污染非常敏感,贵金属材料昂贵,因而一次性投资较大。 (R型热电偶)铂铑13-铂热电偶 铂铑13-铂热电偶(R型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(RP)的名义化学成分为铂铑合金,其中含铑为13%,含铂为87%,负极(RN)为纯铂,长期最高使用温度为1300℃,短期最高使用温度为1600℃。 R型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。其物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于R型热电偶的综合性能与S型热电偶相当,在我国一直难于推广,除在进口设备上的测温有所应用外,国内测温很少

标准热电偶型号

是否提供加工定制是品牌顺达 型号WR系列铠装热电偶品种铠装热电阻 分度号K、N、E、S 测量范围0℃-1200℃(℃)(℃) 允差等级 A 热响应时间≤8(s)(s) 图片,价格,产品属性,仅供参考,不作交易价格,具体以实物为准,欢迎来电咨询 WR系列铠装热电偶 铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用装配式热电偶一样,作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,同时,亦可以作为装配式热电偶的感温元件,它可以直接测量各种生产过程中从0℃~1100℃范围内的液体,蒸汽和气体介质以及固体表面的温度。 □ 主要技术指标 ·测温范围和允差 注:(1)t为被测量温度的绝对值< (2)T型分度号产品需与厂方协商订货。

热电偶温度计

WR口K系列铠装热电偶 ■执行标准:JB/T5582-91 铠装热电偶具有体形细长、热响应快、耐震动、使用寿命长以及便于弯曲等优点,广泛应用航空,原子能、石油、化工、治金、机械、电力等工业部门和科研领域,尤其适宜安装在管线狭窄,弯曲和要求快速反应,微型化的特殊测温场所。 铠装热电偶通常由铠装热电偶元件、安装固定装置和参比端连接装置等主要部件组成。 ■ 特点 测温范围大,反应速度快,外径小,温度变化反应迅速,安装方便,使用寿命长、气密性好,机械强度好。可在有震动、低温、高温条件下使用。 ■ 主要技术指标 ● 铠装热电偶推荐使用温度上限

● 型号及允差 ● 铠装热电偶热响应时间τ0.5 ● 铠装热电偶室温绝缘电阻

● 铠装热电偶的高温绝缘电阻 ● 铠装热电偶测量端形式 ■ 安装固定装置及公称尺寸 凡订( )尺寸的卡套法兰时,需在订货合同上注明:卡套法兰D1=65mm。 ■ 铠装热电偶的结构型号 说明: ·铠装热电偶最小外径,K型为Φ0.25mm,E型为Φ1.0mm,铠装热电偶最大外径,K型为Φ8mm,我所可提供Φ10mm。

常见热电偶类型及特点

常见热电偶类型及特点 1、K 型热电偶镍铬(镍硅(镍铝)热电偶) K型热电偶是抗氧化性较强的贱金属热电偶,可测量0~1300 ℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200 ℃,长期使用温度为1000 ℃,其热电势与温度的关系近似线性,是目前用量最大的热电偶。然而, 它不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶缺点: (1))热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000 ℃)往往因氧化而损坏; (2))在250 ~500 ℃范围内短期热循环稳定性不好,即在同一温度点,在升温 降温过程中,其热电势示值不一样,其差值可达2~3℃; (3))其负极在150 ~200 ℃范围内要发生磁性转变,致使在室温至230 ℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; (4)长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 2、S 型热电偶(铂铑10 -铂热电偶) 该热电偶的正极成份为含铑10% 的铂铑合金,负极为纯铂。 其特点是:

(1)热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度 可达1300 ℃,超达1400 ℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗 大而断裂; (2)精度高,在所有热电偶中准确度等级最高,通常用作标准或测量较高温度;(3)使用范围较广,均匀性及互换性好; (4)主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低, 不适宜在还原性气氛或有金属蒸汽的条件下使用。 3、E 型热电偶(镍铬-铜镍[康铜]热电偶) E型热电偶为一种较新产品,正极为镍铬合金,负极为铜镍合金(康铜)。其最 大特点是在常用的热电偶中,其热电势最大,即灵敏度最高;它的应用范围虽不及K型偶广泛,但在要求灵敏度高、热导率低、可容许大电阻的条件下,常常被 选用;使用中的限制条件与K型相同,但对于含有较高湿度气氛的腐蚀不很敏感。 4、N 型热电偶(镍铬硅-镍硅热电偶) 该热电偶的主要特点:在1300 ℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400 ~1300 ℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200 ~400 ℃)的非线性误差较大,同时,材料较硬难于加工。 5、J 型热电偶(铁-康铜热电偶) J 型热电偶:该热电偶的正极为纯铁,负极为康铜(铜镍合金),具特点是价格 便宜,适用于真空氧化的还原或惰性气氛中,温度范围从-200 ~800℃,但常用温度只在500 ℃以下,因为超过这个温度后,铁热电极的氧化速率加快,如采用粗

热电偶对照表

单位:毫伏(mV) 温度(℃) 铂铑10?铂 S 镍铬?镍硅 K 镍铬?铜镍 E 铁?铜镍 J 铜?铜镍 T 铂铑30- 铂铑6 B 0 0 0 0 0 0 0 50 0.299 2.022 3.047 2.585 2.035 0.002 100 0.645 4.095 6.137 5.268 4.277 0.033 150 1.029 6.137 9.787 8.008 6.702 0.092 200 1.440 8.037 13.419 10.777 9.286 0.178 250 1.873 10.151 17.178 13.533 12.011 0.219 300 2.323 12.207 21.033 16.325 14.860 0.431 350 2.786 14.292 24.961 19.089 17.860 0.596 400 3.260 16.395 28.943 21.846 20.869 0.786 450 3.743 18.513 32.960 24.607 1.002 500 4.234 20.640 36.999 27.388 1.241 550 4.732 22.772 41.045 30.210 1.505 600 5.237 24.992 45.085 33.096 1.791 650 5.751 27.022 49.109 36.066 2.100 700 6.274 29.128 53.110 39.130 2.430 750 6.805 31.214 57.083 42.283 2.782 800 7.345 33.277 61.022 45.498 3.154 850 7.892 35.314 64.924 48.716 3.546 900 8.448 37.325 68.783 51.875 3.957 950 9.012 39.310 72.593 54.948 4.386 1000 9.585 41.269 76.358 57.942 4.833 1050 10.155 13.202 5.297 1100 10.754 45.108 5.777 1150 11.348 46.985 6.273 1200 11.947 48.828 6.783 1250 12.550 50.633 7.308 1300 13.155 52.398 7.845 1350 13.761 54.125 8.393 1400 14.368 8.952 1450 14.973 9.519 1500 15.576 10.094 1550 16.176 10.674 1600 16.771 11.257 1700 12.426 1800 13.585

热电偶安装和插入深度要求详细说明

热电偶安装和插入深度要求详细说明 热电偶工业测量仪表的一种产生,它的测温范围广泛,它的连接方式多样,它的安装简单方便?热电偶作为主要测温手段,用途十分广泛,因而对固定装置和技术性能有多种要求,因此热电偶的固定装置分为六种:无固定装置式、螺纹式、固定法兰式、活动法兰式、活动法兰角尺形式、锥形保护管式六种。正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。 热电偶是由两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶安装要求:应注意有利于测温准确,安全可考及维修方便,而且不影响设备运行和生产操作.要满足以上要求,为了使热电偶和热电阻的测量端与被测介质 之间有充分的热交换,应合理选择测点位置,尽量避免在阀门,弯头及管道和设备的死角附近装设热电偶或热电阻. 带有保护套管的热电偶和热电阻有传热和散 热损失,为了减少测量误差,热电偶和热电阻应该有足够的 热电偶插入深度要求: (1)对于测量管道中心流体温度的热电偶,一般都应将其测量端插入到管道中心 处(垂直安装或倾斜安装).如被测流体的管道直径是200毫米,那热电偶或热电 阻插入深度应选择100毫米; (2)对于高温高压和高速流体的温度测量(如主蒸汽温度),为了减小保护套对流 体的阻力和防止保护套在流体作用下发生断裂,可采取保护管浅插方式或采用热套式热电偶.浅插式的热电偶保护套管,其插入主蒸汽管道的深度应不小于75mm;热套式热电偶的标准插入深度为100mm; (3)假如需要测量是烟道内烟气的温度,尽管烟道直径为4m,热电偶或热电阻插 入深度1 m即可. (4)当测量原件插入深度超过1m时,应尽可能垂直安装,或加装支撑架和保护套管.

将热电偶固定在电路板上方法

将热电偶固定在电路板上,可以在焊接过程中监测重要的温度参数。固定方法有许多种。其目的是获得关于电路板组件关键位置的精确可靠的温度数据。热电偶的固定方法对数据质量的影响极大。 利用热电偶测量温度是一项精密、费时而艰苦的工作。热电偶的固定场所有时可能会限制安装方法的采用,从而使问题复杂化。例如,对于FR4板材、陶瓷或塑料元件等不可焊的表面,便不能采用高温焊接方法。在高密度电路板的元件密集区不能使用胶带固定,要穿过壳体上的小孔接触元件十分困难。然而,与其它方法,如热点或裂纹(crayon)、IR传感器、或估测等方法相比,热电偶仍具有较大的优势。 热电偶固定方法 为了从热电偶中获得可靠的数据,必须了解下面两个通用规则: 热电偶结必须与被监测表面进行直接、可靠的热接触,否则,在热电偶结与被测表面之间就会产生一不可知的热阻。这样,温度读数将更接近于热电偶周围材料的温度,而不是被测表面的温度。一个极端的例子是,当Kapton胶带在炉膛温度下松驰时,热电偶将脱离被测表面,开始测量周围空气的温度。 用于将热电偶结固定到被测表面的材料应最少。这种材料会增加直接传给热电偶结的热容量,以及与这种材料接触的被测表面的热绝缘性(insulation),这两种情况均会导致在炉温上升或下降时,热电偶的温度滞后于板表面的真实温度。当温度的变化率为2℃/s时,将滞后5℃至10℃,这意味着典型回流温度曲线上的温度峰值将大打折扣。 现在让我们讨论一下各种热电偶固定方法,这将有助于针对特定的应用场合选择最佳的方法,以获得最可靠的结果。 高温焊料 一般来说,需要至少含铅93%、熔点超过290℃的焊料,这样,焊料在回流焊时就不会熔化。这种焊料具有良好的导热性,有助于将误差减到最小,即使在热电偶结略微脱离电路板表面的情况下也是如此。它能提供很好的机械固定性能,适用于测试电路板(图1)。 图1:在0.025mm引脚间距元件(左)上的热电偶安装不良。大的焊球大大地增加了引脚的热容量。 另一方面,焊接需要相当的技巧与时间,来形成小的热电偶固定区,而不会使电路板、焊盘或元件过热或损坏。高温焊料即使采用活性助焊剂,润湿性与流动性也不好,使条件恶化。而且,要想彻底清除焊料,很难不破坏元件、焊点或焊盘。 再者,这种方法不能用于尚未经过回流的电路板,因为在热电偶固定时,它很可能会使元件发生移动。这种方法也不能用于将热电偶固定到不可焊的表面,如陶瓷与塑料元件,和FR4板。要在未经回流的细间距器件上使用焊料也很困难。 采用胶粘剂 胶粘剂的使用比高温焊料要容易一些。常用的胶粘剂通常可以分为两类,它们均可将热电偶固定到塑料、陶瓷元件以及FR4板等不可焊的表面。 一类是UV活化胶,它可在几秒钟内将热电偶固定,但只能工作于120℃左右的温度环境中。在回流焊温度峰值为210℃左右时,其固定性能不佳,因而常用于波峰焊。 由于其导热性较差,因此当胶粘剂活化后,应使热电偶结紧贴在被测表面(图2)。用小刀很容易剔除粘胶,但却会在FR4和深色元件表面留下一些易见的膜状痕迹。这里不能使用高效溶剂(如丙酮)清洗,因为这些溶剂同样会溶解塑料,造成电路板的损坏。 图2:如果在固定热电偶时使用过多的胶粘剂,将会产生不良的热传导。 专用的高温双组份环氧胶的耐温可达260℃,但在高温下的固化却需要数小时。这很不方便,特别是在需要快速诊断故障的情况下。环氧胶同样需要仔细地定位,以保证在整个固化过程中,热电偶都与被测表面保持接触。与UV活化胶类似,环氧胶也不能在不破坏电路板或元件的情况下被彻底清除。快速固化胶,如“5分钟”环氧胶,耐温为130℃。但这一温度太低,难以防止回流焊时的脱落。 胶粘带 高温胶粘带,如Kapton胶带,可在任何表面方便地使用。但是,必须预先装入热电偶结,使其与被测表面稳定接触。 注意,它的周围没有可导材料,即使结点只离开被测表面千分之一英寸,其测量温度也将主要是周围环境的温度,它在一定程度上受到热辐射的影响。你还可能发现,利用胶带在高密度区固定热电偶很困难,甚至不可能。一种行之有效的方法是,将热电偶导线弯成一个小钩子的形状(图3)(图4)。 图3:用胶带将线粘在钩的后面,使结点预先装在表面。 图4:加热后胶带松驰,使热电偶从引脚处翘起。 机械固定 下面两种常用的热电偶机械固定方法是极不相同的:纸夹(paper clip)固定法和镙钉固定法。 采用纸夹固定无疑是快捷而方便的,镙钉固定则坚固而可靠。两种方法均可反复承受炉子的温度,但只能用于对板子边缘进行监测。 线夹不能牢固而可靠地固定热电偶。如果在操作过程中不小心拉动线,就会导致热电偶移动。强力弹簧夹可将导线夹紧些,但其热容量和IR屏蔽(shadowing)效应会妨碍位于夹子内的板区的正常加热。 镙钉固定法显然会破坏电路板。而且,热容量和来自板背面或内部铜层的热传导会使温度显示失真。 机械式热电偶支撑器件具有以下优点: 可以很容易地夹在电路板的边缘,热电偶结点可以固定在电路板的任何位置,包括元件间的窄小空间。 弹簧张力使热电偶结点牢固地接触任何类型的表面。 低热容的热电偶结点可以快速响应温度的变化。

热电偶的材料、结构及种类

热电偶的材料、结构及种类 一、热电偶材料 根据金属的热电效应原理.组成热电偶的热电极,If以是任意的合同材料 中,用作热电极的材料应具备以下几方面的条件: 1.测量范围广 在规定的温度测量范围内具有较高的测量精确度 的关系是单值函数。 2.热电性能稳定 要求在规定的温度测量范围内使用时热电性能稳定,有较好的均匀性和复现性。 3.化学稳定性好 要求在规定的温度测旦范闲内使用时有良好的化学稳定性、抗氧化或抗还原性能 蒸发现象。 满足上述条件的热电偶材料并不很多。目前,我国大量生产和使用的性能符合专业 标准 成国家标服并具钉统一分度表凶热屯悯材料称为定型热屯偶材料,共有6个仍牌。它 们分别 是铀诧”饱姥,、钢铭l。—5日、镍铬—镍硅、镍铬嘴铜、镍铬—镍铝、铜—铜镍。 此外,我囚还生产一些未定型的热电偶材料,如铂锭J s—59、铱姥M—铱、钨锦;—钨钢:。及金铁 热电偶、双钠钥热心佃等。这些非标热电偶应用于一些特殊条件下的测温,如超高温、极低温、 禹真空或核辐射环境等。 热电偶温度传感器广泛应用于工业生产过程中的温度测量。根据其用途和安装位置不 它具有多种结构形式。 [一)普通工业热电偶的结构

热电偶通常出热电极、绝缘管.保护宾管和接线盒等几个主要部分织成 5所不。现对各部分构造做简申的介绍。 1.热电权 热电极又称偶丝.它是热电佃斯麦迪电子的珏本组成部分。用普通分届做成的偶丝,其直径一般为 o.5—3.2mm;用责至金属做成的佃丝,盲役一般为o.3一o.6mm。偶耸的良度则由工作端插 入被测介质中的深度来决定,通常为300一20()o nlnl,常内的长度为历o mm。 2.绝缘管 绝缘管又称绝缘子,是用于热电极之间及热心极与保护宾之间进行绝缘保护的零件,以防 止它们之间立相短路。其形状一般为圆形或椭圆形,钾间开心2个、4个或6个孔, 热电偶偶 丝穿孔而过。材料为就上质、高铝质、刚玉质等,根据使用的热电偶而定。 3.保护套管 保护套管是用于保护热电偶感混元件免受被测介质化学腐蚀和机械损伤的装置。保 护名 管应具有耐高温、耐腐蚀见导热性灯的特性,可以用作保护套管的材料有金属、非金 属及金属 陶瓷二大类。金属材料有铝、黄铜、碳钢、不锈钠等,其小1〔:f13X19,I、j不锈 钢是目前热电偶保 护套管使用的典型材料。非金属材AVX钽电容料有高铝质(A12()j的质量分数为85% 一90%)、刚玉质 (A1z():的质量分数为99%),使用温度都在1:300℃以上。金属陶瓷材料毛氧化铁 加众届铂, 这种材料使用温度在1700℃,且在高温厂啊很好的抗氧化能力、适用于钢水温度的连续测量。

热电偶检定规程 Word 文档

热电偶检定规程 中华人民共和国国家计量检定规程 JJG351 96 工作用廉金属热电偶1996年8月23日批准1997年3 月1日实施 国家技术监督局

目录 一技术要求 二检定条件 三检定项目和检定方法 四检定结果处理和检定周期 附录 附录1 热电偶用补偿导线的检定方法 附录2 带补偿导线热电偶的检定方法 附录3 管式炉炉温温场测试方法 附录4 标准铂铑10—铂热电偶在0∽1300℃附范围内,整百度的热电动势和温度对照表编制方法表附录5 K、N、E、型热电偶热电动势允差表 附录6S、K、N、E、J、型热电偶整百度点,微分热点动势表附录7 S、K、N、E、J、型热电偶分度表 附录8 廉金属热电偶检定记录格式 附录9 检定证书(背面)格式

工作用廉金属JJ G351-96 热电偶检定规程代替JJ G351-84 本检定规程经国家技术监督局于1996 年8 月23 日批准,并自1997 年 3 月 1 日起施行。 归口单位:辽宁省技术监督局 起草单位:沈阳合金股份有限公司 上海合金厂 本规程技术条文由起草单位负责解释。 本规程主要起草人: 邵树成(沈阳合金股份有限公司) 王振华(上海合金厂) 参加起草人: 张家怡(沈阳市计量测试技术研究所) 任春岩(沈阳合金股份有限公司) 雷宗杰(天津德塔控制系统有限公司)

工作用廉金属热电偶检定规程 本规程适用于长度不小于750mm的新制造和使用中的分度号为K的镍铬-镍硅热电偶、分度号为N 的镍铬-镍硅热电偶、分度号为E 镍铬-铜镍热电偶、分度号为J的铁-铜镍热电偶(以下分别简称K、N、E、J、X型热电偶)在-40~ 1300℃范为内的检定。 一技术要求 1热电极的名义成分如表1规定。 表1 热电偶名称热电极名称极性名义成分(℅) 镍铬①正极Ni 90 Cr 10 镍铬-镍硅(铝)③ 镍铬负极Ni97 Si 3 镍铬硅正极Ni84.4 Cr14.2 Si1.4 镍铬硅-镍硅 镍铬负极Ni 95.6 Si 4.4 镍铬①正极Ni 90 Cr 10 镍铬-铜镍 铜镍②负极Fe 100 铁正极Fe 100 铁-铜镍 铜镍②负极Cu 55 Ni 45 注:①不同分度号两镍铬极不可互换; ②不同分度号两铜镍极不可互换; ③镍铬—镍硅采用镍铬—镍铝分度表。 2 不同等极热电偶在规定温度范围内,其允差应符合表2表定。 表2 热电偶名称分度号等级测量温度范围(℃ ) 允差① Ι―40~1100 ±1.5℃或±0.4℅t②镍铬—镍硅(铝) K Ⅱ―40~1300 ±2.5℃或±0.75℅t Ι―40~1100 ±1.5℃或±0.4℅t 镍铬硅—镍硅N Ⅱ―40~1300 ±2.5℃或±0.75℅t Ι―40~800 ±1.5℃或±0.4℅t 镍铬—铜镍E Ⅱ―40~900 ±2.5℃或±0.75℅t Ι―40~750 ±1.5℃或±0.4℅t 铁—铜镍J Ⅱ―40~750 ±2.5℃或±0.75℅t 注:①允差取大值;②t为测量端温度。

配热电偶温度表不确定度评定

配热电偶数字温度表示值误差测量结果的不确定度评定 1 概述 1.1 测量依据:JJG617-1996《数字温度仪检定规程》 1.2 测量标准:UJ33-a 直流电位差计。 1.3 被测对象:0.5级,分辨率1℃, 配J 型热电偶,测量范围(0~400℃)的数显温度表。 1.4 测量方法 用输入基准法检定数字温度表。用直流电位差计给被检数字温度表输入与检定点标称温度值相对应的毫伏值,读出被检表的温度读数,以被检表的读数与检定点标称温度值之差作为被检表示值误差。 2 数学模型 ??? ?????? ????+-=?ti s d t A e t t t 式中 Δt —仪表示值误差(℃); t d —被检表示值(℃); t s —标准器mV 值对应的温度值(℃)。 e —补偿导线20℃时的修正值(mV ); ti t A ??? ????—被检点ti 的电量值—温度变化率(mV/℃) 3 灵敏系数 1t t d 1=???= c 1t t s 2-=???=c ti t A e t c ? ?? ????-=???=13 4 输入量的标准不确定度评定 4.1 被检表示值引入的标准不确定度分量()d t u 4.1.1 被检表测量重复性引入的标准不确定度1u 被检表的测量重复性相对于仪表分辨率来说很小,故采用寻找转换点法在同一转换点上通过连续测量来得到仪表的测量重复性。转换点为300℃ 被检表的示值重复性用A 类评定。数据如下: 300℃转换点时的电位差计输入毫伏值,单位mV 16.333,16.344,16.338,16.344,16.316,16.321,16.333,16.338,16.321,16.310 J 分度在300℃时的微分热电动势为55.5μV/℃,10次检定毫伏数据对应的温度值,单位℃ 300.1, 300.3, 300.2, 300.3, 299.8, 299.9, 300.1, 300.2, 299.9, 299.7 根据数据计算单次实验标准差() 1 1 2 --= ∑=n x x s n i i , ==S u 10.21℃。 4.1.2 被检表分辩力量化误差引入的标准不确定度2u 被检表的分辩力为1℃,为均匀分布,故29.0129.02=?=u ℃

热电偶常见故障分析及解决方案

热电偶常见故障分析及解决方案 热电阻和热电偶价格具体要看什么型号了,你要把你的型号,长度,相关规格,数量,具体说出来 比方说pt100 230的350长的铂电阻价格出厂价60元左右 如果是快速热电偶的话ks kb的热电偶价格一般在4--5元一支,kw的价格2元左右 一米长的普通k型热电偶价格130 的80元左右,如果带防暴的热电偶价格要200元左右,一体化电偶价格差不多200元左右一米长的耐磨热电偶,耐磨头300长的价格热电偶价格400元左右一米长铂铑热电偶,目前热电偶价格大概在2000--2500元左右,由于原材料价格变动,上面的热电偶价格也要随行就市, 热电阻测-100---550 度左右,热电偶测0--1300,一般500度以下用热电阻,大于500度的用 正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。如果安装不正确,会产生热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。 1.安装不当引入的误差 热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍,安装的位置及插入深度不能反映炉膛的真实温度。热电偶的保护套管与壁间的间隔未填绝热物质,致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞,以免冷热空气对流而影响测温的准确性。热电偶的安装应尽可能避开强磁场和强电场,不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差。热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。 2.绝缘变差而引入的误差 如热电偶保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。 3.热惰性引入的误差 由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能

技术︱使用热电偶能够准确测量表面温度

技术︱使用热电偶能够准确测量表面温度吗? 摘要 虽然热电偶是最常见的表面温度测量方法,但因为热电偶的读数实际上是其自身电流温度的测量值,所以测量的挑战始终是如何让热电偶正确匹配已测表面的热量。但是,当依靠热电偶的测量值作为确定发射率的参考值时,很少有红外热像师会考虑这一测量值的不确定性。 本文将阐述热电偶背后的原理,并通过示范,说明其在使用过程中存在的诸多问题。另外,我们也将重点介绍优先使用红外热像仪和热电偶组合的情况,以及红外热像仪本身作为测量表面温度出众方法的案例。 引言 大量的商业和工业流程依靠精确的温度测量。但是否精确执行了测量?测温方式以及测温精度是所有应用中都必须回答的两个极为重要的问题。我们将在全文中对这一话题进行讨论。 本文的核心主旨围绕“使用热电偶精确测量表面温度”这一个最大的测温难题。作者坦诚表示,虽然热电偶能够提供液体和气体的精确测温读数,但使用热电偶进行表面测温却存在诸多独特的问题。 背景资料

“如果我们想要测温,为什么不能只用热电偶?”这是红外成像讲师常会问的一个问题,让课堂里使用红外热像仪的学生产生有趣的思考。当被问到热电偶安装时,很多学员建议使用电工胶带,因为它价格便宜,易装易拆。一位来自暖通空调行业的学员表示,他通常会在压缩机上用电工胶带安装热电偶,相比其他仪表,更倾向于依靠热电偶的测温读数。 临时性的安装热电偶可能是一个最糟糕的方法,因为它对测量表面温度来说并不能达到一致、准确的结果。通过粘合进行永久性的安装对于需要获得一致测量结果的人员来说是一个首选方法。当永久性的安装方法实施起来不方便也不具可行性时,红外成像技术会是一个首选方案,但并不是唯一的。 过去的观点 物理学家Thomas Seebeck在1821年发现了“热电效应”,即受到温度梯度影响的任何导体会形成电压。Seebeck 错误解读了这一效应,认为电流具有磁效应,而非电效应。事实上,在1822年和1823年提交给普鲁士科学院的报告中,对他的观察结果做了如下描述:“是温差导致了金属和矿石的磁性极化”。 Leopoldi Nobili和Macedonio Melloni这两位意大利物理学家继续Seebeck创造温差电池的工作。这种温差电池现在被称为“温差电堆”。当Nobili和Melloni将温差电堆与电流计耦合时,他们成为第一批能够测量红外辐射的物理学家。 热电偶的基本结构

相关文档