文档库 最新最全的文档下载
当前位置:文档库 › 蛋壳制备碳酸钙的方法

蛋壳制备碳酸钙的方法

蛋壳制备碳酸钙的方法
蛋壳制备碳酸钙的方法

摘要蛋壳的主要成分是碳酸钙,是一种天然的绿色钙源。酸性水果汁具有结合钙的能力,同时含有促进钙吸收的成分。鸡蛋壳煅烧成为蛋壳粉,氧化钙含量97%左右。酸性水果汁与蛋壳粉反应,得到了“柠檬汁钙”、“橙汁钙”、“芦柑汁钙”

等“果汁钙”样品。“果汁钙”水溶性优越,钙含量较高,且无碱性刺激。同时还可以保持蛋壳中的镁、铁等必需元素和果汁中的有机酸、维生素C、果糖、氨基酸等有益成分。本项目既能将蛋壳变废为宝,又为我国丰富的水果资源找到一种新的加工增值途径。采用天然原料和绿色工艺,避免了对产品和环境的污染。成本相对低廉,具有市场前景。

1.1 我国禽蛋生产和蛋壳利用的现状

我国禽蛋产量居世界第一,每年扔掉的蛋壳就有400万吨。我国对蛋壳的利用目前还停留在粗加工的层面上,主要是用于畜禽的饲料,作为钙的补充剂,或者是用蛋壳粉生产强化奶制品等。

在蛋壳利用方面,发达国家领先一步,美国将蛋壳用于营养、制药和化工等方面,日本将蛋壳用于食品添加剂、土壤改良剂、家畜饲料、人造皮肤、照相机的滤光镜等。

目前,我国科学家正在开展一系列研究,包括将蛋壳中的无机钙转化为有机钙、从蛋壳内膜提取角蛋白、从残留蛋清中提取“溶菌酶”等。

1.2 蛋壳的主要成分和作为钙源的优点

母鸡能够在16个小时内制造一个重约5克的碳酸钙蛋壳(其中有2克钙),是通过动用其骨头中心腔内增生的一种细小骨片,蛋壳钙化时,这些小骨片逐渐被消化掉,钙质就渗入到蛋壳中去。

蛋壳中碳酸钙的含量在93%以上,其余为碳酸镁、磷酸钙、蛋白质、水分等,重金属含量低于食品添加剂(GB

l7203—1998)质量标准。

从蛋壳的形成过程和蛋壳的化学成分,不难看出蛋壳是一种天然的绿色钙源。

1.3 目前市场上的钙制剂比较

根据《中国食物与营养发展纲要(2001―20l0年)》,每人每天应摄入钙580毫克。实际上孕妇、儿童和青少年的需钙量都高于这一标准。中国预防医学科学院营养与食品卫生研究所进行三次全国营养调查,均表明国人的膳食营养素中钙最为缺乏,钙摄入量平均只达到每日供给量的50%。因此目前补钙药品、保健品、食品添加剂等发展十分迅速。

我国允许使用的钙营养强化剂主要有:活性钙、碳酸钙、生物碳酸钙、天冬氨酸钙、醋酸钙、甘氨酸钙、柠檬酸钙、磷酸氢钙、乳酸钙、苏糖酸钙、葡萄糖酸钙等。实际应用的则还包括磷酸钙、氯化钙、蛋壳钙粉、天然骨粉、酪蛋白钙肽等钙源。

我国市场上的此类产品至少有几百种之多,但如果从安全性、有效性、普及性等方面综合考虑,可供选择的产品却为数不多。例如活性钙、碳酸钙消耗胃酸,磷酸氢钙含有较多的磷,贝壳、骨粉容易重金属超标,柠檬酸可能增加铝的吸收,乳酸根引起乏力,葡萄糖酸分解产生葡萄糖,醋酸钙可能引起软组织钙化,L-苏糖酸钙、L-天冬氨酸钙价格高等。

2 实验过程

2.1 鸡蛋壳高温煅烧成蛋壳粉

2.1.1 实验原理

在高温下,蛋壳中的有机质氧化分解为二氧化碳、水和其它小分子,完全挥发消失。碳酸钙分解为氧化钙和二氧化碳:

CaCO3CaO+CO2↑

2.1.2 实验材料

鸡蛋壳(家中积攒)

2.1.3 仪器设备

BL-220H电子天平,DHG-9053A型电热鼓风恒温干燥箱,KSW-110高温箱式电阻炉(马弗炉),石英坩埚

2.1.4 实验过程

将鸡蛋壳洗净、捣碎,在电热鼓风恒温干燥箱中以100℃烘至恒重。如果蛋壳不充分干燥,在煅烧时容易发生爆溅,使样品丢失或沾污。

用电子天平称取一定重量的已烘干的蛋壳,放在石英坩埚中,在马弗炉中以1000℃煅烧至恒重。样品称重后用密封良好的容器盛装,放在干燥器中以防吸潮。

2.2 蛋壳粉的钙含量测定

2.2.1 实验原理

钙与氨羧络合剂能够定量地形成金属络合物,这种络合物的稳定性较钙与指示剂所形成的络合物强。因此,在适当的pH范围内(pH值12-14时),以氨羧络合剂滴定时,氨羧络合剂从指示剂络合物中逐步地夺取钙离子而与钙相结合,在到达等当点时,溶液呈现游离指示剂的颜色(为终点)。根据氨羧络合剂的用量,计算钙含量。

一般最常用的氨羧络合剂为乙二胺四乙酸(简称EDTA),由于它在水中的溶解度很小,故常用它的二钠盐。以Na2H2Y代表EDTA,R代表指示剂,反应如下:

2.2.2 实验材料

煅烧得到的蛋壳粉(自制)

2.2.3 仪器设备

TG328A型电光分析天平,250ml烧杯,50ml酸式滴定管,250ml容量瓶,250ml锥形瓶,5ml、25ml移液管

2.2.4 化学试剂

盐酸(分析纯),三乙醇胺(分析纯),氢氧化钠(分析纯),钙羧酸指示剂,EDTA标准溶液,蒸馏水

2.2.5 实验过程

称取0.5g样品(称准至0.0002g),放入250ml烧杯中,逐渐滴加6M盐酸至全部溶解,加水稀释,移入250ml 容量瓶中,加水至刻度,摇匀,用移液管移取25ml置于250ml锥形瓶中,加5ml30%三乙醇胺溶液、25ml水、5ml10%氢氧化钠溶液,使溶液的PH≥12,加少量钙羧酸指示剂,用EDTA标准溶液滴定至由红变紫到纯蓝色为终点。同时作空白试验。

2.2.6 计算

钙的重量百分含量:

Ca%=(V1-V2)×M×40.04/m

V1——滴定样品溶液耗用EDTA标准溶液体积,ml;

V2——空白试验耗用EDTA标准溶液体积,ml;

M——EDTA标准溶液摩尔浓度;

m——样品质量,g。

2.3 蛋壳粉与果汁反应生成“果汁钙”

2.3.1 实验原理

蛋壳粉的主要成分CaO为碱性氧化物,与果汁中的酸性物质发生中和反应:

果汁中不仅存在较多的有机酸,例如柑桔类水果中含有丰富的柠檬酸、苹果酸、维生素C等,而且还存在弱酸性物质糖类、酚类等,以及两性物质氨基酸等。这些化学物质均带有羧基或羟基等极性基团,这些基团与水之间、以及它们相互之间均可以形成分子间氢键,分子间氢键不仅使羧基的酸性更强,而且也使醇羟基和酚羟基的酸性增强。此外,钙离子容易形成配位化合物,特别是容易与氧原子进行配位。因此,果汁中的多种成分均可以与钙离子发生化学的结合,从而为钙的溶解和稳定存在提供了条件。

2.3.2 实验材料

煅烧得到的蛋壳粉(自制),新鲜酸性水果

2.3.3 仪器设备

家用多功能榨汁机,YP3001N电子天平,DRT-250型电热套,DW-2型多功能电动搅拌器,DHG-9053A型电热鼓风恒温干燥箱,BL-220H电子天平

2.3.4 化学试剂

广泛试纸pH1-14,精密试纸pH0.5-5.0、pH3.8-5.4、pH5.5-9.0

2.3.5 实验过程

将水果去皮、去核,榨汁,用纱布过滤。

将100克新鲜果汁加入250毫升三口烧瓶中,在电动搅拌下用电热包加热至65-75℃。向果汁中逐渐加入蛋壳粉,

并充分搅拌以促进反应进行。用pH试纸跟踪反应混合物的酸度变化,当基本呈中性时(pH5-7),停止蛋壳粉的加入。继续加热、搅拌一段时间,使反应进行充分。记录所加入蛋壳粉的总重量。将反应生成物转入培养皿中,在鼓风恒温干燥箱中以80℃下烘干至基本恒重,记录样品的重量。

2.4 “果汁钙”的钙含量测定

精确称取1g“果汁钙”样品,在马弗炉中1000℃煅烧2小时,将煅烧得到的灰分按照“2.2 蛋壳粉的钙含量测定”进行测定。

2.5 “果汁钙”的水溶性和酸碱性实验

2.5.1 实验原理

向一定体积的水中分别加入不同重量的样品,观察溶解情况,并用pH试纸测定水溶液的酸碱性。

2.5.2 实验材料

“果汁钙”样品(自制)

2.5.3 仪器设备

BL-220H电子天平,50ml烧杯,20ml量筒,玻璃棒

2.5.4 化学试剂

广泛试纸pH1-14,精密试纸pH0.5-5.0、pH3.8-5.4、pH5.5-9.0,蒸馏水

2.5.5 实验过程

量取20ml蒸馏水加入50ml烧杯中,称取0.2g“果汁钙”样品,在烧杯的水中搅拌溶解,如果溶解完全,再向其中加入0.2g样品,如果溶解不完,则重新量取蒸馏水并减少样品加入量。依此类推。同时用pH试纸测定水溶液的酸碱性。

3 结果和讨论

3.1 鸡蛋壳预处理和煅烧

将自然晾干的鸡蛋壳直接在马弗炉中煅烧,开启马弗炉后,发现有很多碎片飞溅在炉中。经过调查资料,了解到晾干的鸡蛋壳中也含有水分,高温下容易发生暴溅。以后的实验中,在煅烧前将蛋壳在100°C下充分烘干,即不再有暴溅的情况发生。

蛋壳在1000℃煅烧1小时后,其外观为白色和灰黑色夹杂,表明分解尚不完全;煅烧2小时以后,外观成为全白色的细小颗粒或片状;继续延长煅烧时间,失重率并不增加,表明1000℃煅烧2小时即可分解完全。碳酸钙分解反应的理论失重率应为44%,由于蛋壳中的有机物在高温下氧化分解而消失,因此实测的失重率略高于理论值是合理的。

样品1#、2#、3#煅烧得到的蛋壳粉,经EDTA络合滴定法测定,其钙含量分别为69.1%,69.5%,69.4%,相当于氧化钙含量分别为96.7%,97.3%,97.2%。

4 研究总结

4.1 确定了将鸡蛋壳煅烧为蛋壳粉的适宜条件:煅烧前在100°C下烘干至恒重,可以避免煅烧中发生暴溅;煅烧温度1000℃,时间2小时,可以使蛋壳中的碳酸钙和有机质完全分解。煅烧彻底的蛋壳粉外观为白色的细小颗粒或碎片,氧化钙含量约为97%。

4.2 反应温度、投料方式、搅拌、蛋壳粉的细度等对反应效果有显著影响。相同条件下,柠檬汁、高酸度的橙汁和芦柑汁与蛋壳粉的反应效果好,而柚汁、菠萝汁的反应效果差。

4.3 烘干的“果汁钙”为胶状固体,不仅钙含量较高,而且水溶性优越。“柠檬汁钙”和“橙汁钙”在空气中容易吸湿。

4.4 “橙汁钙”样品经河南省化工产品质量监督检验站检验,钙含量为19.3%,水溶解试验合格,重金属(以Pb计)仅0.0005%。“橙汁钙”中1g钙的成本仅为0.15元,大大低于目前市售钙制剂的价格。

5 项目展望

“果汁钙”水溶性优越,钙含量较高,且无碱性刺激,可广泛用于医药、保健品和各种食品添加剂。“果汁钙”不仅成本低廉,而且成分丰富,蛋壳的少量镁、铁等人体必需的矿物质元素在加工中不会损失,果汁中的有机酸、维生素C、果糖、氨基酸等成分与钙结合后不易发生变质。酸性水果特别是柑桔类含有多种促进钙吸收的成分,如柠檬酸、苹果酸、维生素、氨基酸、糖分等,而不含植酸、草酸、磷酸、脂肪酸等妨碍钙吸收的成分。

“果汁钙”来源于天然生物原料,反应过程不使用化学试剂,既避免了产品中的重金属污染和其它化学污染,又避免了生产过程造成的环境污染。我国拥有极其丰富的禽蛋壳和水果资源,本项目既能将蛋壳变废为宝,又能将水果产品加

工增值,特别是为我国一些酸度高、销路差的水果品种找到新出路。我国酸性水果特别是柑桔类水果种类繁多,很多种果汁可作为钙的“载体”,因此可开发出丰富多样的“果汁钙”品种,还可以通过不同果汁混配调整钙的含量。

该项目还有不少值得进一步研究和完善的地方,例如:蛋壳煅烧温度高、耗能多,能否找到一种更温和、更简便的分解或提取方法?两种或多种果汁混配与蛋壳粉反应会是什么情况?能否通过调整不同果汁的配比来调整“果汁钙”的钙含量?自制“果汁钙”容易吸湿而慢慢变成液体,能否通过调整果汁的种类和成分、或向其中加入某种辅助成分,使这种吸湿得到抑制?果汁的化学成分复杂,对于“果汁钙”的高水溶性尚缺乏精确的解释,能否通过模仿果汁中的某些成分,用纯粹的化学试剂合成出高水溶性的“复合有机钙”?

【CN109650398A】一种水化硅酸钙早强剂及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910123304.X (22)申请日 2019.02.19 (71)申请人 科之杰新材料集团有限公司 地址 361101 福建省厦门市火炬高新区(翔 安)产业区内垵中路169号 (72)发明人 朱少宏 方云辉 柯余良 张小芳  钟丽娜 吴传灯 郭元强 林添兴  (74)专利代理机构 厦门加减专利代理事务所 (普通合伙) 35234 代理人 王春霞 (51)Int.Cl. C01B 33/24(2006.01) C04B 22/08(2006.01) C04B 103/12(2006.01) (54)发明名称一种水化硅酸钙早强剂及其制备方法(57)摘要本发明涉及建筑材料技术领域,特别涉及一种水化硅酸钙早强剂及其制备方法。水化硅酸钙早强剂的制备方法,包括以下制备步骤:1)配制钙液;2)以硅酸酯作为硅源配制硅液;3)水化硅酸钙的合成:将聚氧代乙烯(5)壬基苯基醚与环己烷复配后的分散剂溶液置于剪切搅拌混合装置中,于室温下维持搅拌,并加入配置好的钙液和硅液,再用碱性溶液调节混合溶液pH值,维持恒温搅拌,得到白色水化硅酸钙凝胶;将得到的白色水化硅酸钙凝胶通过离心洗涤,再于真空干燥箱中干燥,即得到水化硅酸钙早强剂。通过上述制备方法制备的水化硅酸钙早强剂掺入水泥后,能够促进水泥水化,显著缩短水泥凝结时间,同时改善其早期强度,在建筑领域具有重要的实 际应用价值。权利要求书1页 说明书5页CN 109650398 A 2019.04.19 C N 109650398 A

超细碳酸钙的制备实验报告

班 级: 化 工 122 班 姓 名: XXX 学 号: 201200601047 组 员: XXX 、XXX 、XXX 指导教师: 乐 志 文 成绩评定: 超细碳酸钙的制备实验

一、实验目的 1、了解轻质碳酸钙的用途及工业制备方法。 2、熟悉板框过滤机的结构和操作方法。 3、熟悉常压洞道式(厢式)干燥器的构造和操作。 4、测定恒压下干燥曲线。 5、测定恒压过滤操作时的过滤常数。 6、掌握过滤问题的简化工程处理方法。 二、实验原理 1、轻质碳酸钙(CaCO3)是一种重要的无机粉体材料。具有价格低、原料广、无毒无害等优点,被广泛应用于塑料、橡胶、造纸、涂料、油墨、化妆品等行业作为填料,起到增加体积、降低成本的作用。研究表明,不同晶型、不同粒度碳酸钙具有不同性质,纳米级超细碳酸钙由于具有较大比表面,因而具有较好的补强特性。 轻质碳酸钙的生产方法有多种,有碳化法、纯碱(Na2CO3)氯化钙法、苛化碱法、联钙法、苏尔维(Solvay)法。本实验采用碳化法,以生石灰CaO为原料,经消化、碳化、过滤、干燥、粉碎等步骤而成,涉及的主要反应为:用水消化氧化钙生成石灰乳:CaO+H2O=Ca(OH) 2 用二氧化碳碳化石灰乳生成碳酸钙沉淀和水:Ca(OH) 2+ CO2= CaCO 3 ↓+H2O 待反应完成后用泵将完成液送至板框过滤机进行过滤,将所得的滤饼在洞道干燥机中干燥即可得到轻质碳酸钙成品。 2、成品的检测主要有以下两个方面内容: ①重容:重是指其物体体积中所占有的重量,即用克/立方厘米表示。重量与 密度相关,密度大容重也大,密度小容重也小。 测定方法:准确称取n克干燥过的样品尽量碾碎,转移到量筒中,静置,观测其所占的体积。 ②沉降体积: 轻质碳酸钙沉降体积值含义:以定量水为连续相,定量碳酸钙为分散相,分散均匀后,一定时间内每克沉降物样品所占有的容积即为碳酸钙沉降体积值。 测定方法:准确称取n克干燥过的样品于烧杯中,加入适量去离子水,并搅拌均匀,转移到10mL或20mL的量筒中,静置,记录不同时刻沉降物所占体积。 按下式计算沉降体积x: x (mL/g)=V/n

轻质碳酸钙与重质碳酸钙 的 区别

轻质碳酸钙(Light Calcium Carbonate)又称沉淀碳酸钙( Precipitated Calcium Carbonate,简称PCC) 是将石灰石等原料段烧生成石灰(主要成分为氧化钙)和二氧化碳,再加水消化石灰生成石灰乳(主要成分为氢氧化钙),然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,最后经脱水、干燥和粉碎而制得,或者先用碳酸钠和氯化钙进行复分解反应生成碳酸钙沉淀,然后经脱水、干燥和粉碎而制得。由于轻质碳酸钙的沉降体积(2.4-2.8mL/g)比重质碳酸钙的沉降体积(1.1-1.4mL/g)大,所以称之为轻质碳酸钙。 碳酸钙的化学式为CaCO3 ,碳酸钙与所有的强酸发生反应,生成水和相应的钙盐(如氯化钙CaCl2) ,同时放出二氧化碳;在常温(25℃)下,碳酸钙在水中的浓度积为8. 7 ×1029、溶解度为0.0014,碳酸钙水溶液的pH值为9.5~10.2 ,空气饱和碳酸钙水溶液的pH 值为8.0~8.6。碳酸钙无毒、无臭、无刺激性,通常为白色,相对密度为 2.7~2.9 。轻质碳酸钙的沉降体积:2.5ml/g 以上,比表面积为5m2/g左右。轻质碳酸钙颗粒微细、表面较粗糙,比表面积大,因此吸油值较高,为60~90ml/100g 左右。轻质碳酸钙颗粒比表面积研究是非常重要的,轻质碳酸钙颗粒的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。更多比表面积检测标准、办法及理论,敬请登陆相关网站查询。 [编辑本段]轻质碳酸钙的生产方法 轻质碳酸钙的生产方法有多种,但在国内的工业生产的主要是碳化法。 1)碳化法:将石灰石等原料煅烧生成石灰(主要成份为氧化钙) 和二氧化碳,再加水消化石灰生成石灰乳(主要成份为氢氧化钙),然后再通入二氧化碳碳化石灰乳生成碳酸钙沉淀,最后碳酸钙沉淀经脱水、干燥和粉碎便制得轻质碳酸钙。 2)纯碱(Na2CO3)氯化钙法:在纯碱水溶液中加入氯化钙,即可生成碳酸钙沉淀。 3)苛化碱法:在生产烧碱(NaOH) 过程中,可得到副产品轻质碳酸钙。在纯碱水溶液中加

重质碳酸钙分析报告

重质碳酸钙分析报告

目录重质碳酸钙简述 1、定义 2、理化性质 3、生产方法 4、颗粒形状 5、应用领域 重质碳酸钙的用途 1、燃煤发电厂行业用重钙粉 2、橡胶行业用重钙粉 3、塑料行业用重钙粉 4、油漆行业用重钙粉 5、水性涂料行业用重钙粉 6、造纸行业用重钙粉 7、饲料、化肥行业用重钙粉 8、建筑行业(干粉砂浆、混凝土)用重钙粉 9、防火天花板行业重钙粉 10、人造大理石行业用重钙粉 11、地板钻行业用重钙粉 碳酸钙的生产技术 1、重质碳酸钙的生产工艺 1)、干法生产工艺流程: 2)、湿法生产工艺流程: 2、轻质碳酸钙制备技术 3、碳酸钙干燥技术 4、气流粉碎机的发展方向 重质碳酸钙行业发展现状 1、我国碳酸钙资源分布 (1)广东省连州市 (2)安徽省池州市 (3)浙江省衢州市 (4)广西省贺州市 2、碳酸钙市场需求状况及前景分析

重质碳酸钙简述 1、定义 重质碳酸钙性质,白色粉末,无色、无味。在空气中稳定。几乎不溶于水,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热到898℃开始分解为氧化钙和二氧化碳。重质碳酸钙,简称重钙,是由天然碳酸盐矿物如方解石、大理石、石灰石磨碎而成。是常用的粉状无机填料,具有化学纯度高、惰性大、不易化学反应、热稳定性好、在400℃以下不会分解、白度高、吸油率低、折光率低、质软、干燥、不含结晶水、硬度低磨耗值小、无毒、无味、无臭、分散性好等优点。碳酸钙(Calcium Carbonate) 是一种重要的、用途广泛的无机盐。重质碳酸钙( Heavy Calcium Carbonate) 又称研磨碳酸钙( Ground Calcium Carbonate,简称GCC美国称Kotamite) ,是用机械方法直接粉碎天然的方解石、石灰石、白垩、贝壳等而制得。由于它的沉降体积(1.1-1.9mL/g/ g)比用化学方法生产的轻质碳酸钙沉降体积(2.4-2.8mL/g) 小,因此被称为重质碳酸钙。 2、理化性质 碳酸钙的化学式为caco3 ,其结晶体主要有复三方偏三面晶类的方解石和斜方晶类的文石,在常温常压下,方解石是稳定型,文石是准稳定型,目前主要以方解石为主。在常压下,方解石加热到898 ℃、文石加热到825 ℃,将分解为氧化钙和二氧化碳;碳酸钙与所有的强酸发生反应,生成水和相应的钙盐(如氯化钙CaCl2) ,同时放出二氧化碳;在常温(25 ℃) 下,碳酸钙在水中的浓度积为8. 7 ×1029 、溶解度为0. 0014 ,碳酸钙水溶液的pH 值为9. 5~10. 2 ,空气饱和碳酸钙水溶液的pH 值为8. 0~8. 6 。碳酸钙无毒、无臭、无刺激性,通常为白色,相对密度为2. 7~2. 9 。莫氏硬度方解石为3 ,文石为3. 5~4 。方解石具有三组菱面体完全解理,文石亦具有解理。重质碳酸钙的沉降体积:1. 2~1. 9ml/ g,比表面积为1m2/g 左右;重质碳酸钙由于颗粒大、表面光洁、比表面积小,因此吸油值较低,为48ml/ 100g 左右。 3、生产方法 重质碳酸钙的生产工艺流程有两种。干法生产工艺流程:首先手选从采石场运来的方解石、石灰石、白垩、贝壳等,以除去脉石;然后用破碎机对石灰石进行粗破碎,再用雷蒙(摆式) 磨粉碎得到细石灰石粉,最后用分级机对磨粉进行分级,符合粒度要求的粉末作为产品包装入库,否则返回磨粉机再次磨粉。 4、颗粒形状 重质碳酸钙的形状都是不规则的,其颗粒大小差异较大,而且颗粒有一定的棱角,表面粗糙,粒径分布较宽,粒径较大,平均粒径一般为1~10μm。重质碳酸钙按其原始平均粒径( d) 分为:粗磨碳酸钙( > 3μm) 、细磨碳酸钙(1~3μm) 、超细碳酸钙(0. 5~1μm重质碳酸钙的粉体特点:a. 颗粒形状不规则;b.粒径分布

28水化硅酸钙的分子动力学模拟

水化硅酸钙的分子动力学模拟 王渊,张文生,叶家元 (中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024) 摘要:以Hamid模型和Bonaccorsi模型为基础建立了初始结构,并采用分子动力学方法,模拟了不同钙硅比(Ca/Si=0.67、0.83、1.0、1.5)的水化硅酸钙的结构。根据模拟结果,得到了原子间的距离、径向分布函数、配位数、均方位移等参数。模拟结果表明:无定形态水化硅酸钙存在近程有序远程无序的结构特点;无定形水化硅酸钙的基本结构单元为硅氧四面体,且以Q2形式连接;钙硅比的变化影响了各原子的扩散系数;模拟得到的原子间距离、配位数等结构参数基本与实验值相符合。 关键词:水化硅酸钙;结构;分子动力学 1 引言 水化硅酸钙(CSH)是硅酸盐水泥的主要水化产物,是决定水泥石性能的关键组分,因此其组成、结构及性质自上世纪50年代Grudemo[1]和Taylor[2]的开创性工作以来一直是水泥科学研究中的重要内容。各国学者都进行了深入研究,提出了一系列结构模型,如类托贝莫来石和类羟基硅钙石模型[3]、富钙和富硅模型[4]、固溶体模型[5]和纳米结构、中介结构假说[6]。其中,类托贝莫来石和类羟基硅钙石模型认为,托贝莫来石和羟基硅钙石是无定形水花硅酸钙(CSH)的结构原型,在常温下由化学试剂合成的低钙硅比的C-S-H(I)结构类似于1.4nm托贝莫来石结构,而由纯C3S或纯β-C2S水化得到的高钙硅比的C-S-H (Ⅱ)结构类似于羟基硅钙石结构,只是由于桥[SiO4]4-四面体的缺失,而使得无限长的硅氧四面体链断裂及扭曲,形成了由3n-1个[SiO4]4-四面体构成的短链化合物[3,7,8]。若n大于1,则[SiO4]4-四面体连接成链状,链中的[SiO4]4-四面体除两端的外其他的都以Q2形式链接。因此,对托贝莫来石和羟基硅钙石结构的研究,有助于理解水化硅酸钙的物理化学性能、吸附交换机制等性能。 研究材料结构的实验方法通常有X-射线衍射、核磁共振、X-射线光电子能谱等,而对非晶材料而言,这些方法实施起来有一定的困难。分子动力学(molecular dynamics,MD)模拟作为计算机模拟的一种基本方法,在研究液态和非晶结构方面起着重要的作用。它根据粒子之间相互作用势,通过对系统运动方程组进行数值积分,得到体系的相轨道,并由此分析系统的各种性质,是联系物质微观信息和宏观性质的一种计算方法。它可以不受实验条件限制,在任意温度下对无定形体系进行模拟,可分析原子运动轨迹得到径向分布函数(radial distribution function,RDF)、配位数(coordination number,CN)和均方位移等信息。上

超细碳酸钙的制备实验报告.

班级: 姓名: 学号: 组员:指导教师: 成绩评定:超 细 碳 钙 的 制 备 实 验 化工122班XXX 201200601047 XXX XXX XXX 乐志文

一、实验目的 1、了解轻质碳酸钙的用途及工业制备方法。 2、熟悉板框过滤机的结构和操作方法。 3、熟悉常压洞道式(厢式)干燥器的构造和操作。 4、测定恒压下干燥曲线。 5、测定恒压过滤操作时的过滤常数。 6掌握过滤问题的简化工程处理方法。 二、实验原理 1、轻质碳酸钙(CaC03)是一种重要的无机粉体材料。具有价格低、原料广、无毒无害等优点,被广泛应用于塑料、橡胶、造纸、涂料、油墨、化妆品等行业作为填料,起到增加体积、降低成本的作用。研究表明,不同晶型、不同粒度碳酸钙具有不同性质,纳米级超细碳酸钙由于具有较大比表面,因而具有较好的补强特性。 轻质碳酸钙的生产方法有多种,有碳化法、纯碱(Na2CO3 )氯化钙法、苛化碱法、联钙法、苏尔维(Solvay)法。本实验采用碳化法,以生石灰CaO为原料,经消化、碳化、过滤、干燥、粉碎等步骤而成,涉及的主要反应为: 用水消化氧化钙生成石灰乳:CaO+H 2O=Ca(OH) 用二氧化碳碳化石灰乳生成碳酸钙沉淀和水:Ca(OH)+ CO2= CaCO 3 J +H2O 待反应完成后用泵将完成液送至板框过滤机进行过滤,将所得的滤饼在洞道干燥机中干燥即可得到轻质碳酸钙成品。 2、成品的检测主要有以下两个方面内容: ①重容:重是指其物体体积中所占有的重量,即用克/立方厘米表示。重量与密度相 关,密度大容重也大,密度小容重也小。 测定方法:准确称取n克干燥过的样品尽量碾碎,转移到量筒中,静置,观测其所占的体积。 ②沉降体积: 轻质碳酸钙沉降体积值含义:以定量水为连续相,定量碳酸钙为分散相,分散均匀后,一定时间内每克沉降物样品所占有的容积即为碳酸钙沉降体积值。 测定方法:准确称取n克干燥过的样品于烧杯中,加入适量去离子水,并搅拌均匀,转移到10mL或20mL的量筒中,静置,记录不同时刻沉降物所占体积。 按下式计算沉降体积x: x (mL/g)=V/n

重质碳酸钙

重质碳酸钙

100.09重质碳酸钙性质白色粉末,无色、无味。在空气中稳定。几乎不溶于水,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热到898℃开始分解为氧化钙和二氧化碳。重质碳酸钙,简称重钙,是由天然碳酸盐矿物如方解石、大理石、石灰石磨碎而成。是常用的粉状无机填料,具有化学纯度高、惰性大、不易化学反应、热稳定性好、在400℃以下不会分解、白度高、吸油率低、折光率低、质软、干燥、不含结晶水、硬度低磨耗值小、无毒、无味、无臭、分散性好等优点。由于它的沉降体积(1.1-1.9mL/g/ g)比用化学方法生产的轻质碳酸钙沉降体积(2.4-2.8mL/g) 小,因此被称为重质碳酸钙。 理化性质 碳酸钙的化学式为caco3 ,其结晶体主要有复三方偏三面晶类的方解石和斜方晶类的 文石,在常温常压下,方解石是稳定型,文石是准稳定型,目前主要以方解石为主。 在常压下,方解石加热到898 ℃、文石加热到825 ℃,将分解为氧化钙和二氧化碳;碳酸钙与所有的强酸发生反应,生成水和相应的钙

盐(如氯化钙CaCl2) ,同时放出二氧化碳;在常温(25 ℃) 下,碳酸钙在水中的浓度积为8. 7 ×1029 、溶解度为0. 0014 ,碳酸钙水溶液的pH 值为9. 5~10. 2 ,空气饱和碳酸钙水溶液的pH 值为8. 0~8. 6 。碳酸钙无毒、无臭、无刺激性,通常为白色,相对密度为 2. 7~2. 9 。莫氏硬度方解石为3 ,文石为3. 5~4 。方解石具有三组菱面体完全解理,文石亦具有解理。重质碳酸钙的沉降体积:1. 2~1. 9ml/ g,比表面积为1m2/g 左右;重质碳酸钙由于颗粒大、表面光洁、比表面积小,因此吸油值较低,为48ml/ 100g 左右。 颗粒形状 重质碳酸钙的形状都是不规则的,其颗粒大小差异较大,而且颗粒有一定的棱角,表面粗糙,粒径分布较宽,粒径较大,平均粒径一般为1~10μm。重质碳酸钙按其原始平均粒径( d) 分为:粗磨碳酸钙( > 3μm) 、细磨碳酸钙(1~3μm) 、超细碳酸钙(0. 5~1μm重质碳酸钙的粉体特点:a. 颗粒形状不规则;b.粒径分布较宽;c. 粒径较大。

水泥水化与水化硅酸钙的结构和化学组成之间的相互作用

第43卷第10期2015年10月 硅酸盐学报Vol. 43,No. 10 October,2015 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/8512546892.html, DOI:10.14062/j.issn.0454-5648.2015.10.03 水泥水化与水化硅酸钙的结构和化学组成之间的相互作用 Denis DAMIDOT, Christine LORS (Civil and Environmental Engineering Department, Ecole des Mines de Douai, Douai 59508, France) 摘要:研究了硅酸盐水泥水化动力学与水化过程中水化硅酸钙(C-S-H)形成之间的相互作用。结果表明:水泥水化反应过程中的液相组成对C-S-H的成核与生长速率有很大的影响。因此,对于不同的水泥,C3S、C2S和方解石表面的无序纳米C-S-H 颗粒团聚体的结构变化很大;掺加矿物掺合料和温度变化对此也有很大影响。C-S-H的化学组成直接取决于液相组成。硅酸盐水泥水化诱导期由C-S-H的成核速率决定。同时,水泥1 d的水化程度主要与C-S-H生长模式和速率有关;影响水泥1 d 水化程度的因素主要是C-S-H生长的速率和模式,以及水分子和离子透过水泥颗粒表面已形成的C-S-H层的渗透性。因此,如果调控C-S-H成核和生长的速率的参数已知,则可以有效地控制硅酸盐水泥的早期水化,特别是可有效提高水泥水化程度,在可持续发展理念的基础上达到水泥的高效利用。 关键词:硅酸盐水泥;动力学;水化;水化硅酸钙;成核与生长;水化诱导期 中图分类号:TQ172.11 文献标志码:A 文章编号:0454–5648(2015)10–1324–07 网络出版时间:2015–09–24 19:38:00 网络出版地址:https://www.wendangku.net/doc/8512546892.html,/kcms/detail/11.2310.TQ.20150924.1938.003.html Mutual Interaction Between Hydration of Portland Cement and Structure and Stoichiometry of Hydrated Calsium Silicate Denis DAMIDOT, Christine LORS (Civil and Environmental Engineering Department, Ecole des Mines de Douai, Douai 59508, France) Abstract: A mutual interaction occurs between the kinetics of the hydration of Portland cement and hydrated calcium silicate(C-S-H) formed as a result of the chemical reactions involved. The results show that the liquid phase composition that also depends on the occurring chemical reactions has a major impact on the nucleation and growth rates of C-S-H. As a consequence, the structure of the agglomerates of unordered C-S-H nanometric particles on C3S, C2S or calcite surfaces will vary from a Portland cement to another one but also in the presence of admixtures or with temperature variations. The stoichiometry of C-S-H also directly depends on the liquid phase composition. On the other hand, the induction period found during Portland cement hydration is governed by the rate of nucleation of C-S-H. Also, the percentage of hydration reached at 1 d is principally correlated to the rate and mode of growth of C-S-H and then to the permeability of water molecules and ions through the layer of C-S-H formed on cement grains. Once the parameters that enable us to tune C-S-H nucleation and growth are known, it is thus possible to master more efficiently the early hydration of Portland cement and especially reach higher percentages of reaction leading to a more efficient use of cement in the logic of sustainable development. Key words: Portland cement; kinetics, hydration; hydrated calcium silicate; nucleation and growth; induction period Originality: The explanation of the kinetics of Portland cement hydration at early age thanks to a better understanding of the impact of the aqueous phase composition on C-S-H nucleation and growth rates. The adaptation of the data of several authors in order to have a general overview of the mechanisms involved, effect of admixtures, temperature, etc. The possible use of the paper to master more efficiently the early hydration of Portland cement in relation to sustainable development. 收稿日期:2015–04–06。修订日期:2015–07–10。第一作者:Denis DAMIDOT, 教授。Received date:2015–04–06. Revised date: 2015–07–10. First author: Denis DAMIDOT, Professor. E-mail: denis.damidot@mines-douai.fr

重质碳酸钙分析报告

重质碳酸钙分析报告 目录 重质碳酸钙简述 1、定义 2、理化性质 3、生产方法 4、颗粒形状 5、应用领域 重质碳酸钙的用途 1、燃煤发电厂行业用重钙粉 2、橡胶行业用重钙粉 3、塑料行业用重钙粉 4、油漆行业用重钙粉 5、水性涂料行业用重钙粉 6造纸行业用重钙粉 7、饲料、化肥行业用重钙粉 8、建筑行业(干粉砂浆、混凝土)用重钙粉 9、防火天花板行业重钙粉 10、人造大理石行业用重钙粉 11、地板钻行业用重钙粉 碳酸钙的生产技术 1、重质碳酸钙的生产工艺 1)、干法生产工艺流程: 2)、湿法生产工艺流程: 2、轻质碳酸钙制备技术 3、碳酸钙干燥技术 4、气流粉碎机的发展方向 重质碳酸钙行业发展现状 1、我国碳酸钙资源分布 (1)广东省连州市 (2)安徽省池州市 (3)浙江省衢州市 (4)广西省贺州市

2、碳酸钙市场需求状况及前景分析 重质碳酸钙分析报告 重质碳酸钙简述 1、定义 重质碳酸钙性质,白色粉末,无色、无味。在空气中稳定。几乎不溶于水,不溶于醇。遇稀醋酸、稀盐酸、稀硝酸发生泡沸,并溶解。加热到898C开始分 解为氧化钙和二氧化碳。重质碳酸钙,简称重钙,是由天然碳酸盐矿物如方解 石、大理石、石灰石磨碎而成。是常用的粉状无机填料,具有化学纯度高、惰性大、不易化学反应、热稳定性好、在400°C以下不会分解、白度高、吸油率低、折光率低、质软、干燥、不含结晶水、硬度低磨耗值小、无毒、无味、无臭、分散性好等优点。碳酸钙(Calcium Carbonate)是一种重要的、用途广泛的无机盐。重质碳酸钙(Heavy Calcium Carbonate)又称研磨碳酸钙(Ground Calcium Carbonate,简称GCC美国称Kotamite),是用机械方法直接粉碎天然的方解石、石灰石、白垩、贝壳等而制得。由于它的沉降体积g)比用化学方法生产的轻 质碳酸钙沉降体积小,因此被称为重质碳酸钙。 2、理化性质 碳酸钙的化学式为caco3 ,其结晶体主要有复三方偏三面晶类的方解石和斜方晶类的文石,在常温常压下,方解石是稳定型,文石是准稳定型,目前主要以方解石为主。在常压下,方解石加热到898 C、文石加热到825 C ,将分解为氧化 钙和二氧化碳;碳酸钙与所有的强酸发生反应,生成水和相应的钙盐(如氯化钙CaCI2),同时放出二氧化碳;在常温(25 C)下,碳酸钙在水中的浓度积为8. 7 X 1029、溶解度为0. 0014 ,碳酸钙水溶液的pH值为9. 5~10. 2 ,空气饱和碳酸钙水溶液的pH值为8. 0~8. 6 。碳酸钙无毒、无臭、无刺激性,通常为白 色,相对密度为2. 7~2. 9 。莫氏硬度方解石为3 ,文石为3. 5~4。方解石具 有三组菱面体完全解理,文石亦具有解理。重质碳酸钙的沉降体积:1. 2~1. 9ml/ g,比表面积为1m2/g左右;重质碳酸钙由于颗粒大、表面光洁、比表面积小,因此吸油值较低,为48ml/ 100g左右。 3、生产方法 重质碳酸钙的生产工艺流程有两种。干法生产工艺流程:首先手选从采石场运来的方解石、石灰石、白垩、贝壳等,以除去脉石;然后用破碎机对石灰石进行粗破碎,再用雷蒙(摆式)磨粉碎得到细石灰石粉,最后用分级机对磨粉进行分级符合粒度要求的粉末作为产品包装入库,否则返回磨粉机再次磨粉。 4、颗粒形状 重质碳酸钙的形状都是不规则的,其颗粒大小差异较大,而且颗粒有一定的棱角,表面粗糙,粒径分布较宽,粒径较大,平均粒径一般为1~10卩m重质碳酸钙按其原始平均粒径(d)分为:粗磨碳酸钙(> 3卩m)、细磨碳酸钙(1~3卩m)、超细碳酸钙(0.

重质碳酸钙粉对人有害处吗

重质碳酸钙粉对人有害处吗 重质碳酸钙是用机械方法(用雷蒙磨或其它高压磨)直接粉碎天然的方解石、石灰石、白垩、贝壳等就可以制得。由于重质碳酸钙的沉降体积比轻质碳酸钙的沉降体积小,所以称之为重质碳酸钙。重质碳酸钙粉是物理变化,天然石粉。由此可以看出其生产过程完全是物理变化,对人是无害的。 重质碳酸钙粉作为工业重要的无机非金属工业原料,被广泛应用于造纸、塑料、涂料、电线电缆等行业,由于产品本身附加值较低,不能像钛白粉,稀土等高大上的粉体备受媒体关注。同样作为工业原料,二者待遇千差万别。但碳酸钙粉体对整个工业的贡献,绝对不能忽视,它几乎无处不在,我们的电脑外壳,墙壁涂料,塑料家具,夸张点讲,我们被围在碳酸钙材料组成的空间中。 据上海欧米亚企业管理相关专家介绍:重质碳酸钙按平均粒径可分为5个粒度等级:微粒(>5微米),微粉(1到5微米),微细(0.1到1微米),超细(0.02到0.1微米)以及超微细(≤0.02微米)。纳米重质碳酸钙资料是指颗粒尺寸大小在1到100nm的超细粉末重质碳酸钙。 对于纳米重质碳酸钙只要控制纳米重质碳酸钙中铅、滑石粉、砷等对人和动物有害元素的含量,它对与人们的健康还是没有威胁的。纳米重质碳酸钙可以作为一种钙源增加剂用于保健品与饲料工业,具有质优价廉、易于吸收等个性,当今已经在奶粉等方面举行应用研究,潜力较大。 纳米滑石粉价格重质碳酸钙因其纯度高、白度好、粒滑石粉厂家度细,在日化产品中可以替代钛白粉作填料。在陶瓷行业里一般也主要用作填料。 市场研究表明重钙细粉用于人造石、人造地砖、天然橡胶、合成橡胶、涂料、塑料、复合新型钙塑料、电缆、造纸、牙膏、化妆品、玻璃、医药、油漆、油墨、电缆、电力绝缘、食品、纺织、饲料、粘结剂、密封剂、沥青、建材、油毡建筑用品、防火天花板和日用化工等产品中作填充料。 不仅可以降低各行业的产品成本,还可提高相关产品的作用和性能,起到增加产品的体积,是用途最为广范的无机填充母料之一。

化学法制备超细碳酸钙

化学法制备超细碳酸钙 钱海燕万永敏石防震张少明 CaCO3是一种重要的无机化工产品。由于价格低、原料广、无毒性,广泛地用作橡胶、塑料、纸张、涂料、牙膏等的填料。全世界每年在纸张中CaCO3的用量约1100万t,占填料总量的60%以上,用于塑料的约150万t以上。普通CaCO3用作填料仅起增容、降低成本的作用,而超细CaCO3(粒径小于0.1um)除了起到上述作用外,还具有补强作用。粒径小于0.02um的碳酸钙产品,其补强作用可与白碳黑相比。粒径小于0.08um且粗径分布很窄的碳酸钙,可用作汽车底盘防石击的涂料。因此,超细碳酸钙的研制、开发受到国内外的关注。粒径如此小的碳酸钙用机械粉碎法很难达到,一般采用化学合成法制得。日本在超细碳酸钙的研制、生产、应用方面处于国际领先地位,现已有纺锤型、立方型、针型、球型、链锁型及无定型等形态及表面改性的品种达50余种。美国着重于超细碳酸钙在造纸和涂料上的应用,英国则主要从事填料专用超细碳酸钙的研制,近20年来英国在汽车专用塑料用碳酸钙中占垄断地位。我国从80年代开始进行超细碳酸钙的研究,上海碳酸钙厂等单位已研制、生产出了几种不同型号的超细碳酸钙产品,但品种少、产量低、生产工艺及设备落后,高档产品主要依靠进口。加强研制和开发新的高档超细碳酸钙产品的生产工艺及设备,是橡胶、塑料制品、造纸等工业的迫切要求,也是我国碳酸钙工业发展的重要目标[1-2.5] 化学法制备超细碳酸钙主要利用Ca(OH)2连续碳化法和间歇碳化法。本文主要研究间歇碳化法制备超细碳酸钙。 1.实验部分 化学法制备碳酸钙的反应式为 Ca(OH)2+CO2→CaCO3↓+H2O 在实验过程中,可控制的条件有:①氢氧化钙的浓度;③二氧化碳的质量分数;③添加剂的种类、数量和添加时间。从化学反应速率和碳酸钙成核机理角度考虑,又存在两个可控因素:④搅拌速率;⑤反应温度。从以上可控因素入手,选择①、②、③、④共4个控制因素进行对比实验。所有反应在室温下进行。 实验主要原料:氢氧化钙固体,二氧化碳、氮气(罐装气体),添加剂(本实验为螯和剂)。实验装置如图1所示。 2.实验结果与讨论

超细碳酸钙的制备方法

近年来,随着碳酸钙的生产技术不断发展,从而提升其应用价值。由于一些技术被国外垄断,我国也在不断改进生产工艺,就目前主要的一些制备方法给您举例说明一下。 我国对于超细碳酸钙的制备和生产方法大体可分为以下几种: (1)间歇鼓泡碳化法 目前国内在多数厂家采用此法来生产轻质碳酸钙,根据碳化塔中是否有搅拌装置,该法又可分为普通间歇鼓泡碳化法和搅拌式间歇鼓泡碳化法。该法是在锥底圆柱体碳化塔中加入精制氢氧化钙悬浊液和适当的添加剂,然后从塔底通入二氧化碳碳化之终点,得到所要求的碳酸钙产品。在反应过程中需要严格控制反应条件,如碳化温度、二氧化碳流量、石灰乳浓度及搅拌速度,并加入适当的添加剂。该法投资少、操作简单,但生产不连续,自动化程度低,产品质量不稳定,主要表现在产品晶形不易控制、粒度分布不均、不同批次产品的重现性差。(2)连续鼓泡碳化法 国内有些碳酸钙生产厂家可以根据用户的需求,通过严格控制石灰乳浓度、碳化温度、添加剂的类型和配比等来生产所需晶形和粒径的产品。连续鼓泡碳化

法一般采用两级或三级串联碳化工艺,即精制石灰乳经第一级碳化塔进行部分碳化或得到反应混合液,在浆液槽中加入适当的添加剂后进入第二级碳化塔碳化制得最终产品。该法由于碳化过程分步进行,采用级间进行表面活性处理,可通过制冷来控制碳化温度,因此对晶形的成核、生长过程和表面处理分段控制,从而可得到较好的晶形、较小的粒径和粒径分布。 (3)连续喷雾碳化法 连续喷雾碳化法一般采用三级串联碳化工艺。精制石灰乳从第一级碳化塔顶部喷雾成0.01-0.1mm的液滴加入,二氧化碳从塔底通入,二者逆流接触发生碳化反应。反应混合液从塔底流出,进入浆液槽,添加适当的分散剂处理后,喷雾进入第二级碳化塔继续碳化,然后再经表面活性处理、喷雾进入三级碳化塔碳化制得最终产品。其产品粒径可达40-80nm。 (4)超重力反应结晶法 该技术的特征是以强化气液传质过程为基本出发点,其核心在于碳化反应是在超重力离心反应器(旋转螺旋或填充床反应器)中进行,利用填充床高速旋转产生的几十到几百倍重力加速度,可获得超重力场环境,并通过CO2和Ca(OH)2

纳米碳酸钙的制备及应用

纳米碳酸钙的制备及应用 侯亮 (西安文理学院化学与化工系,西安,710065) 摘要: 碳酸钙是化学实验室常见的一种无机试剂,也是一种常见的无机盐化工产品。近年来对于纳米碳酸钙的制备及应用已越来越受到关注。本文综述了工业上制备纳米碳酸钙的主要方法,介绍了纳米碳酸钙在工业上的应用。 关键词: 纳米碳酸钙制备应用 纳米碳酸钙是指粒径在0~100nm范围内的碳酸钙产品,它包括超细碳酸钙(粒径0.02~0.1um)和超微细碳酸钙(粒径小于或等于0.02um)两种碳酸钙产品[1],它们是新型高档功能性填充材料。我国CaCO3 资源丰富,分布广泛,优质矿床遍及全国各地,CaCO3 作为一种优质填料和白色颜料广泛应用于橡胶、塑料、造纸等许多行业。 1 纳米碳酸钙的制备方法 1.1 物理法 物理法制备纳米CaCO3 是指从原材料到粒子的整个制备过程没有化学反应发生的制备方法,即对CaCO3 含量高的天然石灰石、白垩石等进行机械粉碎而得到纳米CaCO3 产品的方法。但是用粉碎机粉碎到1um 以下相当困难,只有采用特殊的方法和机械设备才有可能达到0.1um 以下。采用日本细川粉体工学研究所的纳米工业制造系统可以得到平均粒径为0.5—0.7um的微细CaCO3 。 1.2 复分解法 复分解法是指将水溶性钙盐[ 如CaCl2 与水溶性碳酸盐(如(NH4)2CO3 或Na2CO3 )] 在适宜条件下反应而制得纳米CaCO3 的方法。这种方法可通过控制反应物浓度及生成CaCO3 的过饱和度,并加入适当的添加剂,得到球形的、粒径极小、比表面积很大、溶解性很好的无定形CaCO3 。该法可制取纯度高、白度好的优良产品;但吸附在CaCO3 上的大量Cl-很难除尽,生产中使用的倾析法往往需要大量的时间和洗涤用水。

超细碳酸钙的制备

一.超细碳酸钙的制备 来源:世界化工网https://www.wendangku.net/doc/8512546892.html, 全文请访问:https://www.wendangku.net/doc/8512546892.html,/睡过站了 超细碳酸钙是白色粉末,粒径小(0.02~0.08μm),粒径大小均匀,比表面积大. 制备超细碳酸钙的方法很多,可以以天然产出的石灰岩,大理石等为原料,通过机械粉碎,物理分离等方法制造;也可以通过化学反应合成碳酸钙产品.当然,天然产出的碳酸噶中常含有镁,铁等杂质,但其成本低;合成碳酸钙的纯度高,粒径控制好,虽其成本高,但质量可以得到保证.下面讨论超细碳酸钙的合成制备. 1.合成方法 将一定量的经粉碎至60目的生石灰加入到温度为80~90℃的水中,保温搅拌一定时间后,室温陈化若干小时,加入稀释到所需体积,过120目筛,加入结晶控制剂,充分搅拌,即得到一定浓度的氢氧化钙乳液(俗称石灰料浆).将此料浆转移都反应器中,控制所需温度(15~30℃),通过一定压力的二氧化碳和空气的混合体,搅拌,待反应达到终点时(pH=7.0),放出熟浆(必要是进行改性处理),过滤,烘干,即得白度较高的超细碳酸钙. 2.合成条件的选择 (1)温度在氢氧化钙乳液浓度,二氧化碳气流量及总气量保持

不变时,反应达到终点的时间(t)与温度(T)的关系图如图所示,随着1/T增大(T减小)反应时间越长.对于该反应,升高温度,反应速率加快,到达终点的时间缩短. 超细碳酸钙的粒径也与反应温度有关,随着反应温度的升高,合成超细碳酸钙的粒径增大.在温度为15~30℃时得到的碳酸钙粒径范围在0.02~0.1μm之间. (2)氢氧化钙乳液浓度当温度和二氧化碳总气体流量保持不变时,反应到达终点所需时间与氢氧化钙乳液的浓度成直线关系.石灰料浆的浓度越大,反应到达终点所需的时间越长. (3)二氧化碳气体流量当温度与CaO量保持不变时,随着二氧

超细碳酸钙生产新工艺

书山有路勤为径,学海无涯苦作舟 超细碳酸钙生产新工艺 碳酸钙是一种重要的无机化工产品,也是用量最大,使用范围最 广的无机填充剂。由于原料普遍、价格低廉、无毒无味,被广泛应用于橡胶、 建材、塑料、涂料、造纸、饲料、油漆、医药、食品、牙膏、化妆品、油墨等 的生产中,起到节约母料、增容补强、降低成本的作用。近年来,由于碳酸钙 产品粒子的超细化、晶体形状的多样化以及表面改性化的发展,提高了超细碳 酸钙产品的应用价值,拓宽了其应用领域。超细碳酸钙是一种用途广泛、潜力 巨大、具有较高开发价值的新型纳米固体材料,它所具有的特殊的量子尺寸效应、表面效应,使其与常规粉体材料相比在补强性、透明性、分散性、触变性 和流平性等方面都显示出明显的优势。现在,超细碳酸钙正朝着专用化、精细化、功能化方向发展,具有很广阔的发展前景。本文在对制备超细碳酸钙生产 方法总结的基础上,提出了一种新的生产工艺方法。结合铵碱法纯碱生产的实 际情况,以盐水精制产生的二次盐泥为原料,经过稠厚增浓、脱水、干燥制备 超细碳酸钙。该方法不仅具有一定的理论价值,而且对废弃物的综合利用和环 境的保护具有重要的意义。1碳酸钙的分类1.1按生产方法分类根据碳酸钙 生产方法的不同,可以将碳酸钙分为轻质碳酸钙、重质碳酸钙和活性碳酸钙。 轻质碳酸钙又称沉淀碳酸钙,是将石灰石等原料进行煅烧生成CaO 和 CO2,CaO 与H2O 进行消化反应生成Ca(OH)2,然后再通入CO2 与Ca(OH)2 进行,碳化反应生成CaCO3 沉淀,最后经脱水、干燥和粉碎制得轻质碳酸钙。 重质碳酸钙简称重钙,是以方解石、石灰石、白奎、贝壳等为原料,通过机械 粉碎的方法制备重质碳酸钙。由于重质碳酸钙的沉淀体积比轻质碳酸钙的沉淀 体积小,所以称之为重质碳酸钙。活性碳酸钙又称改性碳酸钙、表面处理碳酸 钙或白艳华,简称活钙,是用表面改性剂对轻质碳酸钙或重质碳酸钙进行表面

纳米碳酸钙的制备及应用

纳米碳酸钙的制备及应用 摘要:纳米碳酸钙是一种新型的无机纳米材料,可应用于塑料、橡胶、油墨、造纸、日用化工、胶黏剂和密封材料、医药、食品等许多领域。本文概述了纳米碳酸钙常用的制备方法,列出了纳米碳酸钙表面改性的途径以及纳米碳酸钙在应用过程中所表现出的与普通轻质碳酸钙所不同的、反常的物理化学特性以及各方面特性的应用领域。对进一步拓展纳米碳酸钙的应用、不断优化其性能、突出其纳米特性、提升其潜在的价值等提出展望. 关键词:纳米碳酸钙;表面改性;应用 1.前言 纳米碳酸钙是80年代后期开发出的新产品,通常认为l00~.m以下粒径的产品为纳米级,碳酸钙主要用于涂料、橡胶、塑料、油墨、胶粘剂、造纸、化妆品、医药等方面,当前随着不断改良的产品制备工艺,获得的纳米碳酸钙产品质量也不断提高,纳米级和亚纳米级超细碳酸钙用量呈现持续增长趋势,产品市场前景乐观,该产业具有极大的发展潜力和应用空间【1]。 2.合成方法 近年来,随着碳酸钙的超细化、结构复杂化及表面改性技术的发展,它的应用价值极大地提高了。不同形态的超细碳酸钙的制备技术已成为许多先进国家开发的热点。纳米碳酸钙具有普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应。这些特殊的纳米材料特性使得纳米碳酸钙在磁性、光热阻、催化性、熔点等方面显示出极大的优越性【2]。纳米碳酸钙的化学制备方法工业生产中多采用化学方法生产纳米碳酸钙。化学法分为碳化法、复分解法、乳液法等,其中碳化法是目前最为主要的一种生产方法。以下我们将对这几种化学制备纳米碳酸钙的方法做一介绍和说明。 2.1碳化法 首先用精选石灰石进行煅烧,获得氧化钙和窑气;使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入C0 气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;最后再经过脱水、干燥、表面处理得到纳米碳酸钙产品,这种方法称之为碳化法。碳化法目前在国内外使用比较普遍,其产品质量较其他方法制备的纳米碳酸钙产品高,且价格适中,是一种性价比较好的制备方法。反应的所处的物理以及化学环境都直接决定着所

相关文档