文档库 最新最全的文档下载
当前位置:文档库 › 三 角 网 坐 标 平 差 报 告

三 角 网 坐 标 平 差 报 告

三 角 网 坐 标 平 差 报 告
三 角 网 坐 标 平 差 报 告

控制网平差报告

[控制网概况]

1、本成果为按[平面]网处理的平差成果

计算软件:南方平差易2002

网名计算日期:日期: 2011-12-17

观测人罗贤军

记录人:罗贤军

计算者:罗贤军

测量单位:东华理工大学

备注:三角网坐标平差

2、平面控制网等级:国家四等,验前单位权中误差1.5(s)

3、控制网数据统计结果

[角度统计结果]控制网中最小角度:0.3847,最大角度:2.2699 3、控制网中最大误差情况

最大点位误差= 0.2196 (m)

最大点间误差= 0.3948 (m)

最大边长比例误差= 33183

平面网验后单位权中误差= 8.44 (s)

闭合差统计报告

几何条件:中点多边形

路径:[A-B-C-P2-P1]

极条件闭合差=-3,限差=4

几何条件:中点多边形

路径:[C-D-A-P1-P2]

极条件闭合差=1,限差=4

几何条件:闭合导线

路径:[B-P1-A]

角度闭合差=2(s),限差=8(s)

几何条件:闭合导线

路径:[D-P2-A]

角度闭合差=-1(s),限差=8(s)

几何条件:闭合导线

路径:[P1-P2-A]

角度闭合差=-0(s),限差=8(s)

几何条件:闭合导线

路径:[C-P1-B]

角度闭合差=-2(s),限差=8(s)

几何条件:闭合导线

路径:[C-P2-P1]

角度闭合差=-2(s),限差=8(s)

几何条件:闭合导线

路径:[C-D-P2]

角度闭合差=4(s),限差=8(s) [方向观测成果表]

[平面点位误差表]

[平面点间误差表]

[控制点成果表]

控 制 网 平 差 报 告

控制网平差报告 [控制网概况] 计算软件:南方平差易2005 网名:成都学院1-6教导线网 计算日期:2014-07-02 观测人:赵磊 记录人:薛佳丽 计算者:薛佳丽 检查者: 测量单位:成都学院测绘工程一班 备注:第六小组 平面控制网等级:国家四等,验前单位权中误差:2.50(s) 已知坐标点个数:2 未知坐标点个数:8 未知边数:9 最大点位误差[D] = 0.0118 (m) 最小点位误差[B] = 0.0068 (m) 平均点位误差= 0.0109 (m) 最大点间误差=0.0102(m) 最大边长比例误差= 53 平面网验后单位权中误差=1.88(s) [边长统计]总边长:1211.146(m),平均边长:134.572(m),最小边长:51.705(m),最大边长:262.760(m) [闭合差统计报告]

高程网平差 -------------------------------------------------------------------- APPROXIMATE HEIGHT -------------------------------------------------------------------- No. Name Height(m) -------------------------------------------------------------------- 1 A1 500.0000 2 A2 499.6860 3 A3 499.3690 4 A4 499.2295 5 B1 497.9570 6 B2 497.1505 7 C1 495.7295 8 C2 495.0625 9 D1 495.5515 10 D2 494.9110 11 E1 494.5825

GPS静态控制测量网平差报告

FJ-3 省道S229南坑至源头段 二级公路改建工程 GPS静态控制测量网平差报告 萍乡公路勘察设计院 二○一一年九月 目录 一、GPS控制点成果表 (1) 二、GPS控制点网示意图 (1) 三、GPS控制网平差报告……………………………………1~4

一、G PS控制点成果表 二、GPS控制点网示意图 三、GPS控制网平差报告 1 坐标系统 1.1 坐标系统名称 Beijing54 1.2 基准参数

1.3 投影参数 M0 =1.00000000 投影比率 H = 0.0000 投影高 Bm =0投影面的平均纬度 B0 =0:00:00.00N 原点纬度 L0 =113:50:00.00E 中央子午线 N0 =0.0000 北向加常数 E0 =500000.0000 东向加常数 回到顶部 2 三维无约束平差2.1 平差参数 2.2 基线向量及改正数 2.3 τ(Tau)检验表 2.4 τ(Tau)检验直方图

2.5 自由网平差坐标 回到顶部 3 二维约束平差 3.1 平差参数 3.2 平面距离平差值 3.3 平面坐标 ***** 回到顶部

4 高程拟合 4.1 平差参数 4.2 高程拟合坐标 240.7246 回到顶部 5 基线闭合差 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G2->G3.242A 99.9 0.0062 -2063.4456 -1777.5444 1294.6074 3015.5398 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.76ppm EX = 0.0043 EY = -0.0043 EZ = -0.0026 8706.0493 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->G4.242B 99.9 0.0072 -4060.9524 -3093.9755 2049.7944 5501.4248 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.48ppm EX = -0.0041 EY = 0.0051 EZ = 0.0010 13683.0814 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->GD1.242X 99.9 0.0065 1554.7134 -896.8104 2732.5118 3269.2543 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.80ppm EX = -0.0048 EY = 0.0042 EZ = 0.0017 8261.4927 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->G4.242B 99.9 0.0063 -1997.5067 -1316.4322 755.1870 2508.6519 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.12ppm EX = -0.0003 EY = 0.0004 EZ = 0.0015 13695.9047 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->GD1.242X 99.9 0.0071 3618.1569 880.7382 1437.9069 3991.7835 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.42ppm EX = 0.0026 EY = -0.0040 EZ = -0.0015 11989.6182 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G4->GD1.242X 99.9 0.0073 5615.6650 2197.1667 682.7190 6068.7182 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.16ppm EX = 0.0015 EY = -0.0007 EZ = -0.0022 16557.6999

导线测量、三角高程、支导线计算说明

工地通路测 导线测量、三角高程、支导线计算 操作模式分为两种: 1、现场联机全站仪现场测量、记录、平差; 2、对已经有整理好的内业资料情况,提供数据导入功能,导入测量记录完成平差计算。 一、现场联机全站仪测量、记录、平差操作流程: 1、点击主界面导线平差,进入导线平差界面,点击底部按钮创建导线 2、输入导线的起终点闭合数据。起点后视点位起点测站的后视点,终点前视为终点测站的前视点。 3、添加测站,写入测站名称、后视名称、前视名称。 4、点击测站条目弹出测回列表对话框,点击添加测回按钮进入测量界面。 5、输入仪器高、前后视棱镜高。 6、连接全站仪后点击测量完成正镜后视、正镜前视、倒镜前视、倒镜后视测量,软件获取全站仪数据并记录(或者手工输入数据),点击确定按钮完成本测回测量。 7、逐个完成测站和对应的测回测量。 8、在导线测量界面点击右上角三个点导出测量记录和导线平差计算表。

二、导入已有的导线观测数据: 1、导入工地通路测导线观测文件 点击导线平差界面右上角三个点,点击导入工地通观测文件,弹出导入对话框,在手机存储目录中找到数据文件,点击完成导入。 2、导入附合导线进行平差计算并完成成果表

点击导线平差界面右上角三个点,点击附合导线平差计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成附合导线简易平差计算,并生成计算表。 3、导入三角高程数据计算并完成成果表 点击导线平差界面右上角三个点,点击三角高程计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成三角高程平差计算,并生成计算表。 4、导入支导线数据进行计算并完成成果表 点击导线平差界面右上角三个点,点击支导线计算按钮,弹出导入对话框,对话框中提示要导入的文件格式的内容,本文件在Excel编辑上按照要求编辑后,选择单元格右键复制,黏贴到一个TXT文件中,将这个TXT文件发送到手机上,在手机存储目录中找到数据文件,点击完成导入,软件同时完成支导线计算,并生成计算表。 说明: 1、当遇到闭合导线时,实际上闭合导线计算和附合导线计算原理是一致的,闭合点只需要 填写为原来的起算点。 2、遇到闭合三角高程时,只需要将附合点填写为闭合点。 3、观测时设置为水平角为左角,竖直角为天顶零。 ============================================== 工地通路测工作环境为android4.0以上智能手机和设备,主要用于公路、铁路、市政、地铁工程施工测量。包括路线坐标高程计算和放样,坐标里程反算,桥涵、路基挖填方及断面、隧道断面、隧道仰坡、锥坡测量,坐标里程批量正反算,面积测量、控制测量、指南针,利用GPS计算坐标、里程、偏距,地图导航,测量记录,通讯对讲,科学计算器、缓和曲线参数计算、角度单位转换、坐标正反算等功能;支持超高、加宽、路基边坡渐变、隧道断面渐变;软件可生成路线平面图、路基土石方断面图、隧道断面检测图。 软件可与各品牌全站仪、RTK通讯测量,包括徕卡、尼康、宾得、三鼎、索佳、南方、拓普康、中纬、天宝、科维、科力达、中翰、徕纳得等品牌,同时完成计算、绘图、记录,实现测量信息化。

边角三角网平差程序的设计书

边角三角网平差程序设计书 一、课程设计的目的 学生在学习完误差理论与测量平差基础、测量平差程序设计基础等课程的基础上,设计一个完整的测量数据处理程序,培养学生综合应用量数据处理与计算机应用能力,培养学生主动学习,创新设计能力。 二、课程设计的任务和内容 1.课程设计任务: 在两周的时间内应用者Matlab程序设计语言编制一个完整的边角网严密平差程序,要求有简易的界面,数据输入采用文本输入,采用间接平差模型完成平差的基本计算,能够画出控制网图,输出基本的计算结果,并根据设计过程完成设计报告。 程序设计主要内容包括: 系统功能设计 界面设计 流程设计 代码书写 程序调试 三、课程设计阶段 准备阶段 研究设计任务书,分析设计题目,熟悉原始数据,明确设计内容和要求;制定课程设计计划和进度。 熟悉算法模型 阅读误差理论与测量平差基础教材,掌握平面控制网数据处理的数学模型,

这里主要是指方向观测量、角度观测量、边长观测量的观测方程和误差方程的构成,研究平面观测数据的组织方法,设计Matlab算法,实现计算的自动表达。 功能设计阶段设计程序要实现的功能 平差程序的基本功能包括数据的输入,平差计算,精度评定、成果输出等; 4.流程和界面设计阶段 根据平差计算的过程和程序功能,画出流程图,设计简易界面实现数据的输入和平差计算和成果输出。在此基础上,根据功能要求,设计简便的界面。 5.代码书写和调试阶段 按照计算流程图和界面设计,根据方向观测值,边长观测值的误差方程的组成,设计Matlab算法,实现误差方程的自动构成,分阶段书写代码,调试实现各个阶段的功能。 6.设计报告撰写阶段 设计报告是对整个设计过程进行综合总结提高,内容包括课设的目的意义、程序设计的内容、算法设计、设计心得等根据设计过程和对测量数据处理以及程序设计的理解进行独立撰写。 四、组织方式进度安排 以小组为单位,每小组5-6人,分工合作共同完成程序设计任务,时间两周, 进度安 排如下:

GPS控制网平差总结报告.doc

西南林业大学 《全球卫星定位系统原理》GPS控制网平差实习 (2012级) 题目静态GPS控制网平差总结报告 学院土木工程学院 专业测绘工程 学号20120456023 学生姓名施向文 任课教师朱毅 西南林业大学土木工程学院测绘工程系 2015年07月 12 日

目录 1 实习目的 0 2 实习任务 0 3 数据处理依据 0 4 精度要求 0 5 已有成果数据 0 6 数据处理过程 (1) 6.1创建作业及数据导入 (1) 6.2基线预处理 (1) 6.2.1静态基线处理设置 (1) 6.2.2处理基线 (2) 6.2.3搜索闭合环 (2) 6.3设置坐标系 (2) 6.4网平差 (2) 6.5高程内外符合精度检验 (3) 6.5.1内符合精度 (3) 6.5.2外符合精度 (3) 7 数据处理成果 (3) 7.1二维平面坐标平差 (3) 7.1.1 平差参数 (3) 7.1.2 平面坐标 (4) 7.2高程拟合 (7) 7.2.1 平差参数 (7) 7.2.2 外符合精度 (7) 7.2.3内符合精度 (9) 8 质量简评 (11) 9 总结 (12)

静态GPS网平差总结报告 1 实习目的 通过对静态GPS控制网的数据处理,从实践中加深对理论知识的理解。通过本次实习还可以熟悉GPS数据处理软件,现在的数据处理基本用软件处理,使用软件也是必备的一个技能。 2 实习任务 本次实习的任务: (1)静态GPS外业数据基线预处理,预处理基线的方差比应尽量调整在99.9,处理后搜索闭合环要基本合格。 (2)选择/建立坐标系,建立昆明87坐标系。 (3)输入已知点并进行网平差,检测内外符合精度。 (4)撰写数据处理总结报告。 3 数据处理依据 依据《卫星定位城市测量技术规范CJJ/T 73—2010》备案号J990—2010 4 精度要求 二维平差中误差1cm 高程拟合中误差2cm 高程内符合中误差3cm 高程外符合中误差5cm 5 已有成果数据 (1)静态GPS外业数据成果(RINEX) (2)已知点的三维坐标,坐标成果见下表

三角网条件平差计算

§3-4 三角网条件平差计算 2学时 三角网测量的目的,是通过观测三角形的各角度或边长,计算三角网中各未知点的坐标、边的长度及方位角等。三角网按条件平差计算时,首要的问题是列出条件方程。因此了解三角网的构成,总结其条件方程的种类及各种条件方程的组成规律是十分重要的。 三角网的种类比较多,网的布设形式也比较复杂。根据观测内容的不同,有测角网、测边网、边角同测网等;根据网中起始数据的多少,有自由三角网和非自由三角网。自由三角网是指仅具有必要起算数据的三角网,网中没有多余的已知数据。如果测角三角网中,只有两个已知点(或者已知一个已知点的坐标、一条已知边的长度和一个已知的方位角),根据数学理论,以这两个已知点为起算数据,再结合必要的角度测量值,就能够解算出网中所有未知点的坐标。如果三角网中除了必要的起算数据外还有其它的已知数据,或者说已知数据有冗余,就会增加对网形的约束,从而增强其可靠性,这种三角网称之为非自由三角网。无论多么复杂的三角网,都是由单三角形、大地四边形和中点多边形组合而成的。 在本节,我们先讨论三角网条件平差中条件方程个数的确定问题,然后主要讨论测角三角网的条件方程的形式问题。 一、网中条件方程的个数 三角网平差的目的,是要确定三角点在平面坐标系中的坐标最或然值。如图3-9所示,根据前面学到的测量基础知识,我们知道,必须事先知道三角网中的四个数据,如两个三角点的4个坐标值,或者一个三角点的2个坐标值、一条边的长度和一个方位角,这4个已知数据我们称之为三角网的必要起算数据。有了必要起算数据,就可以确定三角网在平面坐标系中的位置、网的大小及其方位,就可以计算三角网中未知点的坐标。 要对三角网进行平差计算,还必须先知道网中的总观测数n、判定必要观测数t,从而确定了多余观测数: r = n - t 由条件平差原理知,多余观测数与条件方程数是相等的,有了多余观测数,也就确定出了条件方程的个数。因此,问题的关键是判定必要观测数t。

导线平差计算

导线平差计算 1 简介 闭合导线和附合导线是长输管道站场和穿跨越测量常用的控制手段,其优点是可以同时完成平面和高程控制测量。导线平差原理请查阅相关文献。不同平差软件的平差方法步骤基本相同,本文件基于南方平差易软件平台介绍导线(闭合导线、附合导线是最简单的导线控制网)平差的操作方法。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。 《长距离输油输气管道测量规范》(SY/T 0055-2003) 《工程测量规范》(GB 50026-2007) 3 操作步骤 (1)录入数据 录入数据是将导线测量数据录入平差软件。可以采用手工或文件方式录入(建议采用后者,选菜单“文件/打开”)。其数据格式如下: [NET] 控制网信息 [PARA] 控制网参数 [STATION]坐标和高程信息(11表示高程已知,如果无坐标则无法在平差易中看到和输出地图)[OBSER] 观测的转角、平距、高差等信息 下图为导入数据窗口: 图3-1 导入数据窗口 (2)坐标推算(F3)

选菜单“平差/推算坐标”,根据已知条件(测站点信息和观测信息)推算出待测点的近似坐标。为构建动态网图和导线平差作基础。 (3)概算 选菜单“平差/选择概算”→配置概算参数→输出概算结果。下图为“选择概算”的配置参数窗口: 图3-2 配置概算参数 (4)调整观测数据 将概算结果调整到输入的观测数据中,重新导入。 (5)计算方案的选择 对于同时包含了平面数据和高程数据的导线, 一般处理过程应为:先进行平面处理, 然后在高程处理时软件会使用已经较为准确的平面数据(如距离等)来处理高程数据。对精度要求很高的平面高程混合平差,您也可以在平面和高程处理间多次切换,迭代出精确的结果(但建议平面和高程分开了平差)。 针对导线平差,需要设置中误差及仪器参数、高程平差参数、限差及等级内容。 选菜单“平差/平差方案”即可进行参数的设置,如下图:

(完整版)GPS控制网平差总结材料报告材料,推荐文档

2015年07月 12 日 建议收藏下载本文,以便随时学习!

目录 1 实习目的 (1) 2 实习任务 (1) 建议收藏下载本文,以便随时学习! 3 数据处理依据 (1) 4 精度要求 (1) 5 已有成果数据 (1) 6 数据处理过程 (2) 6.1创建作业及数据导入 (2) 6.2基线预处理 (2) 6.2.1静态基线处理设置 (2) 6.2.2处理基线 (3) 6.2.3搜索闭合环 (3) 6.3设置坐标系 (3) 6.4网平差 (3) 6.5高程内外符合精度检验 (4) 6.5.1内符合精度 (4) 6.5.2外符合精度 (4) 7 数据处理成果 (4) 7.1二维平面坐标平差 (4) 7.1.1 平差参数 (4) 7.1.2 平面坐标 (5) 7.2高程拟合 (8) 7.2.1 平差参数 (8) 7.2.2 外符合精度 (8) 7.2.3内符合精度 (9) 8 质量简评 (12) 9 总结 (12)

静态GPS网平差总结报告 1 实习目的 建议收藏下载本文,以便随时学习! 通过对静态GPS控制网的数据处理,从实践中加深对理论知识的理解。通过本次实习还可以熟悉GPS数据处理软件,现在的数据处理基本用软件处理, 使用软件也是必备的一个技能。 2 实习任务 本次实习的任务: (1)静态GPS外业数据基线预处理,预处理基线的方差比应尽量调整在 99.9,处理后搜索闭合环要基本合格。 (2)选择/建立坐标系,建立昆明87坐标系。 (3)输入已知点并进行网平差,检测内外符合精度。 (4)撰写数据处理总结报告。 3 数据处理依据 依据《卫星定位城市测量技术规范CJJ/T 73—2010》备案号J990—2010 4 精度要求 二维平差中误差1cm 高程拟合中误差2cm 高程内符合中误差3cm 高程外符合中误差5cm 5 已有成果数据 (1)静态GPS外业数据成果(RINEX) (2)已知点的三维坐标,坐标成果见下表

三角高程测量

§4-6 三角高程测量 一、三角高程测量原理及公式 在山区或地形起伏较大的地区测定地面点高程时,采用水准测量进行高程测量一般难以进行,故实际工作中常采用三角高程测量的方法施测。 传统的经纬仪三角高程测量的原理如图4-12所示,设A点高程及AB两点间的距离已知,求B点高程。方法是,先在A点架设经纬仪,量取仪器高i;在B点竖立觇标(标杆), 并量取觇标高L,用经纬仪横丝瞄准其顶端,测定竖直角δ,则AB两点间的高差计算公式为: 故(4-11) 式中为A、B两点间的水平距离。 图4-12 三角高程测量原理 当A、B两点距离大于300m时,应考虑地球曲率和大气折光对高差的影响,所加的改正 数简称为两差改正: 设c为地球曲率改正,R为地球半径,则c的近似计算公式为: 设g为大气折光改正,则g的近似计算公式为: 因此两差改正为:,恒为正值。 采用光电三角高程测量方式,要比传统的三角高程测量精度高,因此目前生产中的三角高程测量多采用光电法。

采用光电测距仪测定两点的斜距S,则B点的高程计算公式为: (4-12) 为了消除一些外界误差对三角高程测量的影响,通常在两点间进行对向观测,即测定hAB 和hBA,最后取其平均值,由于hAB和hBA反号,因此可以抵销。 实际工作中,光电三角高程测量视距长度不应超过1km,垂直角不得超过15°。理论分析和实验结果都已证实,在地面坡度不超过8度,距离在1.5km以内,采取一定的措施,电磁波测距三角高程可以替代三、四等水准测量。当已知地面两点间的水平距离或采用光电三角高程测量方法时,垂直角的观测精度是影响三角高程测量的精度主要因素。 二、光电三角高程测量方法 光电三角高程测量需要依据规范要求进行,如《公路勘测规范》中光电三角高程测量具体要求见表4-6。 表4-6 光电三角高程测量技术要求 往返各 注:表4-6中为光电测距边长度。 对于单点的光电高程测量,为了提高观测精度和可靠性,一般在两个以上的已知高程点上设站对待测点进行观测,最后取高程的平均值作为所求点的高程。这种方法测量上称为独立交会光电高程测量。 光电三角高程测量也可采用路线测量方式,其布设形式同水准测量路线完全一样。 1.垂直角观测 垂直角观测应选择有利的观测时间进行,在日出后和日落前两小时内不宜观测。晴天观测时应给仪器打伞遮阳。垂直角观测方法有中丝法和三丝法。其中丝观测法记录和计算见表4-7。表4-7 中丝法垂直角观测表 点名泰山等级四等 天气晴观测吴明 成像清晰稳定仪器Laica 702 全站仪记录李平 仪器至标石面高1.553m 1.554 平均值1.554m 日期2006.3.1

三角高程测量误差分析报告(精)

三角高程测量 1 三角高程测量的基本原理 三角高程测量是通过观测两点间的水平距离和天顶距(或高度角)求定两点间的高差的方法。它观测方法简单,不受地形条件限制,是测定大地控制点高程的基本方法。目前,由于水准测量方法的发展,它已经退居次要位置,但在山区和丘陵地带依然被广泛采用。 在三角高程测量中,我们需要使用全站仪或者经纬仪测量出两点之间的距离(水平距离或者斜距和高度角,以及测量时的仪器高和棱镜高,然后根据三角高程测量的公式推算出待测点的高程。三角高程测量 由图中各个观测量的表示方法,AB两点间高差的公式为: H=S0tanα+i1-i2① 但是,在实际的三角高程测量中,地球曲率、大气折光等因素对测量结果精度的影响非常大,必须纳入考虑分析的范围。因而,出现了各种不同的三角高程测量方法,主要分为:单向观测法,对向观测法,以及中间观测法。 1.1 单向观测法 单向观测法是最基本最简单的三角高程测量方法,它直接在已知点对待测点进行观测,然后在①式的基础上加上大气折光和地球曲率的改正,就得到待测点的高程。这种方法操作简单,但是大气折光和地球曲率的改正不便计算,因而精度相对较低。 1.2 对向观测法 对向观测法是目前使用比较多的一种方法。对向观测法同样要在A点设站进行观测,不同的是在此同时,还在B点设站,在A架设棱镜进行对向观测。从而 就可以得到两个观测量:直觇:

h AB= S往tanα往+i往-v往+c往+r往② 反觇: h BA= S返tanα返+i返-v返+c返+r返③ S——A、B间的水平距离; α——观测时的高度角; i——仪器高; v——棱镜高; c——地球曲率改正; r——大气折光改正。 然后对两次观测所得高差的结果取平均值,就可以得到A、B两点之间的高差值。由于是在同时进行的对向观测,而观测时的路径也是一样的,因而,可以认为在观测过程中,地球曲率和大气折光对往返两次观测的影响相同。所以在对向观测法中可以将它们消除掉。 h=0.5(hAB- hBA =0.5[( S往tanα往+i往-v往+c往+r往-( S返tanα返+i返-v返+c返+r返] =0.5(S 往tanα往-S返tanα返+i往-i返+v返-v往④ 与单向观测法相比,对向观测法不用考虑地球曲率和大气折光的影响,具有明显的优势,而且所测得的高差也比单向观测法精确。 1.3 中间观测法 中间观测法是模拟水准测量而来的一种方法,它像水准测量一样,在两个待测点之间架设仪器,分别照准待测点上的棱镜,再根据三角高程测量的基本原理,类似于水准测量进行两待测点之间的高差计算。此种方法要求将全站仪尽量架设在两个待测点的中间位置,使前后视距大致相等,在偶数站上施测控制点,从而有效地消除大气折光误差和前后棱镜不等高的零点差,这样就可以像水准测量一样将地球曲率的影响降到最低。而且这种方法可以不需要测量仪器高,这样在观测时可以相对简单些,而且减少了一个误差的来源,提高观测的精度。全站仪中间观测法三角高程测量可代替三、四等水准测量。在测量过程中,应选择硬地面作转点,用对中脚架支撑对中杆棱镜,棱镜上安装觇牌,保持两棱镜等高,并轮流作为前镜和后镜,同时将测段设成偶数站,以消除两棱镜不等高而产生的残余误差影响。

三角网坐标平差

三角网坐标平差 时间:2009-12-27 来源:本站作者:节选 §12.1三角网坐标平差 第十二章概述 间接平差又称参数平差。水平控制网按间接平差时,通常选取待定点的坐标平差值作为未知数(按方向平差时,还增加测站定向角未知数),平差后直接求得各待定点的坐标平差值,故这种以待定点坐标作为未知数的间接平差法也称为坐标平差法。参加平差的量可以是网中的直接观测量,例如方向、边长等;也可以是直接观测量的函数,例如角度等。由于三角网的水平角一般是采用方向观测法观测,并由相邻方向相减而得,故它们是相关观测值。此时,若不顾及函数间的相关性,平差结果将受到一定的曲解。因此,坐标平差法都按方向平差。 间接平差的函数模型是误差方程,它是表达观测量与未知数之间关系的方程式。一般工程测量平面控制网的观测对象主要是方向(或角度)和相邻点间的距离(即边长)因此坐标平差时主要列立各观测方向及观测边长的误差方程式,再按照间接平差法的原理和步骤,由误差方程和观测值的权组成未知数法方程去解算待定点坐标平差值,并进行精度评定。 本章主要研究(测)方向网、测边网以及测边测角网的严密坐标平差。 水平控制网按坐标平差法进行平差时,为降低法方程的阶数以便于解算,定向角未知数可采用一定的法则予以消掉。由于误差方程式的组成简单且有规律,便于由程序实现全部计算,因此,在近代测量平差实践中,控制网按间接平差法得到了广泛的应用。平面控制网按坐标平差时,网中每一观测值都应列立一个误差方程式。 为便于计算,通常总是将观测值改正数表示为对应待定点坐标近似值改正数的线性式。坐标平差的第一步是列组误差方程式。对于方向网而言,参与平差的观测值是未定向的方向,选定的未知数是待定点的纵、横坐标值。误差方程式就是方向观测值改正数表达为待定点纵横坐标值的函数式,可以通过坐标方位角来建立方向值与未知数之间的联系。 12.1.1方向误差方程式的建立和组成 在测站k上观测了等方向 其方向观测值为

测量平差 条件方程t的判定知识分享

测量平差条件方程t的判定

§3-4 三角网条件平差计算 2学时 三角网测量的目的,是通过观测三角形的各角度或边长,计算三角网中各未知点的坐标、边的长度及方位角等。三角网按条件平差计算时,首要的问题是列出条件方程。因此了解三角网的构成,总结其条件方程的种类及各种条件方程的组成规律是十分重要的。 三角网的种类比较多,网的布设形式也比较复杂。根据观测内容的不同,有测角网、测边网、边角同测网等;根据网中起始数据的多少,有自由三角网和非自由三角网。自由三角网是指仅具有必要起算数据的三角网,网中没有多余的已知数据。如果测角三角网中,只有两个已知点(或者已知一个已知点的坐标、一条已知边的长度和一个已知的方位角),根据数学理论,以这两个已知点为起算数据,再结合必要的角度测量值,就能够解算出网中所有未知点的坐标。如果三角网中除了必要的起算数据外还有其它的已知数据,或者说已知数据有冗余,就会增加对网形的约束,从而增强其可靠性,这种三角网称之为非自由三角网。无论多么复杂的三角网,都是由单三角形、大地四边形和中点多边形组合而成的。 在本节,我们先讨论三角网条件平差中条件方程个数的确定问题,然后主要讨论测角三角网的条件方程的形式问题。 一、网中条件方程的个数

三角网平差的目的,是要确定三角点在平面坐标系中的坐标最或然值。如 图3-9所示,根据前面学到的测量基础知识,我们知道,必须事先知道三角网 中的四个数据,如两个三角点的4个坐标值,或者一个三角点的2个坐标值、 一条边的长度和一个方位角,这4个已知数据我们称之为三角网的必要起算数据。有了必要起算数据,就可以确定三角网在平面坐标系中的位置、网的大小 及其方位,就可以计算三角网中未知点的坐标。 要对三角网进行平差计算,还必须先知道网中的总观测数n、判定必要观 测数t,从而确定了多余观测数: r = n - t 由条件平差原理知,多余观测数与条件方程数是相等的,有了多余观测 数,也就确定出了条件方程的个数。因此,问题的关键是判定必要观测数t。 1.网中有2个或2个以上已知点的情况 三角网中有2个或2 个以上已知三角点,就一定具备了4个必要起算数 据。无论是测角网、测边网还是边角同测网,如果有2个已知点相邻,要确定 一个未知点的坐标,需要观测两个观测值(2个角,或者1条边和1个角,或者2条边)。也就是说,确定1个未知点要有2个必要观测值;那么如果网中有p 个未知点,必要观测数应等于未知点个数的两倍。 t = 2 ·p(3-4-1) (1) 测角网 图3-9所示,三角网中有2个已知点,待定点个数为p = 6。如果三角网中观测量全部是角度时。 总观测值个数:n = 23 必要观测数:t = 2 · p =12

三角高程网高程平差结果

三角高程网高程平差结果 -------------------------------------------------------------------- APPROXIMATE HEIGHT -------------------------------------------------------------------- No. Name Height(m) -------------------------------------------------------------------- 1 S0 219.959200 2 N2 212.532800 3 N1 157.143292 4 S246 181.979042 5 N0 207.851742 6 S2 242.626692 7 N3 151.135300 -------------------------------------------------------------------- KNOWN HEIGHT -------------------------------------------------------------------- No. Name Height(m) -------------------------------------------------------------------- 1 S0 219.95920 2 N2 212.53280 -------------------------------------------------------------------- MEASURING DATA OF HEIGHT DIFFERENCE -------------------------------------------------------------------- No. From To Observe(m) Distance(km) Weight -------------------------------------------------------------------- 1 N1 S246 24.84150 0.6120 1.634 2 N1 S0 62.81591 0.8580 1.166 3 N1 N0 50.70845 0.5250 1.905 4 N0 S2 34.7749 5 0.6900 1.449 5 N0 N2 4.67680 0.1830 5.464 7 N0 S246 -25.87270 0.8380 1.193 8 N0 S0 12.09575 0.7320 1.366 9 N2 S0 7.42785 0.7420 1.348 10 N2 S2 30.10300 0.6560 1.524 11 N2 N3 -61.39750 0.3340 2.994 13 S2 N3 -91.50100 0.5710 1.751 16 S2 S0 -22.67050 0.1810 5.525 20 S0 S246 -37.96760 0.5190 1.927 -------------------------------------------------------------------- ADJUSTED HEIGHT -------------------------------------------------------------------- No. Name Height(m) Mh(mm) -------------------------------------------------------------------- 1 S0 219.959200

GPS静态控制测量网平差报告

FJ -3 工程测量技术交流群18874248 省道S 229南坑至源头段 二级公路改建工程 GPS 静态控制测量 网平差报告 萍 乡 公 路 勘 察 设 计 院 二○一一年九月 目 录 一、 GPS 控制点成果表…………………………………………1 二、 GPS 控制点网示意图………………………………………1 三、 GPS 控制网平差报告……………………………………1~4

一、G PS控制点成果表 二、GPS控制点网示意图 三、GPS控制网平差报告 1 坐标系统 1.1 坐标系统名称 Beijing54 1.2 基准参数

1.3 投影参数 M0 =1.00000000 投影比率 H = 0.0000 投影高 Bm =0投影面的平均纬度 B0 =0:00:00.00N 原点纬度 L0 =113:50:00.00E 中央子午线 N0 =0.0000 北向加常数 E0 =500000.0000 东向加常数 回到顶部 2 三维无约束平差2.1 平差参数 2.2 基线向量及改正数 2.3 τ(Tau)检验表 2.4 τ(Tau)检验直方图

2.5 自由网平差坐标 回到顶部 3 二维约束平差 3.1 平差参数 3.2 平面距离平差值 3.3 平面坐标 ***** 回到顶部

4 高程拟合 4.1 平差参数 4.2 高程拟合坐标 240.7246 回到顶部 5 基线闭合差 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G2->G3.242A 99.9 0.0062 -2063.4456 -1777.5444 1294.6074 3015.5398 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.76ppm EX = 0.0043 EY = -0.0043 EZ = -0.0026 8706.0493 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->G4.242B 99.9 0.0072 -4060.9524 -3093.9755 2049.7944 5501.4248 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.48ppm EX = -0.0041 EY = 0.0051 EZ = 0.0010 13683.0814 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 G1->G2.242A 99.9 0.0077 -1046.7333 -648.5635 534.7004 1342.4566 G2->GD1.242X 99.9 0.0065 1554.7134 -896.8104 2732.5118 3269.2543 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.80ppm EX = -0.0048 EY = 0.0042 EZ = 0.0017 8261.4927 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->G4.242B 99.9 0.0063 -1997.5067 -1316.4322 755.1870 2508.6519 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.12ppm EX = -0.0003 EY = 0.0004 EZ = 0.0015 13695.9047 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G3->GD1.242X 99.9 0.0071 3618.1569 880.7382 1437.9069 3991.7835 G1->G3.242A 99.9 0.0068 -3110.1745 -2426.1123 1829.3052 4348.0529 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.42ppm EX = 0.0026 EY = -0.0040 EZ = -0.0015 11989.6182 Baseline Type rms dx dy dz distance ------------------------------------------------------------------------------------------- G4->GD1.242X 99.9 0.0073 5615.6650 2197.1667 682.7190 6068.7182 G1->G4.242B 65.6 0.0072 -5107.6816 -3742.5441 2584.4937 6839.1999 G1->GD1.242X 99.9 0.0087 507.9850 -1545.3781 3267.2106 3649.7818 ------------------------------------------------------------------------------------------- 同步环( 3 baselines) 相对误差= 0.16ppm EX = 0.0015 EY = -0.0007 EZ = -0.0022 16557.6999

相关文档