文档库 最新最全的文档下载
当前位置:文档库 › 人教版数学-竞赛培训专题1-----等差数列与等比数列

人教版数学-竞赛培训专题1-----等差数列与等比数列

人教版数学-竞赛培训专题1-----等差数列与等比数列
人教版数学-竞赛培训专题1-----等差数列与等比数列

竞赛培训专题1-----等差数列与等比数列

例1.等差数列中,a3+a7-a10=8,a11-a4=4,求S13

解:由求和公式

知问题转化为求a7

由条件得:a7=12

例2.已知数列{a n}满足

(1)计算:a2,a3,a4(2)求数列的通项公式

解:(1)由可计算出

a2= -1,a3=,a4= -1

有两种解法,一由a2,a3,a4的值猜想通项公式然后用数学归纳法证明

二是由已知得:

(*)

两式相减得:(a n-1-1)(a n-a n-2)=0

显然不存在a n-1-1=0的情况,否则代入(*)有a n=a n+1即0=1矛盾,故只有a n=a n-2

这样可得或

例3.已知数列{a n}的各项均为正数,且前n项之和S n满足6S n=a n2+3a n+2.若a2,a4,a9成等比数列,求数列的通项公式。

解:当n=1时,由题意有6a1=a12+3a+2

于是a1=1 或a1=2

当n32时,有6S n=a n2+3a n+2,6S n-1=a n-12+3a n-1+2

两式相减得:(a n+a n-1) (a n-a n-1-3)=0

由题意知{a n}各项为正,所以a n-a n-1=3

当a1=1时,a n=1+3(n-1)=3n-2

此时a42=a2a9成立

当a1=2时,a n=2+3(n-1)=3n-1

此时a42=a2a9不成立,故a1=2舍去

所以a n=3n-2

例4.各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有多少项?

解设a1,a2…,a n是公差为4的等差数列,则

a12+a2+a3+…+a n£100,

a12+(n-1)a1+(2n2-2n-100)£0(1)

因此,当且仅当D=(n-1)2-4(2n2-2n-100)30时,至少存在一个实数a1满足(1)式。

因为D30,所以

7n2-6n-401£0,

解得n1£n£n2(2)

其中,所以满足(2)的自然数n的最大

值为8。故这样的数列至多有8项。

例5.各项均为实数的等比数列{a n}的前n项之和为S n,若S10=10,S30=70,求S40。

解记b1=S10,b2=S20-S10,b3=S30-S20,b4=S40-S30.设q是{a n}的公比,则b1,b2,b3,b4构成以r=q10为公比的等比数列。于是

70=S30=b1+b2+b3

=b1(1+r+r2)

=10(1+r+r2)

即r2+r-6=0. 解得r=2 或r=-3

由于r=q10>0 , 所以r=2

故S40=10(1+2+22+23

例6.给定正整数n和正数M,对于满足条件a12+a n+12£M的所有等差数列a1,a2,a3…试求

S=a n+1+a n+2+…+a2n+1的最大值。

解设公差为d,a n+1=a. 则

S=a n+1+a n+2+…+a2n+1

=(n+1)a+

又M3a12+a n+12

=(a-nd)2+a2

=

所以|S|

且当时,

S=

=

=

由于此时4a=3nd,所以

所以S的最大值为。

例7.设等差数列的首项及公差均为非负整数,项数不少于3,且各项之和为972,这样的数列共有多少个?

解设等差数列首项为a,公差为d,依题意有

即[2a+(n-1)d]n=2′972, (3)

因为n为不小于3的自然数,97为素数,故n的值只可能为97,2′97,972,2′972四者之一。若d>0,则由(3)知

2′9723n(n-1)d3n(n-1).

故只可能有n=97.于是(3)化为a+48d=97.

此时可得n=97,d=1,a=49 或n=97,d=2,a=1.

若d=0时,则由(3)得na=972,此时n=97,a=97 或n=972,a=1。

故符合条件的数列共有4个。

例8.设{a n}是由正数组成的等比数列,S n是前n项之和

(1)证明

(2)是否存在常数c>0,使得成立,并证明你的结论

证明:(1)设{a n}的公比为q,由已知得:a1>0,q>0

i)当q=1时,S n=na1,从而,

S n×S n+2-S n+12=na1(n+2)a1-(n+1)2a12= -a12<0

ii)当q11时,

由i)、ii)均有S n×S n+2

(2)要使成立,则有

分两种情况讨论

i)当q=1时

(S n-c)×(S n+2-c)-(S n+1-c)2=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2= -a12<0

即不存在常数c>0使结论成立

ii)当q11时,若条件(S n-c)×(S n+2-c)=(S n+1-c)2成立,则

(S n-c)×(S n+2-c)-(S n+1-c)2=

= -a1q n[a1-c(1-q)]

而a1q n10,故只能是a1-c(1-q)=0

即,此时,由于c>0,a1>0,必须0

不满足S n-c>0,即不存在常数c>0满足条件

综合i)、ii)可得,不存在常数c>0,满足题意

例9.设任意实数x,y满足|x|<1,|y|<1,求证:(第19届莫斯科数学竞赛试题)

证明:∵|x|<1,|y|<1,∴x2<1,y2<1,故

=(1+x2+ x4+ x6+…)+(1+ y2+ y4+ y6+…)=2+(x2+y2) (x4+y4)+ (x6+y6)+…

≥2+2xy+2x2y2+2x3y3+…=

例10.设x,y,z为非负实数,且x+y+z=1,求证:0£xy+yz+zx-2xyz£

证明:由对称性,不妨设x3y3z∵x+y+z=2×

∴x+y,, z成等差数列,故可设x+y=+d,z=-d

由x+y32z,得,则

xy+yz+zx-2xyz=(x+y)z+xy(1-2z)=30

当且仅当x=1,y=z=0时取等号

又£

=

当且仅当x=y=z=时取等号

故0£xy+yz+zx-2xyz£

例11.解方程组

解:由(1)得解得

即xy=15=,则x,,y成等比数列,于是可设x=q,y=代入(2)整理得:

15q4-34q2+15=0

解得:

故经检验都是原方程组的解

例12.解方程:

解:显然成等差数列,故可设

(1)2-(2)2得

-2(3x+2)= -2(3x+2)d解得d=1或

当d=1时,代入(1)解得是增根,舍去

∵符合题意,∴是原方程的根

例13.等差数列{a n}中,,试求(l-m)ab+(m-n)bc+(n-l)ca的值

解:在直角坐标系中,对于任意n?N,点(n,a n)共线,所以有,点

共线,于是

,由,化简得:

,所以

=

所以所求的值为0

例14.从n个数1,a, a2,…, a n (a>2)中拿走若干个数,然后将剩下的数任意分成两个部分,证明:这两部分之和不可能相等

证明:当a>2时,,上式对任意k?N成立,

不妨设剩下的数中最大的数a m(m31)在第一部分中,

则第一部分各数之和3a m>1+a+…+a m-13第二部分之和

作业:

1.设{a n}是等比数列,首项a1>1,公比q>1,求证:数列{}是递减数列

2.确定最大的实数z,使得x+y+z=5,xy+yz+zx=3,并且x与y也是实数

3.将奇数{2n-1}按照第n组含有n个数的规则分组:

1,

3,5

7,9,11,

13,15,17,19

…………………

(1)求第8组中的所有奇数

(2)求1993属于第几组中的第几号数

(3)求第100组中所有奇数的和

(4)求前100组的全体奇数的总和

4.设{a n}与{b n}分别是等差数列和等比数列,且a1=b1>0,a2=b2>0试比较a n和b n的大小

5.设S={1,2,3,…,n},A为至少含有两项的公差为正的等差数列,其每一项均在S中,且添加S中的其它元素于A以后,均不能构成与A有相同公差的等差数列,求这种数列A的个数(只有两项的数列也看成等差数列)

6.数列{a n}的前n项之和为S n,若S1=1且S n1=S n+(5n+1)a n,n=1,2,…,|a|11,求S n

摘自数学教育之窗

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

等差数列和等比数列的总结与联系

等差数列和等比数列的综合及其联系 课题设计背景: 数列是反映自然规律的基本数学模型之一。而等差数列和等比数列是学生必须掌握的两种基本数学模型,研究等差数列的通项、性质以及求和公式,并用类比的方法对等比数列进行研究是课程标准的教学要求。 课题设计目标: (1)掌握等差数列的通项公式及其前n项和公式; (2)掌握等差数列的通项公式及其前n项和公式;体验用类比的思想方法对等差数列和等比数列进行研究的活动。

例题分析: 1、已知(), f x = 利用课本推导等差数列前n 项和的公式的方法,求和: (5)(4)(3)...(5)f f f f f -+-+-+++的值 2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q 3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么? (二)等差数列和等比数列之间的转化 结论: (1){}n a 成等差数列,则{}(0,1)n a c c c >≠成等比数列; (2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。 例题分析: 1、 已知数列)}({* N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求 12lg lg ...lg n a a a +++ 2、 若数列)}({* N n a n ∈是等差数列,则有数列*123......,()n n a a a a b n N n ++++= ∈ 也是等差数列;类比上述性质,相应地:若数列)}({* N n c n ∈是等比数列,且0>n c ,则 有数列*_________________,()n d n N =∈也是等比数列。 3、 设)}({* N n a n ∈是等差数列,12n a n b ?? = ? ?? ,已知123123211 ,,88 b b b b b b ++= =求数列)}({*N n a n ∈的通项公式。 (三)学法总结: (四)课后反思:

微专题11等差数列与等比数列(教学案)

微专题11等差数列与等比数列 1.掌握并活用等差、等比数列的基本量和性质,进行基本运算. 2.运用定义域分析通项公式,判断或证明一个数列是等差(比)数列. 3.从分析数列特征入手,综合运用通项公式、求和公式、不等式、函数等方法求解最值或参数范围问题. 考题导航题组一等差数列、等比数列的基本量及基本运算 1.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=________. 2.设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 1.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 2.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2 =________.题组二等差数列、等比数列的判定与证明 1.已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1 ,则a n =________.2.已知数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明:{b n }是等差数列; (2)求数列{a n }的通项公式.

1.记S n为数列{a n}的前n项和,若S n=2a n+1,则S6=________. 2.设数列{a n}中,S1=1,S2=2,S n+1-3S n+2S n-1=0(n≥2),则命题“{a n}是等比数列”是________命题.(填“真”或“假”) 题组三与等差数列、等比数列有关的最值、参数范围问 题 1.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________. 2.已知数列{a n}为等差数列,若a7 a6 <-1,且它们的前n项和S n有最大值,则使S n>0的n的最大值为________. 3.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________. 1.已知首项为3 2的等比数列{a n }不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{a n}的通项公式; (2)设T n=S n-1 S n (n∈N*),求数列{T n}最大项的值与最小项的值.

初中数学竞赛专题培训(4):代数式的化简与求值

初中数学竞赛专题培训第四讲分式的化简与求值 分式的有关概念和性质与分数相类似,例如,分式的分母的值不能是零,即分式只有在分母不等于零时才有意义;也像分数一样,分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,这一性质是分式运算中通分和约分的理论根据.在分式运算中,主要是通过约分和通分来化简分式,从而对分式进行求值.除此之外,还要根据分式的具体特征灵活变形,以使问题得到迅速准确的解答.本讲主要介绍分式的化简与求值. 例1 化简分式: 分析直接通分计算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多. =[(2a+1)-(a-3)-(3a+2)+(2a-2)] 说明本题的关键是正确地将假分式写成整式与真分式之和的形式. 例2 求分式 当a=2时的值.分析与解先化简再求值.直接通分较复杂,注意到平方差公式:a2-b2=(a+b)(a-b), 可将分式分步通分,每一步只通分左边两项. 例3 若abc=1 ,求 分析本题可将分式通分后,再进行化简求值,但较复杂.下面介绍几种简单的解法. 解法1 因为abc=1,所以a,b,c都不为零. 解法2 因为abc=1,所以a≠0,b≠0,c≠0. 例4 化简分式:

分析与解 三个分式一齐通分运算量大,可先将每个分式的分 母分解因式,然后再化简. 说明 互消掉的一对相反数,这种化简的方法叫“拆项相消”法, 它是分式化简中常用的技巧. 例5 化简计算(式中a ,b ,c 两两不相等): 似的,对于这个分式,显然分母可以分解因式为(a -b)(a -c),而分子又恰好凑成(a -b)+(a -c),因此有下面的解法. 解 说明 本例也是采取“拆项相消”法,所不同的是利用 例6 已知:x+y+z=3a(a ≠0,且x ,y ,z 不全相等),求 分析 本题字母多,分式复杂.若把条件写成 (x -a)+(y -a)+(z -a)=0,那么题目只与x -a ,y -a ,z -a 有关,为简化计算,可用换元法求解. 解 令x -a=u ,y -a=v ,z -a=w ,则分式变为 u 2+v 2+w 2 +2(uv+vw+wu)=0. 由于x ,y ,z 不全相等,所以u ,v ,w 不全为零,所以u 2 +v 2 +w 2 ≠0,从而有 说明 从本例中可以看出,换元法可以减少字母个数,使运算 过程简化. 例7 化简分式: 适当变形,化简分式后再计算求值. (x -4)2 =3,即x 2 -8x+13=0. 原式分子=(x 4 -8x 3 +13x 2 )+(2x 3 -16x 2 +26x)+(x 2 -8x+13)+10 =x 2 (x 2 -8x+13)+2x(x 2 -8x+13)+(x 2 -8x+13)+10

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

高中数学竞赛培训工作总结

高中数学竞赛培训工作总结篇一:高中数学竞赛精华(小结) 高中数学竞赛精华小结 一、三角函数 常用公式 由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握):半角公式: sin 21cos 2 1cos 2 1cos1cossin 1cossin1coscos2tan 2 积化和差: sincos1sinsin 2 1cossinsinsin 2 1coscoscoscos 2 1sinsincoscos 2 和差化积: sinsin2sin

22 sinsin2cossin 22 coscos2coscos 22 coscos2sinsin 22 万能公式: cos sin22tan 21tan 1tan2cos2 21tan tan22tan 1tan2 三倍角公式: sin33sin4sin34sin60sinsin60 cos34cos33cos4cos60coscos60 二、某些特殊角的三角函数值 除了课本中的以外,还有一些 三、三角函数求值 给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去。 举个例子

246coscos 777 2提示:乘以2sin,化简后再除下去。 7求值:cos 求值:cos10cos50sin40sin80 来个复杂的 设n为正整数,求证22sin i1ni2n1 2n12n 另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲。 四、三角不等式证明 最常用的公式一般就是:x为锐角,则sinxxtanx;还有就是正余弦的有界性。例 求证:x为锐角,sinx+tanx 设xyz 12,且xyz 2,求乘积cosxsinycosz的最大值和最小值。 注:这个题目比较难 数列 1给递推式求通项公式 (1)常见形式即一般求解方法 ①an1panq 若p=1,则显然是以a1为首项,q为公差的等差数列,若p≠1,则两边同时加上qq,变为an1p1p1qpanp1 显然是以a1q为首项,p为公比的等比数列 p1

初中数学竞赛专题培训 -生活中的数学(2)

初中数学竞赛专题培训第三十讲生活中的数学(四)──买鱼的学问 鱼是人们喜欢吃的一种高蛋白食物,所以谁都希望买到物美价廉的鱼.假定现在商店里出售某种鱼以大小论价,大鱼A每斤1.5元,小鱼B每斤1元.如果大鱼的高度为13厘米,小鱼的高度为10厘米(图2-171),那么买哪种鱼更便宜呢? 有人可能觉得大鱼A和小鱼B高度之比为13∶10,差不了许多,而小鱼的价格却比大鱼便宜许多,因此,买小鱼比较合算.这种想法是合理的吗?我们还是用数学来加以分析吧! 在平面几何中,我们已经知道以下定理. 定理1 相似形周长的比等于相似比. 定理2 相似形面积的比等于相似比的平方. 例1 已知:△ABC∽△A′B′C′,并且AB=2c,BC=2a,AC=2b,A′B′=3c, B′C′=3a,A′C′=3b.求证:△ABC和△A′B′C′周长的比是2∶3(图2-172). 证△ABC的周长是 2a+2b+2c=2(a+b+c), △A′B′C′的周长是 3a+3b+3c=3(a+b+c), 所以△ABC和△A′B′C′的周长的比是 2(a+b+c)∶3(a+b+c)=2∶3. 例2 图2-173是两个相似矩形,如果它们的相似比是3∶4,求证:它们面积的比是32∶42. 证矩形ABCD的面积是3a·3b=32ab,矩形A′B′C′D′的面积是4a·4b=42ab,所以矩形ABCD和矩形A′B′C′D′的面积之比是 32ab∶42ab=32∶42. 从定理1和定理2,我们自然会想到:相似的两个立体的体积之比与它们的相似比有什么关系呢?为此,我们看下面的例子. 例3 图2-174是两个相似的长方体,它们的相似比为3∶5,求它们的体积之比. 解长方体(a)的体积是3a·3b·3c=33abc, 长方体(b)的体积是5a·5b·5c=53abc, 所以长方体(a)与长方体(b)的体积的比是 33abc∶53abc=33∶53 例4 图2-175是两个相似圆柱,它们的相似比为2∶3,求它们的体积之比. 解小圆柱的体积是 (2a)2π·2b=23a2bπ,大圆柱的体积是 (3a)2π·3b=33a2bπ,所以小圆柱与大圆柱的体积之比为23∶33. 定理3 相似形的体积之比,等于它的相似比的立方.

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

初中数学竞赛专题培训(6):代数式的求值

初中数学竞赛专题培训第六讲代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下 即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy, 所以 求x2+6xy+y2的值. 分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y与xy的值,由此得到以下解法. 解 x2+6xy+y2=x2+2xy+y2+4xy =(x+y)2+4xy 3.设参数法与换元法求值

初中数学竞赛专题培训

第一讲:因式分解(一) (1) 第二讲:因式分解(二) (4) 第三讲实数的若干性质和应用 (7) 第四讲分式的化简与求值 (10) 第五讲恒等式的证明 (13) 第六讲代数式的求值 (16) 第七讲根式及其运算 (19) 第八讲非负数 (23) 第九讲一元二次程 (27) 第十讲三角形的全等及其应用 (30) 第十一讲勾股定理与应用 (34) 第十二讲平行四边形 (37) 第十三讲梯形 (40) 第十四讲中位线及其应用 (43) 第十五讲相似三角形(一) (46) 第十六讲相似三角形(二) .......................................... 49 第十七讲* 集合与简易逻辑 (52) 第十八讲归纳与发现 (57) 第十九讲特殊化与一般化 (61) 第二十讲类比与联想 (65) 第二十一讲分类与讨论 (68) 第二十二讲面积问题与面积法 (72) 第二十三讲几不等式 (75) 第二十四讲* 整数的整除性 (79) 第二十五讲* 同余式 (82) 第二十六讲含参数的一元二次程的整数根问题 (85) 第二十七讲列程解应用问题中的量 (88) 第二十八讲怎样把实际问题化成数学问题 (92) 第二十九讲生活中的数学(三) ——镜子中的世界 (96) 第三十讲生活中的数学(四)──买鱼的学问 (99) 第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决多数学问题的有力工具.因式分解法灵活,技巧性强,学习这些法与技巧,不仅是掌握因式分解容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-… -ab n-2+b n-1),其中n为奇数. 运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 w

等差等比数列专项练习题(精较版)

等差数列、等比数列同步练习题 等差数列 一、选择题 1、等差数列-6,-1,4,9,……中的第20项为() A、89 B、-101 C、101 D、-89 2、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的() A、第60项 B、第61项 C、第62项 D、不在这个数列中 3、在-9与3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n为 A、4 B、5 C、6 D、不存在 4、等差数列{a n}中,a1 + a7 = 42,a10 - a3 = 21,则前10项的S10等于() A、720 B、257 C、255 D、不确定 5、等差数列中连续四项为a,x,b,2x,那么a:b等于() A、1 4B、 1 3C、 1 3或 1 D、 1 2 6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{ C n },其通项公式为()A、C n= 4n - 3 B、C n= 8n - 1 C、C n= 4n - 5 D、C n= 8n - 9

7、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有() A、6项 B、8项 C、10项 D、12项 8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为() A、0 B、100 C、10000 D、505000 二、填空题 9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。 10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。 11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是 ______ 。 12、已知等差数列 110,116,122,……,则大于450而不大于602的各项之和为 ______ 。 13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 = 14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 = 15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 = 16、已知{a n}为等差数列,a1 + a3 + a5 = 105,a2 +a4 + a6 = 99,则a20 =

初中数学竞赛专题培训(7):根式及其运算

初中数学竞赛专题培训第七讲根式及其运算 二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析. 二次根式的性质: 二次根式的运算法则: 设a,b,c,d,m是有理数,且m不是完全平方数,则当且 仅 当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式. 例1 化简: 法是配方去掉根号,所以 因为x-2<0,1-x<0,所以 原式=2-x+x-1=1. =a-b-a+b-a+b=b-a. 说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简. 例2 化简: 分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.

解法1 配方法. 配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则 解法2 待定系数法. 例4 化简: (2)这是多重复合二次根式,可从里往外逐步化简. 分析被开方数中含有三个不同的根式,且系数都是2,可以 看成 解设 两边平方得 ②×③×④得 (xyz)2=5×7×35=352. 因为x,y,z均非负,所以xyz≥0,所以 xyz=35.⑤ ⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以 解设原式=x,则

解法1 利用(a+b)3=a3+b3+3ab(a+b)来解. 将方程左端因式分解有 (x-4)(x2+4x+10)=0. 因为 x2+4x+10=(x+2)2+6>0, 所以x-4=0,x=4.所以原式=4. 解法2 说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法. 例8 化简: 解(1) 本小题也可用换元法来化简. 解用换元法. 解直接代入较繁,观察x,y的特征有 所以

专题10等差数列与等比数列—三年高考(2015-2017)数学(文)真题汇编

1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 【考点】 等差数列、充分必要性 【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知 4652S S S d +-=, 结合充分必要性的判断,若q p ?,则p 是q 的充分条件,若q p ?, 则 p 是q 的必要条件,该题“0>d ”?“02564>-+S S S ”,故为充要条件. 2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若 844S S =,则10a =( ) (A ) 172 (B )19 2 (C )10 (D )12 【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)2 2 a a +??=+??,解得1a =1 2 , ∴101119 9922 a a d =+= += ,故选B. 【考点定位】等差数列通项公式及前n 项和公式 【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算. 3.【2014高考重庆文第2题】在等差数列{}n a 中,1 352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 【答案】B

【解析】 试题分析:设等差数列{}n a 的公差为d ,由题设知,12610a d +=,所以,1 10216 a d -== 所以,7 16268a a d =+=+=.故选B. 考点:等差数列通项公式. 【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答. 4. 【2014天津,文5】设 {}n a 是首项为1 a ,公差为1-的等差数列,n S 为其前n 项和,若 , ,,421S S S 成等比数列,则1a =( ) A.2 B.-2 C.2 1 D .1 2- 【答案】D 考点:等比数列 【名师点睛】本题考查等差数列的通项公式和前n 项和公式,本题属于基础题,利用等差数列的前n 项和公式表示出,,,421S S S 然后依据,,,421S S S 成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n 项和公式通过列方程或方程组就可以解出. 5. 【2014辽宁文9】设等差数列{}n a 的公差为d ,若数列1{2}n a a 为递减数列,则( ) A .0d < B .0d > C .10a d < D .10a d > 【答案】C 【解析】 试题分析:由已知得,11122n n a a a a -<,即111212 n n a a a a -<,1 n 1(a ) 21n a a --<, 又n 1a n a d --=,故121a d <,从而10a d <,选C . 【考点定位】1、等差数列的定义;2、数列的单调性. 【名师点睛】本题考查等差数列的通项公式、数列的性质等, 解答本题的关键,是写出等差

初中数学竞赛专题培训

初中数学竞赛专题培训第一讲:因式分解(一) 多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍. 1.运用公式法 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如: (1)a2-b2=(a+b)(a-b); (2)a2±2ab+b2=(a±b)2; (3)a3+b3=(a+b)(a2-ab+b2); (4)a3-b3=(a-b)(a2+ab+b2). 下面再补充几个常用的公式: (5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2; (6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca); (7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数; (8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数; (9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式. 例1 分解因式: (1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz; (3)a2+b2+c2-2bc+2ca-2ab; (4)a7-a5b2+a2b5-b7. 解(1)原式=-2x n-1y n(x4n-2x2ny2+y4) =-2x n-1y n[(x2n)2-2x2ny2+(y2)2] =-2x n-1y n(x2n-y2)2 =-2x n-1y n(x n-y)2(x n+y)2. (2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z) =(x-2y-z)(x2+4y2+z2+2xy+xz-2yz). (3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2 =(a-b)2+2c(a-b)+c2 =(a-b+c)2. 本小题可以稍加变形,直接使用公式(5),解法如下: 原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b) =(a-b+c)2 (4)原式=(a7-a5b2)+(a2b5-b7) =a5(a2-b2)+b5(a2-b2) =(a2-b2)(a5+b5) =(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4) =(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4) 例2 分解因式:a3+b3+c3-3abc. 本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式 (a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为 a3+b3=(a+b)3-3ab(a+b). 这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc =[(a+b)3+c3]-3ab(a+b+c) =(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c) =(a+b+c)(a2+b2+c2-ab-bc-ca). 说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为 a3+b3+c3-3abc 显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c 时,等号成立. 如果令x=a3≥0,y=b3≥0,z=c3≥0,则有 等号成立的充要条件是x=y=z.这也是一个常用的结论.

等差数列与等比数列

等差数列与等比数列 一.选择题 (1)在等差数列{a n }中, a 7=9, a 13=-2, 则a 25= ( ) A -22 B -24 C 60 D 64 (2) 在等比数列{a n }中, 存在正整数m, 有a m =3, a m+5=24, 则, a m+15= ( ) A 864 B 1176 C 1440 D 1536 (3)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( ) A –4 B –6 C –8 D –10 (4)设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列{}n a 的前n 项和,则 ( ) A S 4+><,则使前n 项和0n S >成 立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .4008 (7) 数列{a n }的前n 项和S n =3n -c, 则c=1是数列{a n }为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C 充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{a n }中, a 1<0, 若对正整数n 都有a n 1 B 0

相关文档 最新文档