文档库 最新最全的文档下载
当前位置:文档库 › 电吉他接声卡-阻抗匹配与DI

电吉他接声卡-阻抗匹配与DI

电吉他接声卡-阻抗匹配与DI
电吉他接声卡-阻抗匹配与DI

电吉他拾音器专题(电气篇)-阻抗匹配与DI

摘要: 如果将电吉他接声卡LINE IN,阻抗失配将造成高频完全损失掉!你还在这样用吗?如果你一直在这样用,那么或许你还没有听过电吉他的真实声音。

本文总电气学角度分析阻抗匹配的重要性,如果理解起来比较复杂,那就看最后那张曲线图和分析

前言:

要了解一个拾音器的特性不能光只从工作原理来看,因為它本身是电子零件,所以就得从电子的角度来看。常听人家说某个拾音器声音怎样音色怎样。但事实上一个拾音器并没有声音,它只是个转换器。它把弦的振动转换成电子信号。重点在於转换的过程,有所谓的频率响应问题。因為输入是弦的振动,输出是电子信号,在转换的过程中,拾音器有自己的个性,导致输入不等於输出。我们要探讨的就是不同的拾音器,不同的外部零件会引起转换特性產生何种变化。

举个例子,当我输入一个信号A,送进一个增益為B的转换器,得到的输出為C,则C = A x B。B不等於1的时候,C远永不等於A。当A与B為频率的函数时,C的变化才是我们关心的重点。

拾音器的电器性质:

被动拾音器在电气上的特性主要由几项参数决定,最常见的就是DC阻抗,电感量,还有线圈间的电容。当然磁石强度也会有影响,但是这部份无法选择,且在频率响应上是无关的参数,只是影响信号强度,所以电路模型裡没有磁石强渡这个参数。而外部的负载也影响拾音器的输出甚鉅。我们会在下面证明。

DC阻抗是很容易量测的,只需要一个电錶即可。Fender单线圈拾音器的DC阻抗通常在

6K-7.5K欧姆上下。双线圈则在串联时為8K-14K欧姆左右,越高的DC阻抗通常表示绕线圈数越高,因此输出也较高。但越细的铜线阻抗也越高,因此DC阻抗没有办法作為绝对的参考。高遶线圈数虽然带来高输出,但同时也带来高杂讯。绕线数越少的话,声音则越偏明亮。反之,绕线越多则声音会偏中低频较多。超过16K的拾音器偏低频且无生命感。

拾音器的电感量是由绕线圈的多寡、线圈形状、铁心磁导率等参数决定,理想电感对DC信号来说是无阻抗,但在AC信号时,电感是有电感抗的。而铜线併排產生的电容,在AC信号当中也是具有电容抗。

在电感、电容、电阻三者的结合之下,拾音器在电路上形成一个RLC谐振电路。所谓谐振电路意思是信号通过此电路时,在某个频率下有最大的响应。超过或低於这个频率时,电路的响应则越小。通常拾音器的谐振频率多在2K-5KHz左右。但是外接的负载会改变这个数值。因為谐振频率分布在2K-5KHz,因此这范围内的泛音会被加强。而基频则没什麼变化。不同的频率的泛音强度就是让声音听起来不一样的主因。

拾音器的电路模型:

左图是拾音器的电路模型,由一个理想的电感与电阻串联,而铜线之间併排產生的电容则与其并联。

当PU安装在吉他上,接了音质控制、音量控制和导线、AMP之后,整个模型变成下图般。

R2是TONE可变电阻(全开状态),C2是TONE电容,R3音量调整电阻(全开状态),C3是导线的电容,R4是AMP的输入阻抗。

其中C1、C2、C3都会把高频信号导引入地,因此他们的数值越大,信号的高频衰减越多。TONE的控制就是调整C2影响信号的多寡。当R2為500K的时候,R2+C2的阻抗较高,C2影响信号较少。整个电路是个低通滤波器,频率越低的信号越可以通过,高频的信号因為电容在高频阻抗变低所以被衰减。另外,R3和R4的数值越高,则谐振频率点的振幅就越高,Q越大。因此使用高阻抗的音量和音质可变电阻可以让声音高频泛音在谐振点附近增加音量。而电感值的大小也会影响谐振频率的移动。越小的电感值可以得到较高的谐振频率点。

整个低通滤波器在信号功率降為一半时((-3dB)往后的频率每两倍会衰减12dB。所以频率越高衰减越大。低频的部份则很滑顺无大变化。

当然只用文字描述根本就让人看的一团雾水,因此免不了要给它模拟一下。

我们选定一些条件就是如上面的电路图所示,一般拾音器输出从0.1Vrms~1Vrms不等,我们取1V,其实这不是重点,我们是看增益(dB),其他的数值是取自一些常见的拾音器的参数。

上图是TONE转最大的时候,在4.5KHz有个隆起,那就是谐振频率点。此点增益7.3dB表

示信号放大了2.3倍。这是RLC谐振电路的特点,虽然是被动电路,但信号也可以被放大,但是整体功率不变。因為信号电压放大电流却变小。

上图是将TONE转到最小的状态。比较和上图的差异,谐振点的频率变成1.7KHz左右。到7KHz的部份就衰减-20dB。所以高频变少了,声音听起来就比较闷,没那麼活跳跳的感觉。谐振点的峰值没太大变化。

从上面的例子可以看出,光是一个电容就可以让拾音器的频率响应改变,谐振频率点整个位移,进而改变输出的音质。所以其实除了换PU以外,在电路零件的变化上其实也有不少动手脚的空间。

回到最开始的话题,拾音器没有声音,只有转移特性。我们模拟的时候,输入的信号(不是吉他弦的振动信号)是不管什麼频率下大小都一样的,也就是说如果把响应图画出来,它会是一条0dB的直线。0dB就是没有放大没有衰减。就像下图。

输入是一条直线,输出却变成像山一样的曲线,这就是拾音器的转移特性,或是它的增益。输入乘上增益就是输出。红线代表的就是拾音器加上周边线路的转移特性。只要改变拾音器的组态(线圈的数量)或者外部电路,就可以改变这个转特性曲线。把谐振点位移到喜欢的位置。

实际上,弦的振动因為被木头影响,因此在不同频率也有类似的变化曲线,很少有吉他的弦在所有频率下振动的幅度都一样。木材和弦的相互影响是属於机械系统,有其自然共振频率。其实也可以用类似的模型来分析。就像汽车的悬吊系统可以用物理和力学的方程式导出它的转移函数,找出输入和输出的关係。还有桥樑為什麼要算共振频率,且要避掉地震的频率,如果两者频率相同,震动会达到最高值而產生破坏。

更多的模拟:

接下来我将用更多的模拟来说明其他参数改变对PU的转移特性会造成什麼改变。所以的对照标準都以下两图為标準。

1. 改变电感量: 假设L1电感2H变成4H。则结果会变成下图,注意谐振点从4.5KHz变成3.3KHz。

2.换可变电阻: 把电感恢復成2H,把音质和音量可变电阻(R2,R3)改成250K欧姆。则结果变成下图,注意谐振点没什麼变动,但是谐振点的峰值变小,Q度降低(山坡变和缓)。

3.换掉TONE电容: 把可变电阻恢復成500K,TONE电容C2改成0.1uF。变化却不大。原

因是TONE可变电阻R2的阻抗很大,因此改变C2的作用必须在可变电阻值转到0时来分析。

把TONE转到最小变成下图这样,高频都不见了。

4.不好的导线: 如果把导线的电容C3加大(比如说用到滥导线,电容特大)成1nF,效果和TONE电容C2变大一样。谐振点从4.5KHz变成3.4KHz,也就是高频少了。所以大家导线要注意的应该是什麼?导线不要太长,因為越长的话电容越大,如果想要高频(泛音)越多的

话应该知道怎麼做了吧?不管多贵多有名的导线,不要想的太神奇,都是电线的电容在作祟。通常明亮的导线表示电容量较小。

5.阻抗不匹配: 最后看的就是AMP的电阻R4,正常都是1M,这算是高阻抗。如果你接到其他设备的Line IN孔,输入阻抗是10K(对PU来说很低),那会发生什麼事情?

只有一个惨字可以形容啊!不仅音量超小,高频都不见了。这就是阻抗不匹配的结果,拾音器内阻高,负载太小,声音变的超级无力。

最后两个模拟的重点在於告诉各位,导线不要用太长,也不要太迷信True Bypass效果器,因為全都是True Bypass会造成效果器ALL OFF时导线太长反而电容变大导致吃痛,没想到本来想要不吃痛却出现反效果?所以建议尽可能第一颗效果器用缓衝功能(电子式Bypass)的效果器来做,或者使用内建的前级将吉他后面的负载隔离。并且注意阻抗的匹配问题,不是给吉他插的就别乱插,避免拾音器过载,声音死沉。如果通盘考虑,其实单一FET的内置放大缓衝电路是很好的选择,可以隔离拾音器的负载,增加高频输出,防止因為导线过长或太多True bypass效果器的吃TONE现象。

综合以上的分析模拟,我们可以知道其实拾音器和周边线路所造成的转移特性,才是影响整个音色最重的部份,所有后面接的器材不管如何处理信号,他们的来源都是经过这个转移特性处理过的。

阻抗匹配基本概念以与高频阻抗匹配

英文名称:impedance matching 基本概念 信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。 匹配条件 ①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。 ②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。这时在负载阻抗上可以得到最大功率。这种匹配条件称为共轭匹配。如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。史密夫图表上。电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 共轭匹配 在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。然而阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 匹配分类 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 1. 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代

阻抗匹配基本认识

阻抗匹配基本認識 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U×[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为: P=I2×R=(U/(R+r))2×R=U2×R/(R2+2×R×r+r2) =U2×R/((R-r)2+4×R×r) =U2/(((R-r)2/R)+4×r) 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则 是由我们来选择的。注意式中((R-r)2/R),当R=r时,(R-r)2/R可 取得最小值0,这时负载电阻R上可获得最大输出功率 Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可 获得最大输出功率,这就是我们常说的阻抗匹配之一。 对于纯电阻电路,此结论同样适用于低频电路及高频电路。 当交流电路中含有容性或感性阻抗时,结论有所改变,就是需 要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。 Z=R+jX ﹐Z=R-jX 在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。 有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。 传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上比较常见,用来做八木天线的馈线。因为电视机的射频输入端输入阻抗为75Ω,所以

阻抗匹配问题

说明:信号源输出阻抗一般都为50ohm ,信号源面板显示的输出信号幅度,频率是图2处信号的幅度,频率。 (1)若负载输入阻抗为50ohm ,则信号源输出与负载输入匹配,则负载获得的信号幅度,频率与2处的电压幅度理论上一致。 (2)若负载输入阻抗为1Mohm ,则信号源输出与负载输入不匹配,则负载获得的信号幅度,频率与1处的电压幅度理论上一致。 ◆ 纯电阻电路:低频和高频都存在;(匹配) 1、 负载电阻R 电压:1 1l i i R U U U r R r R = =++;负载电阻越大,则负载获得的电压越高。 2、 负载R 电流:i l U i R r = +;负载越小,则负载获得的电流越小。 3、 负载获得的功率:2 22222//24l i l i i U U R r P i R U R U R r R R r R r ????====++≤ ? ?+???? ;当且 仅当R=r 时;负载功率最大。 ◆ 存在容性和感性阻抗时,(共轭匹配) 共轭匹配:当交流电路中含有容性或感性阻抗时,若信号源与负载阻抗的实部相等,虚 部互为相反数,此时负载获得最大功率。 源电抗:r r Z r jX =+

负载电抗:R R Z R jX =+ 负载功率: ()() ()()()()22 22 22222 142R r R r R r R r U R U U U P r R r X X R r X X r X X R r X X R R R R = ==≤??+++??+++++++++ ????? 当且仅当R r R r X X =??=-?时,负载获得最大功率。 结论: 1、需要大的电流输出,则选择小的负载R ; 2、需要大的电压输出,则选择大的负载R ; 3、需要输出最大功率,则选择与信号源内阻匹配的电阻R 。(功率传递!) 低频时,信号的波长相对与传输线来说很长,传输线可以看成短线,反射可以不考虑。 高频时,f c λ=;信号频率很高时,信号的波长就很短,当波长和传输线的长度可以比拟时,反射信号叠加在原来信号上将会改变原信号的形状。例:传输线的特性阻抗跟负载阻抗不匹配时,在负载端就产生反射,能量传输不过去,降低效率,功率发射不出去,甚至会顺坏发射设备。 当信号源和传输线、负载的阻抗相互匹配时候,有更多的能量从信号源中发射出来!!! 问题:、25kHz~80kHz 用示波器50ohm 输入阻抗实测,为何信号源输出和示波器显示信号的幅度不一致?(据说这种射频源有些频段幅度不准,建议下次问问罗德斯瓦茨做源的代理)

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗

在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗 阻抗匹配(impedance matching)是指信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。对于低频电路和高频电路,阻抗匹配有很大的不同。 在理解阻抗匹配前,先要搞明白输入阻抗和输出阻抗。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题),另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r 的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)内阻了。 当这个电压源给负载供电时,就会有电流I 从这个负载上流过,并在这个电阻上产生I ×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会

(完整版)阻抗匹配的研究

阻抗匹配的研究 在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才 能比较合理的应用,需要衡量多个方面的因素。例如我们在系统中设计中,很多采用的都是源段的串连匹配。对于什么情况下需 要匹配,采用什么方式的匹配,为什么采用这种方式。 例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配; 1、串联终端匹配 串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使 源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射. 串联终端匹配后的信号传输具有以下特点: A 由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播; B 信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。 C 反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同; D 负载端反射信号向源端传播,到达源端后被匹配电阻吸收;? E 反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。 相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。 选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。理想的信 号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。比如电 源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37?,在高电平时典型的输出阻抗为45?[4];TTL驱动器和CMOS驱动 一样,其输出阻抗会随信号的电平大小变化而变化。因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考

PCB布板阻抗匹配概念

阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力 把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线

由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电

输入阻抗、输出阻抗、阻抗匹配分析_.

输入阻抗、输出阻抗、阻抗匹配分析 输入阻抗 四端网络、传输线、电子电路等的输入端口所呈现的阻抗。实质上是个等效阻抗。只有确定了输入阻抗,才能进行阻抗匹配,从信号源、传感器等获取输入信号。阻抗是电路或设备对交流电流的阻力,输入阻抗是在入口处测得的阻抗。高输入阻抗能够减小电路连接时信号的变化,因而也是最理想的。在给定电压下最小的阻抗就是最小输入阻抗。作为输入电流的替代或补充,它确定输入功率要求。 天线的输入阻抗定义为输入端电压和电流之比。其值表征了天线与发射机或接收机的匹配状况,体现了辐射波与导行波之间能量转换的好坏。 输出阻抗 阻抗是电路或设备对交流电流的阻力,输出阻抗是在出口处测得的阻抗。阻抗越小,驱动更大负载的能力就越高。 输入阻抗和输出阻抗在很多地方都用到,非常重要。 首先,输入阻抗和输出阻抗是相对的,我们先要明白阻抗的意思。 阻抗,简单的说就是阻碍作用,甚至可以说就是电阻,即一种另一层意思上的等效电阻。 引入输入阻抗和输出阻抗这两个词,最大的目的是在设计电路中,要提高效率,即要达到阻抗匹配,达到最佳效果。 有了输入输出阻抗这两个词,还可以方便两个电路独立的分开来设计。当A电路中输入阻抗和B电路的输出阻抗相同(或者在一定范围时,两个电路就可不作任何更改,直接组合成一个更复杂的电路(或者系统。

由上也可以得出:输入阻抗和输出阻抗实际上就是等效电阻,单位自然就是欧姆了。 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对 信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源,内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配

阻抗匹配

阻抗匹配与史密斯(Smith)圆图: 基本原理 本文利用史密斯圆图作为RF 阻抗匹配的设计指南。文中给出了反射系数、阻抗和导 纳的作图范例,并用作图法设计了一个频率为60MHz 的匹配网络。 实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。 在处理RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大 器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。 在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预 知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。 有很多种阻抗匹配的方法,包括: ? 计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。 ? 手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 ? 经验: 只有在RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 ? 史密斯圆图: 本文要重点讨论的内容。 本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。 w w w . p c b t e c h .n e t

同轴线的阻抗为什么一般为或欧详解

什么是典型的电缆阻抗? 同轴电缆使用的最典型阻抗值为50欧姆和75欧姆。50欧姆同轴电缆大概是使用中最常见的,一般使用在无线电发射接收器,实验室设备,以太等环境下。 另一种常用的电缆类型是75欧姆的同轴电缆,一般用在视频传输,有限电视网络,天线馈线,长途电讯应用等场合。 电报和电话使用的裸露平行导线也是典型的阻抗为600欧姆。一对线径标准22的双绞线,使用合适的绝缘体,因为机械加工的限制,平均阻抗大约在120欧姆左右,这是另一种具有自己特有特性阻抗的传输线。 某些天线系统中使用300欧姆的双引线,以匹配折合半波阵子在自由空间阻抗。(但当折合阵子处于八木天线中的时候,阻抗通常会下降很多,一般在100-200欧姆左右) (注:加反射板也会改变阵子的阻抗值,一般会降低,而且反射板越近则阻抗降低越多。) 为什么是50欧姆的同轴电缆? 在美国,用作射频功率传输的标准同轴电缆的阻抗几乎无一例外地都是50欧姆。为什么选用这个数值,在伯德电子公司出示的一篇论文中有解释。 不的的参数都对应一个最佳的阻抗值。内外导体直径比为 1.65时导线有最大功率传输能力,对应阻抗为30欧姆(注:lg1.65*138 =30欧姆,要使用空气为绝缘介质,因为这个时候介电常数最小,

如果使用介电常数为2.3的固体聚乙烯,则阻抗只有不到20欧姆)。最合适电压渗透的直径比为2.7,对应阻抗大约是60欧姆。(顺带一提,这个是很多欧洲国家使用的标准阻抗) 当发生击穿时,对功率传输能力的考量是忽略了渗透电流的,而在阻抗很低,30欧姆时,渗透电流会很高。衰减只源自导体的损失,此时的衰减大约比最小衰减阻抗(直径比3.5911)77欧姆的时候上升了50%,而在这个比率下(D/d=3.5911),最大功率的上限为3 0欧姆电缆最大功率的一半。 以前,很少使用微波功率,电缆也无法应付大容量传输。因此减少衰减是最重要的因素,导致了选择77(75欧姆)为标准。同时也确立了硬件的规格。当低耗的绝缘材料在实际中应用到柔性电缆上,电缆的尺寸规格必须保持不变,才能和现存的设备接口吻合。 聚乙烯的介电常数为2.3,以空气(介电常数为1)为绝缘层的导线的阻抗为77欧姆,如果以聚乙烯来填充绝缘空间的话,阻抗将减少为51欧姆。虽然精确的标准是50欧姆,51欧姆的电缆在今天仍然在使用。 在77欧姆点的衰减最小,60欧姆点的击穿电压为最大,而30欧姆点的功率输送量是最大的。(注:洋人的思维也如此混乱,这些性能指标明明不是由阻抗决定的。前面说过,这些由D/d比决定的。闲扯这些只让人产生误解) 另外一个可以导致50欧姆同轴电缆的事情,如果您使用一个合适直径的中心导体,并将绝缘体注入中心倒替周围,再在外围装上屏

PCB布线问题总汇

1、高频信号布线时要注意哪些问题? 答:信号线的阻抗匹配;与其他信号线的空间隔离;对于数字高频信号,差分线效果会更好; 2、在布板时,如果线密,过孔就可能要多,当然就会影响板子的电气性能,请问怎样提高板子的电气性能? 答:对于低频信号,过孔不要紧,高频信号尽量减少过孔。如果线多可以考虑多层板; 3、是不是板子上加的去耦电容越多越好? 答:去耦电容需要在合适的位置加合适的值。例如,在你的模拟器件的供电端口就进加,并且需要用不同的电容值去滤除不同频率的杂散信号; 4、一个好的板子它的标准是什么? 答:布局合理、功率线功率冗余度足够、高频阻抗阻抗、低频走线简洁. 5、通孔和盲孔对信号的差异影响有多大?应用的原则是什么? 答:采用盲孔或埋孔是提高多层板密度、减少层数和板面尺寸的有效方法,并大大减少了镀覆通孔的数量。但相比较而言,通孔在工艺上好实现,成本较低,所以一般设计中都使用通孔。 6、在涉及模拟数字混合系统的时候,有人建议电层分割,地平面采取整片敷铜,也有人建议电地层都分割,不同的地在电源源端点接,但是这样对信号的回流路径就远了,具体应用时应如何选择合适的方法? 答:如果你有高频>20MHz信号线,并且长度和数量都比较多,那么需要至少两层给这个模拟高频信号。一层信号线、一层大面积地,并且信号线层需要打足够的过孔到地。这样的目的是:1)对于模拟信号,这提供了一个完整的传输介质和阻抗匹配;2)地平面把模拟信号和其他数字信号进行隔离;3)地回路足够小,因为你打了很多过孔,地有是一个大平面。 7、在电路板中,信号输入插件在PCB最左边沿,MCU在靠右边,那么在布局时是把稳压电源芯片放置在靠近接插件(电源IC输出5V经过一段比较长的路径才到达MCU),还是把电源IC放置到中间偏右(电源IC的输出5V的线到达MCU就比较短,但输入电源线就经过比较长一段PCB板)?或是有更好的布局? 答:首先你的所谓信号输入插件是否是模拟器件?如果是是模拟器件,建议你的电源布局应尽量不影响到模拟部分的信号完整性.因此有几点需要考虑:1)首先你的稳压电源芯片是否是比较干净,纹波小的电源.对模拟部分的供电,对电源的要求比较高;2)模拟部分和你的MCU是否是一个电源,在高精度电路的设计中,建议把模拟部分和数字部分的电源分开;3)对数字部分的供电需要考虑到尽量减小对模拟电路部分的影响. 8、在高速信号链的应用中,对于多ASIC都存在模拟地和数字地,究竟是采用地分割,还是不分割地?既有准则是什么?哪种效果更好? 答:迄今为止,没有定论。一般情况下你可以查阅芯片的手册。ADI所有混合芯片的手册中都是推荐你一种接地的方案,有些是推荐公地、有些是建议隔离地。这取决于芯片设计。 9、何时要考虑线的等长?如果要考虑使用等长线的话,两根信号线之间的长度之差最大不能超过多少?如何计算? 答:差分线计算思路:如果你传一个正弦信号,你的长度差等于它传输波长的一半是,相位差就是180度,这时两个信号就完全抵消了。所以这时的长度差是最大值。以此类推,信号线差值一定要小于这个值。 10、高速中的蛇形走线,适合在那种情况?有什么缺点没,比如对于差分走线,又要求两组信号是正交的。 答蛇形走线,因为应用场合不同而具不同的作用: 1)如果蛇形走线在计算机板中出现,其主要起到一个滤波电感和阻抗匹配的作用,提高电路的抗干扰能力。计算机主机板中的蛇形走线,主要用在一些时钟信号中,如PCI-Clk,AGPCIK,IDE,DIMM等信号线;2)若在一般普通PCB板中,除了具有滤波电感的作用外,还可作为收音机天线的电感线圈等等。如2.4G的对讲机中就用作电感;3)对一些信号布线长度要求必须严格等长,高速数字PCB板的等线长是为了使各信号的延迟差保持在一个范围内,保证系统在同一周期内读取的数据的有效性(延迟差超过一个时钟周期时会错读下一周期的数据)。如INTELHUB架构中的HUBLink,一共13根,使用233MHz的频率,要求必须严格等长,以消除时滞造成的隐患,绕线是惟一的解决办法。一般要求延迟差不超过1/4时钟周期,单位长度的线延迟差也是固定的,延迟跟线宽、线长、铜厚、板层结构有关,但线过长会增大分布电容和分布电感,使信号质量有所下降。所以时钟IC引脚一般都接;" 端接,但蛇形走线并非起电感的作用。相反地,电感会使信号中的上升沿中的高次谐波相移,造成信号质量恶化,所以要求蛇形线间距最少是线宽的两倍。信号的上升时间越小,就越易受分布电容和分布电感的影响。4)蛇形走线在某些特殊的电路中起到一个分布参数的LC滤波器的作用。 11、在设计PCB时,如何考虑电磁兼容性EMC/EMI,具体需要考虑哪些方面?采取哪些措施?

阻抗匹配与阻抗线线宽设置_1129

一、阻抗匹配概念 定义: 1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。 2、阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 我们以下例(软管送水浇花)来感性认识一下阻抗匹配的功用 A、一端于手握处加压使其射出水柱,另一端接在水龙头,。当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示: B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高);如下图所示: C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。(阻抗太低),如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。(阻抗匹配)

二、PCB走线的阻抗匹配与阻抗控制 (1)定义 阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路。传输线阻抗和负载阻抗达到匹配的定义,简单说就是:Z0=ZL。在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。 (2)PCB走线作阻抗控制的原因 1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。 2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。 3:由于元件的电子阻抗越高,其传输速率越快。总之,是为了配合电子元器件的电子阻抗,避免信号传输时失真的现象,所以要控制阻抗。 (3)、决定阻抗控制大小的因素,主要包括以下几个方面: 1、W-----线宽/线与地平面间距 2、H----绝缘介质厚度 3、T------铜厚 4、H1---绿油厚 5、Er-----介电常数 6、参考地平面层 射频信号在多层板传输线(Transmission Line,是由信号线、介质层、及接地层三者所共同组成)中所进行的快速传送;如下图所示: 三、PCB阻抗控制线计算概述 对于常见的FR4 板材的 PCB 板上, 对于微带线,线宽 W 是介质厚度 h的2 倍。对于带状线,线条两侧介质总厚度b 是线宽 W 的两倍(估算法);精确计算公式分别如下所示:

传输线阻抗匹配方法

传输线阻抗匹配方法 匹配阻抗的端接有多种方式,包括并联终端匹配、串联终端匹配、戴维南终端匹配、AC终端匹配、肖特基二极管终端匹配。 1.并联终端匹配 并联终端匹配是最简单的终端匹配技术,通过一个电阻R将传输线的末端接到地或者接到V CC上。电阻R的值必须同传输线的特征阻抗Z0匹配,以消除信号的反射。终端匹配到V CC可以提高驱动器的源的驱动能力,而终端匹配到地则可以提高电流的吸收能力。 并联终端匹配技术突出的优点就是这种类型终端匹配技术的设计和应用简便易行,在这种终端匹配技术中仅需要一个额外的元器件;这种技术的缺点在于终端匹配电阻会带来直流功率消耗。另外并联终端匹配技术也会使信号的逻辑高输出电平的情况退化。将TTL输出终端匹配到地会降低V OH的电平值,从而降低了接收器输入端对噪声的免疫能力。 对长走线进行并联终端匹配后仿真,波形如下: 2.串联终端匹配 串联终端匹配技术是在驱动器输出端和信号线之间串联一个电阻,是一种源

端的终端匹配技术。驱动器输出阻抗R0以及电阻R值的和必须同信号线的特征阻抗Z0匹配。对于这种类型的终端匹配技术,由于信号会在传输线、串联匹配电阻以及驱动器的阻抗之间实现信号电压的分配,因而加在信号线上的电压实际只有一半的信号电压。 而在接收端,由于信号线阻抗和接收器阻抗的不匹配,通常情况下,接收器的输入阻抗更高,因而会导致大约同样幅度值信号的反射,称之为附加的信号波形。因而接收器会马上看到全部的信号电压(附加信号和反射信号之和),而附加的信号电压会向驱动端传递。然而不会出现进一步的信号反射,这是因为串联的匹配电阻在接收器端实现了反射信号的终端匹配。 串联终端匹配技术的优点是这种匹配技术仅仅为系统中的每一个驱动器增加一个电阻元件,而且相对于其它的电阻类型终端匹配技术来说,串联终端匹配技术中匹配电阻的功耗是最小的,而且串联终端匹配技术不会给驱动器增加任何额外的直流负载,也不会在信号线与地之间引入额外的阻抗。 由于许多的驱动器都是非线性的驱动器,驱动器的输出阻抗随着器件逻辑状态的变化而变化,从而导致串联匹配电阻的合理选择更加复杂。所以,很难应用某一个简单的设计公式为串联匹配电阻来选择一个最合适的值。 对长走线进行串联终端匹配后仿真,波形如下: 3.戴维南终端匹配

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路 性能必须能够使信号在传输过程中不发生反射现象,信号 保持完整,降低传输损耗,起到匹配阻抗的作用,这样才 能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有 高频的微波信号皆能到达负载点,不会有信号反射回源点。

设计阻抗的目的 ?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的范围内,只有通过PCB生产加工过程的管理与控制才能达到。

PCB的制造中影响阻抗的因素 ?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相应减 少4%

ADC阻抗以及阻抗匹配

我来大概概括一下ADC输入阻抗的问题: 1:SAR型ADC这种ADC内阻都很大,一般500K以上。即使阻抗小的ADC,阻抗也是固定的。所以即使只要被测源内阻稳定,只是相当于电阻分压,可以被校正。 2:开关电容型,如TLC2543之类。他要求很低的输入阻抗用于对内部采样电容快速充电。这时最好有低阻源,否则会引起误差。实在不行,可以外部并联一很大的电容,每次被取样后,大电容的电压下降不多。因此并联外部大电容后,开关电容输入可以等效为一个纯阻性阻抗,可以被校正。 3:FLASH.html">FLASH型(直接比较型)。大多高速ADC都是直接比较型,也称闪速型(FLASH),一般都是低阻抗的。要求低阻源。对外表现纯阻性,可以和运放直接连接 4:双积分型大多输入阻抗极高,几乎不用考虑阻抗问题 5:Sigma-Delta型。这是目前精度最高的ADC类型,也是最难伺候的一种ADC。重点讲一下要注意的问题: a.内部缓冲器的使用。SigmaDelta型ADC属于开关电容型输入,必须有低阻源。所以为了简化外部设计,内部大多集成有缓冲器。缓冲器打开,则对外呈现高阻,使用方便。但要注意了,缓冲器实际是个运放。那么必然有上下轨的限制。大多数缓冲器都是下轨50mV,上轨AVCC-1.5V。在这种应用中,共莫输入范围大大的缩小,而且不能到测0V。一定要特别小心!一般用在电桥测量中,因为共模范围都在1/2VCC附近。不必过分担心缓冲器的零票,通过内部校零寄存器

很容易校正的。 b.输入阻抗问题。SigmaDelta型ADC属于开关电容型输入,在低阻源上工作良好。但有时候为了抑制共模或抑制乃奎斯特频率外的信号,需要在输入端加RC滤波器,一般DATASHEET上会给一张最大允许输入阻抗和C和Gain的关系表。这时很奇怪的一个特性是,C越大,则最大输入阻抗必须随之减小!刚开始可能很多人不解,其实只要想一下电容充电特性久很容易明白的。还有一个折衷的办法是,把C取很大,远大于几百万倍的采样电容Cs(一般4~20PF),则输入等效纯电阻,分压误差可以用GainOffset寄存器校正。 c.运放千万不能和SigmaDelta型ADC直连!前面说过,开关电容输入电路电路周期用采样电容从输入端采样,每次和运放并联的时候,会呈现低阻,和运放输出阻抗分压,造成电压下降,负反馈立刻开始校正,但运放压摆率(SlewRate)有限,不能立刻响应。于是造成瞬间电压跌落,取样接近完毕时,相当于高阻,运放输出电压上升,但压摆率使运放来不及校正,结果是过冲。而这时正是最关键的采样结束时刻。 所以,运放和SD型ADC连接,必须通过一个电阻和电容连接(接成低通)。而RC的关系又必须服从5.c里面所述规则。 d.差分输入和双极性的问题。SD型ADC都可以差分输入,都支持双极性输入。但这里的双极性并不是指可以测负压,而是Vi+Vi-两脚之间的电压。假设Vi-接AGND,那么负压测量范围不会超过-0.3V。正确的接法是Vi+Vi-共模都在-0.3~VCC之间差分输入。一个典型的

怎样理解阻抗匹配,很难得的资料

怎样理解阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。 我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R 越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:P=I2×R=[U/(R+r)]2×R=U2×R/(R2+2×R×r+r2) =U2×R/[(R-r)2+4×R×r] =U2/{[(R-r)2/R]+4×r} 对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。注意式中[(R-r)2/R],当R=r时,[(R-r)2/R]可取得最小值0,这时负载电阻R上可获得最大输出功率Pmax=U2/(4×r)。即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。对于纯电阻电路,此结论同样适用于低频电路及高频电路。当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共扼匹配。在低频电路中,我们一般不考虑传输线的

匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是"短线",反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。有时阻抗不匹配还有另外一层意思,例如一些仪器输出端是在特定的负载条件下设计的,如果负载条件改变了,则可能达不到原来的性能,这时我们也会叫做阻抗失配。 在高频电路中,我们还必须考虑反射的问题。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射。为什么阻抗不匹配时会产生反射以及特征阻抗的求解方法,牵涉到二阶偏微分方程的求解,在这里我们不细说了,有兴趣的可参看电磁场与微波方面书籍中的传输线理论。传输线的特征阻抗(也叫做特性阻抗)是由传输线的结构以及材料决定的,而与传输线的长度,以及信号的幅度、频率等均无关。 例如,常用的闭路电视同轴电缆特性阻抗为75Ω,而一些射频设备上则常用特征阻抗为50Ω的同轴电缆。另外还有一种常见的传输线是特性阻抗为300Ω的扁平平行线,这在农村使用的电视天线架上

布线原则

1、[问]高频信号布线时要注意哪些问题? [答] 1.信号线的阻抗匹配; 2.与其他信号线的空间隔离; 3.对于数字高频信号,差分线效果会更好; 2、[问] 在布板时,如果线密,过孔就可能要多,当然就会影响板子的电气性能,请问怎样提高板子的电气性能? [答] 对于低频信号,过孔不要紧,高频信号尽量减少过孔。如果线多可以考虑多层板; 3、[问]是不是板子上加的去耦电容越多越好? [答] 去耦电容需要在合适的位置加合适的值。例如,在你的模拟器件的供电端口就进加,并且需要用不同的电容值去滤除不同频率的杂散信号; 4、[问]一个好的板子它的标准是什么? [答] 布局合理、功率线功率冗余度足够、高频阻抗阻抗、低频走线简洁. 5、[问]通孔和盲孔对信号的差异影响有多大?应用的原则是什么? [答] 采用盲孔或埋孔是提高多层板密度、减少层数和板面尺寸的有效方法,并大大减少了镀覆通孔的数量。但相比较而言,通孔在工艺上好实现,成本较低,所以一般设计中都使用通孔。 6、[问]在涉及模拟数字混合系统的时候,有人建议电层分割,地平面采取整片敷铜,也有人建议电地层都分割,不同的地在电源源端点接,但是这样对信号的回流路径就远了,具体应用时应如何选择合适的方法? [答] 如果你有高频>20MHz信号线,并且长度和数量都比较多,那么需要至少两层给这个模拟高频信号。一层信号线、一层大面积地,并且信号线层需要打足够的过孔到地。这样的目的是: 1、对于模拟信号,这提供了一个完整的传输介质和阻抗匹配; 2、地平面把模拟信号和其他数字信号进行隔离; 3、地回路足够小,因为你打了很多过孔,地有是一个大平面。 7、[问]在电路板中,信号输入插件在 PCB最左边沿,MCU在靠右边,那么在布局时是把稳压电源芯片放置在靠近接插件(电源IC输出5V经过一段比较长的路径才到达 MCU),还是把电源 IC放置到中间偏右(电源 IC的输出 5V的线到达MCU就比较短,但输入电源 线就经过比较长一段 PCB板)?或是有更好的布局? [答] 首先你的所谓信号输入插件是否是模拟器件?如果是是模拟器件,建议你的电源布局应尽量不影响到模拟部分的信号完整性.因此有几点需要考虑(1)首先你的稳压电源芯片是否是比较干净,纹波小的电源.对模拟部分的供电,对电源的要求比较高. (2)模拟部分和你的MCU是否是一个电源,在高精度电路的设计中,建议把模拟部分和数字部分的电源分开. (3)对数字部分的供电需要考虑到尽量减小对模拟电路部分的影响.

相关文档