文档库 最新最全的文档下载
当前位置:文档库 › 常数项级数的概念和性质

常数项级数的概念和性质

常数项级数的概念和性质
常数项级数的概念和性质

7.1 常数项级数的概念和性质

1.写出下列级数的一般项: ⑴ 1357 2468 ++++ ; 【解】分析级数各项的表达规律: 分子为奇数数列21n -,分母为偶数数列2n , 于是得级数的一般项为21 2n n u n -= ,1,2,3,....n =。 ⑵ 1111112349827 ++++++ ; 【解法一】分析级数各项的表达规律: 分子不变恒为1, 分母的变化中,奇数项为2的乘幂,幂指数为项数+1的一半,即12 2 n +,偶数项为3 的乘幂,幂指数为项数的一半,即2 3n , 于是有12 22, 21 3, 2n n n n k u n k +?=-?=??=? ,k J ∈,1,2,3,....n =。 也可为1 221(1)1(1)2322 n n n n n u +--+-=?+?,1,2,3,....n =。 【解法二】分析级数各项的表达规律: 分子不变恒为1,但分母的变化按奇数项和偶数项有不同的变化规律,可以视为两个 级数的和,也可以视为级数的一个项由两个分数的和构成, 若将级数的一个项看成由两个分数的和构成,则有 111 23 u = +, 21149u =+221123=+, 311827u =+ 3311 23 =+, ...... 于是得11 23 n n n u = +,1,2,3,....n =。 ⑶3456 22345 -+-+- 。 【解】分析数列各项的表达规律:

各项顺次正负相间,有符号函数,注意到第一项是正的,应为1 (1)n +-, 从第二项起,各项分式都是分子比分母大1,而分母恰为序数n 于是得1 1 (1) n n n u n ++=-,2,3,....n =, 检验当1n =时,11111(1)21 u ++=-=,说明第一项也符合上面一般项的规律, 从而得 11(1)n n n u n ++=-,1,2,3,....n =。 2.根据级数收敛与发散的定义判断下列级数的敛散性: ⑴ 1 1 (21)(21)n n n ∞ =-+∑; 【解】级数前n 项和为 11(21)(21)n n i S i i ==-+∑1111()221 21n n i i ==--+∑1111 ()22121n n i i ==--+∑ 11[(1)()(1152)]22113113n n =-+-+-+-+ 11 (1)221 n =-+, 由于lim n n S →∞11lim (1)221n n →∞=-+12 =,知级数收敛,收敛于1 2。 ⑵ 1 1 1n n n ∞ =++∑ ; 【解】级数前n 项和为 1 1 1n n i S i i ==++∑ 2211(1)()n i i i i i =+-=+-∑1 (1)n i i i ==+-∑ (1)()(123)2n n =-+-+++- 11n =+-, 由于lim n n S →∞ lim(11)n n →∞ =+-=∞,知级数发散。 ⑶ 1 1 ln n n n ∞ =+∑; 【解】级数前n 项和为 11ln n n i i S i =+=∑1 [ln(1)ln ]n i i i ==+-∑ ln 2ln 2ln3ln (ln1)()[ln(1)]n n =-+-+++- ln(1)ln1n =+-ln(1)n =+,

(完整版)级数的概念与性质

第十一章无穷级数 教学内容目录: §1—§8 本章主要内容: 常数项级数:无穷级数及其收敛与发散的定义,无穷级数的基本性质,级数收敛的必要条件,几何级数,调和级数,P级数,正项级数的比较审敛法和比值审敛法,交错级数,莱布尼兹定理,绝对收敛和条件收敛。 幂级数:幂级数概念,阿贝尔(Abel)定理,幂级数的收敛半径与收敛区间,幂级数的四则运算,和的连续性、逐项积分与逐项微分。泰勒级数,函数展开为幂级数的唯一性,函数(、 e x cos sin ln(1+x)、(1+x)m等)的幂级数展开式,幂级数在近 、x x 、 似计算中的应用举例,“欧拉(Euler)公式。 函数项级数:函数项级数的一般概念,收效域及和函数。 教学目的与要求: 1、理解无穷级数收敛、发散以及和的概念,了解无穷级数基本性质及收敛的必要条件。 2、掌握几何级数和P—级数的收敛性。 3、掌握正项级数的比较审敛法,掌握正项级数的比值审敛法。 4、理解交错级数的审敛法(莱布尼兹定理)。 5、了解无穷级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。 6、了解函数项级数的收敛域及和函数的概念。 7、掌握比较简单的幂级数收敛区间的求法(区间端点的收敛性可不作要求)。 8、了解幂级数在其收敛区间内的一些基本性质。 9、了解函数展开为泰勒级数的充分必要条件。 10、掌握应用e x,sinx,cox,en(1+x)和(1+x)u的马克劳林(Maclaurin)展开式将一些简单的的函数间接展开成幂级数的方法。 11、了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirchet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,并会将定义在(-π,π)上的函数展开为正弦或余弦级数。

相关文档