文档库 最新最全的文档下载
当前位置:文档库 › 钢模板计算书

钢模板计算书

钢模板计算书
钢模板计算书

山水文园工程

模板计算书

1.计算依据

1.参考资料

《建筑结构施工规范》 GB 50009—2001

《钢结构设计规范》 GB 50017—2003

《混凝土结构设计规范》 GB 50010—2002

《钢结构工程施工质量验收规范》 GB 50205-2001

2.侧压力计算

混凝土作用于模板的侧压力可按下列二式计算,并取其最小值:

2/121022.0V t F c ββγ=

H F c γ=

式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2)

γc ------混凝土的重力密度(kN/m 3),此处取25kN/m 3

t 0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用

t0=200/(T+15)计算;假设混凝土入模温度为200C ,即T=200C ,t 0=5.7

V------混凝土的浇灌速度(m/h );取1.5m/h

H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m );取5m

β1------外加剂影响修正系数,不掺外加剂时取1;

β2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50—90mm 时,取1;

110—150mm 时,取1.15。

大模板侧压力计算

2/121022.0V t F c ββγ=

2m /4.385.1117.52522.0KN =?????=

H F c γ==25x5=125KN/m

取二者中的较小值,F =38.4kN/ m 2,近似取40 kN/ m 2

倾倒混凝土产生的水平载荷标准值4.0 kN/ m 2

2m /6.534.142.140KN q =?+?= , 近似取55 kN/ m

综上,模板混凝土侧压力标准值为40KN/m 2,设计值为55KN/m 2。

3.模板计算

模板浇筑高度为5m ,面板采用5mm 冷轧钢板;竖向背楞采用10x50mm 厚钢板,间距为300mm ;水平背楞采用10x50mm 厚钢板,间距500mm,每隔500x300间距设置D20拉杆一道。

3.1面板验算

将面板视为支撑在竖向钢板的三跨连续梁计算,面板长度取板长1000mm ,面板为5mm 厚冷轧钢板, 竖向背楞间距为300mm 。

3.1.1强度验算

作用在面板上的线荷载为:ql q =1 =55x1=55KN/m=55N/mm 面板最大弯矩:1021max l q M ==55x300x300/10=0.5x106N ?mm 面板的截面系数:62bh W ==61

x1000x52=4.17x103mm 3 应力:W M max =σ=0.5x106/4.17x103=120N/mm 2

故满足要求

其中:f -钢材抗弯强度设计值,取215 N/mm 2

E-弹性模量,钢材取2.06x105 N/mm 2

3.1.2挠度验算:

挠度验算采用标准荷载,同时不考虑振动荷载的作用,则线荷载为:

m KN q /40x1402===40N/mm 面板挠度由式EI l q 15042=ω

=40x3004/(150x2.06x100000x1.04x104)

=1mm<[ω]=300/400=0.75mm

不满足要求,建议采用6mm 厚钢板

面板截面惯性矩:I=bh 3/12=1000X53/12=1.04X104mm 4

3.2竖向背楞采用10x50mm 厚钢板验算:

竖肋支承在横向背楞上,可作为支承在横向背楞上的梁计算,其跨距等于横向背楞的间距最大为L=500mm 。

线荷载为:ql q =3 =55x0.3=16.5N/mm

l -竖向背楞之间的水平距离

3.2.1强度验算 最大弯矩23max 8

1L q M ==16.5x5002/8=0.52x106N ?mm 截面系数:

62bh W ==10x502/6=4.17x103mm 3 应力:236max /1241017.4/1052.0mm N W M =??==σ

满足要求

3.2.2刚度验算:

挠度验算采用标准荷载,同时不考虑振动荷载的作用,则线荷载为:

m KN q /12x0.3402==

截面惯性矩:

I=bh 3/12=10X503/12=1.04X105mm 4 挠度由式EI l q 15042=ω

=12x5004/(150x2.06x100000x1.04x105)

=0.23mm<[w]=1.25mm

满足要求

[w]-容许挠度,[w]=L/400,L=500mm

3.3水平背楞采用10x50mm 厚钢板验算:

水平背楞支承在对拉螺杆上,可作为支承在拉杆上的连续梁计算,其跨距等于对拉螺栓的间距最大为L=300mm 。

3.3.1强度验算

侧压力作用在槽钢上的集中荷载为:M KN q /5.275.0555=?==27.5N/m

最大弯矩2

5max 101L q M ==27.5x3002/10=2.5x105N ?mm

截面系数:

62bh W ==10x502/6=4.17x103mm 3 应力:235max /601017.4/105.2mm N W M =??==σ

3.3.2刚度验算:

挠度验算采用标准荷载,同时不考虑振动荷载的作用,则线荷载为: m KN q /20x0.5402==

截面惯性矩:

I=bh 3/12=10X503/12=1.04X105mm 4 挠度由式EI l q 15042=ω

=20x3004/(150x2.06x100000x1.04x105)

=0.05mm<[w]=0.75mm

[w]-容许挠度,[w]=L/400,L=300mm

3.5对拉螺栓计算:

对拉螺栓采用D10螺杆;纵向间距为500mm ,横向间距为300mm 。 对拉螺栓经验公式如下:f A N *≤

N---对拉螺栓所承受的拉力的设计值。一般为混凝土的侧压力 A---对拉螺栓净截面面积(mm 2)A=78.5mm 2

f --对拉螺栓抗拉强度设计值(f=215N/mm 2)

25.8x553.05.0=?=N KN

σ=N/A=8.25x1000/78.5=105 N/mm 2< f=215N/mm 2

故满足要求。

大型桁架模板受力计算(版)

中交第一航务工程局第五工程有限公司 模板受力计算书 (胸墙模板) 单位工程:锦州港第二港池集装箱码头二期工程计算内容:胸墙模板计算 编制单位:主管:计算: 审批单位:主管:校核:

锦州港第二港池集装箱码头二期工程 胸墙模板计算书 一、设计依据 1.中交第一航务工程勘察设计院图纸 2.《水运工程质量检验标准》JTS257-2008 3.《水运工程混凝土施工规范》JTJ268-96 4. 《组合钢模板技术规范》(GB50214-2001) 5. 《组合钢模板施工手册》 6. 《建筑施工计算手册》 7. 《港口工程模板参考图集》 二、设计说明 1、模板说明 在胸墙各片模板中,1#模板位于码头前沿侧,浇筑胸墙高度为3.15m,承受的侧压力最大,同时胸墙外伸部分的重量也由三角托架来承受,因此选取1#模板来进行计算。 1#模板大小尺寸为17.9m(长)×3.15m(高)。采用横连杆、竖桁架结构形式大型钢模板 面板结构采用安装公司统一的定型模板,板面为5mm钢板制作,背后为50×5竖肋。 内外横连杆采用单[10制作,间距为75cm; 桁架宽度为650cm,最大水平间距75cm,上弦杆采用背扣双[6.3,下弦杆为双∠50×50×5,腹杆为方管50×5。 2、计算项目 本模板计算的项目 ⑴模板面板及小肋 ⑵模板横连杆的验算。 ⑶模板竖桁架的验算。 ⑷模板支立的各杆件的验算。

模板计算 1、混凝土侧压力计算 混凝土对模板的最大侧压力: Pmax = 8K S +24K t V 1/2=8×2.0+24×1.33×0.57? =40.1kN/m 2 式中: Pmax ——混凝土对模板的最大侧压力 Ks ——外加剂影响系数,取2.0 Kt ——温度校正系数 10℃时取Kt =1.33 V ——混凝土浇筑速度50m 3 /h ,取0.57m/h 砼坍落度取100mm ==倾倒侧P P P max 40.1+6×1.4=48.5 kN/m 2取50KN/ m 2 其中倾倒P 为倾倒砼所产生的水平动力荷载,取6kN/㎡×1.4=8.4kN/㎡。 2、板面和小肋验算 ⑴板面强度验算 取1mm 宽板条作为计算单元,计算单元均布荷载 q=0.05×1=0.05 N/mm q 5mm 钢板参数:I=bh 3/12=300×5×5×5/12=3125mm 4 ω= bh 2/6=300×5×5/6=1250mm 3 q=0.05×300=15 N/mm σ=M/ω=0.078 ql 2/ω=0.078×15×3002/1250=85 N/mm 2<[σ]=215 N/mm 2 f max =K f ×Fl 4 /B 0=0.00247×0.05×3004 /2358059=0.43mm <300/500=0.6mm , 钢板满足要求 其中K f 为挠度计算系数,取0.00247 B 0为板的刚度,B0=Eh 3x /12(1-γ2)=2.06×105×53/12(1-0.32)=2358059 γ钢板的泊松系数,取0.3 h 为钢板厚度,h=5mm

钢模板、拉杆l螺栓及模板连接螺栓计算

计算书 本工程施工所用模板主要用在箱涵的侧墙和顶板及桥墩和桥台,采用大模板可大大节省模板材料,加快施工进度。 一、新浇混凝土对模板侧面的压力计算 在进行侧模板及支承结构的力学计算和构造设计时,常需计算新浇混凝土对模板侧面的压力。混凝土作用于模板的压力,一般随混凝土的浇筑高度而增加,当浇筑高度达到某一临界值时,侧压力就不再增加,此时的侧压力即为新浇混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。 采用内部振捣器,当混凝土浇筑速度在6.0m/小时以下时,新浇混凝土作用于模板的最大侧压力,可按以下二式计算,并取二式中的较小值。 P m=4+1500K SKwV1/3 /(T+30)(3-1)P m=25H(3-2)式中:Pm——新浇混凝土的最大侧压力(KN/m2); T——混凝土的入模温度(oC); H——混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);K S——混凝土坍落度影响修正系数。当坍落度为50~90mm时取1.0,为110~150mm时取1.15; K W——外加剂影响修正系数。不掺外加剂时取1.0,掺有缓凝作用的外加剂时取1.2; V——混凝土的浇筑速度(m/h)。

已知混凝土每环最大为4m,采用坍落度为120mm的普通混凝土,浇筑速度为0.25m/h,浇注入模温度为30oC,则作用于模板的最大侧压力及有效压头高度为: 查表得:K S=1.15,K W=1.2 由公式(3-1),P m=4+1500×1.15×1.2×(1.2)1/3 /(30+30)=40.7 KN/m2由公式(3-2),P m=25×2=50KN/m2 取较小值,故最大侧压力为40.7KN/m2 。有效压头高度为:h=40.7/25=1.628m。 二、模板拉杆、螺栓计算 1、拉杆及栏杆上螺栓 模板拉杆用于连接内、外两组模板,保持内、外两组模板的间距,承受混凝土侧压力和其它荷载,使模板有足够的刚度和强度。本工程模板拉杆采用对拉螺栓,采用Φ16精轧螺纹钢制作。其计算公式为: F=P mA 式中:F——模板拉杆承受的拉力(N); P m——混凝土的侧压力(N/m2

墙模板(组合式钢模板)计算书_20150716_101743984

墙模板(组合式钢模板)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《组合钢模板技术规范》GB 50214-2001 3、《混凝土结构设计规范》GB50010-2010 4、《建筑结构荷载规范》GB 50009-2012 5、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.2]=min[29.87,76.8]=29.87kN/m2 承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]=0.9max [1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=0.9max[38.644,42.285]=0.9×42.285=38.056kN/m2 正常使用极限状态设计值S正=G4k=29.87 kN/m2 三、面板布置

模板设计立面图 四、面板验算 面板长向接缝方式为端缝齐平,根据《组合钢模板技术规范》GB50214,4.3.5和4. 4.4条,面板强度及挠度验算,宜以单块面板作验算对象。面板受力简图如下:

1、强度验算 q=0.95bS承=0.95×0.6×38.056=21.692kN/m 面板弯矩图(kN·m) M max=1.091kN·m σ=M max/W=1.091×106/21.1×103=51.724N/mm2≤[f]=205N/mm2 满足要求! 2、挠度验算 q=bS正=0.6×29.87=17.922kN/m 面板变形图(mm) ν=0.086mm≤[ν]=1.5mm 满足要求! 五、小梁验算

扣件式钢管模板支架的设计计算

扣件式钢管 模板支架的设计计算 ××省××市××建设有限公司 二O一四年七月十八日

前言 近几年,国内连续发生多起模板支架坍塌事故,尤其是2000年10月,南京电视台新演播大厅双向预应力井式屋盖混凝土浇筑途中,发生了36m高扣件式钢管梁板高支撑架倒塌的重大伤亡事故。从此以后,模板支架设计和使用安全问题引起了人们的高度注意。 虽然采用钢管脚手架杆件搭设各类模板支架已是现代施工常用的做法,但由于缺少系统试验和深入研究,因而尚无包括其设计计算方法的专项标准。几年来,钢管模板支架和高支撑架(h≥4m的模板支架),均采用《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)(以下简称《扣件架规范》)中“模板支架计算”章节提供的有关公式及相应规定来进行设计计算的,但是惨痛的“事故”教训和深入的试验研究,已经充分揭示了《扣件架规范》中“模板支架计算”对于高支撑架的计算确实尤其是存在重要疏漏,致使计算极容易出现不能完全确保安全的计算结果。 在新规范或标准尚未颁布之前,为了保证扣件式钢管梁板模板支架的使用安全,总工室参考近期发表的论文,论著以及相关的技术资料,收集整理了有关“扣件式钢管梁板模板支架”的设计计算资料,提供给公司工程技术人员设计计算参考使用;与此同时,《扣件架规范》中“模板支架计算”的相关公式、计算资料,相应停止使用。 特此说明! 总工程师室 二O一四年七月十八日

目录 CONTENTS 第一节模板支架计算………………………………………………1-1 第二节关于模板支架立杆计算长度L有关问题的探讨……………2-1 第三节模板支架的构造要求…………………………………………3-1 第四节梁板楼板模板高支撑架的构造和施工设计要求……………4-1 第五节模板支架设计计算实例………………………………………5-1 第六节附录:模板支架设计计算资料………………………………6-1 [附录A]扣件式钢管脚手架每米立杆承受的结构自重、常用构配件与材料自重[附录B]钢管截面特性 [附录C]钢材的强度设计值 [附录D]钢材和钢铸件的物理性能指标 [附录E]Q235-A钢轴心受压构件的稳定系数 [附录F]立杆计算长度L修正系数表

模板支架计算书

模板支架 计 算 书

一、概况: 现浇钢筋砼检查井,板厚(max=200mm),最大满包截面为300×600 mm,沿梁方向梁下立杆间距为800 mm,最大层高4.7 m,施工采用Ф48×3.5 mm钢管搭设滿堂脚手架做模板支撑架,楼板底立杆纵距、横距相等,即la=lb=1000mm,步距为1.5m,模板支架立杆伸出顶层横杆或模板支撑点的长度a=100 mm。剪力撑脚手架除在两端设置,中间隔12m-15m设置。应支3-4根立杆,斜杆与地面夹角450-600。搭设示意图如下: 二、荷载计算: 1.静荷载 楼板底模板支架自重标准值:0.5KN/ m3 楼板木模板自重标准值:0.3KN/m2 楼板钢筋自重标准值:1.1KN/ m3 浇注砼自重标准值:24 KN/ m3 2.动荷载 施工人员及设备荷载标准值:1.0 KN/ m2 掁捣砼产生的荷载标准值:2.0 KN/ m2 架承载力验算: 大横向水平杆按三跨连续梁计算,计算简图如下:

q 作用大横向水平杆永久荷载标准值: qK1=0.3×1+1.1×1×0.16+24×1×0.16=4.32 KN/m 作用大横向水平杆永久荷载标准值: q1=1.2 qK1=1.2×4.32=5.184 KN/m 作用大横向水平杆可变荷载标准值: qK2=1×1+2×1=3KN/m 作用大横向水平杆可变荷载设计值: q2=1.4 qK2=1.4×3=4.2 KN/m 大横向水平杆受最大弯矩 M=0.1q1Ib2+0.117q2Ib2=0.1×5.184×12+0.117×4.2×12=1.01 KN/m 抗弯强度:σ=M/W=1.01×106/5.08×103=198.82N/ m2<205N/ m2=f 滿足要求 挠度:V=14×(0.667 q1+0.99 qK2)/100EI =14×(0.667×5.184+0.99×3)/100×2.06×105×12.19×104 =2.6 mm<5000/1000=5 mm滿足要求 3.扣件抗滑力计算 大横向水平杆传给立杆最大竖向力 R=1.1q1Ib+1.2q2Ib=1.1×5.184×1+1.2×4.2×1=10.74KN>8KN,不能滿足,应采取措施,紧靠立杆原扣件下立端,增设一扣件,在主节点处立杆上为双扣件,即R=10.74KN <16KN,滿足要求。 4.板下支架立杆计算: 支架立杆的轴向力设计值为大横杆传给立杆最大竖向力与楼板底模板支架自重产生的轴向力设计值之和,即: N=R+0.5×1.2+10.74+0.5×1.2=11.34KN

模板支架专项方案计算书汇总

主体结构模板支架受力计算书计算人:复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m共分10段结构施工。主体结构施工拟投入 8套标准段脚手架(长27.2m x宽19.8m x6.35m)。最长段模板长32m最短段模板长24m每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用①48X 3.5mm碗扣式 钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角 钢架支撑和现场拼装的模板系统。三角支架分为 4.0m高的标准节和0.85m高的加高节, 大模板采用4000 (长)X 1980 (宽)x 6.0mm (厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2 [ 10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mn高。在浇灌混凝土前 水平埋入一排? 25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L= 700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋①25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm

圆柱钢模计算书

直径1.4m圆柱计算书 1,基本情况 1.1该圆柱模高7.8米,直径1.4米。采用混凝土泵车下灰,浇注混凝土速度3m/h,混凝土入模温度约 25℃,采用定型钢模板:面板采用6mm钢板;横肋采用厚12mm,宽100 mm的圆弧肋板,间距400mm; 竖肋采用普通10#槽钢,间距353mm, 2.荷载计算 2.1混凝土侧压力 (1)新浇混凝土侧压力计算公式为下式中的较小值: 其中c——混凝土的重力密度,取24.000kN/m3; t ——新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取5.000h; T ——混凝土的入模温度,取25.000℃; V ——混凝土的浇筑速度,取3.000m/h; H ——混凝土侧压力计算位置处至新浇混凝土顶面总高度,取 7.800m; 1——外加剂影响修正系数,取1.200; 2——混凝土坍落度影响修正系数,取1.150。 根据公式计算的新浇混凝土侧压力标准值 F1=63.100kN/m2 考虑结构的重要性系数0.9,实际计算中采用新浇混凝土侧压力标准值F1=0.9×63.100=56.790kN/m2 考虑结构的重要性系数0.9,倒混凝土时产生的荷载标准值 F2=0.9×3.000=2.700kN/m2。 (2)进行荷载组合 F′=56.790+2.700= 59.49KN/㎡ 3板面计算:圆弧模板在混凝土浇注时产生的侧压力有横肋承担,在刚度计算中与与平模板相似。 3.1计算简图

3.2挠度计算 按照三边固结一边简支计算,取10mm宽的板条作为计算单元,荷载为q=0.0595*10=0.595N/mm 根据lX/lY=0.9,查表得 ωmax=0.00258ql4/k k=Eh3b/12(1-v2)=206000*63*10/12*(1-0.3*0.3)=40750000 V-钢的泊桑比=0.3 ωmax=0.57 mm≤[ω]=1/400=0.883 mm 故满足要求 4竖肋计算 4.1计算简图: 竖肋采用10#槽钢间距353 mm,因竖肋与横肋焊接,故按两端固定梁计算,面

钢模板设计计算

府谷煤炭铁路专用线四标 模板计算书 编制: 复核: 审核: 中铁七局集团府谷铁路专用线项目部二O一一年十二月十八日

钢模板设计计算 参数选定: 混凝土浇注速度V=1.5m/h,混凝土初凝时间取3h,汽车路上消耗0.5小时,即混凝土入模到凝结取2小时。 混凝土入模温度取t0=20oC,掺外加剂,混凝土塌落度取160mm。混凝土塌落度影响系数1.5,外加剂修正系数1.2 1、混凝土对模板侧压力计算 则:F1=γc H=γc VΔT=25×1.5×2=75KN/m2=75 KPa F2=0.22γc t0?1?2V t0=200/(20+15)= 5.7 h 则:F2=0.22×25×5.714×1.2×1.5×5.1=53.12KPa 取基本荷载标准值F=53.12KPa 荷载组合: 标准值取1.2为保险系数,但以0.85予以折减,水平冲击荷载取1.4为保险系数,采用0.2~0.8m3 的灰斗进行浇注,取F倒=4KPa 1.则:混凝土侧压力值F=(53.12+4) ×1.2×0.85=58.26KPa 2、面板验算 模板面板采用6mm厚钢板,采用双向板结构,取方格间距为0.3×0.3m.以一边简支、三面固结计算。图中q=f×10×10-3=58.26KN/m 一面简支最为不利

取计算单元为10mm=1×10-3 m 则K=(Eh 3×b)/(12×(1-0.32))(建筑施工手册) =41.53846 W=61bh 2=61×10×10-3×(6×10-3)2=6×10-8m 3 δ=Mmax/W=0.06ql 2/W=0.06×58.26×0.32/(6×10-8 ) =52MPa <170MPa=[δ],可以 f max =0.0016ql 4/K=0.0016×58.26×0.34/41.538=0.18mm 发生与板中心 Fmax=0.18<[f]=L/400=300/400=0.75mm 满足要求 3.板内肋的布置及验算: 横向:内楞采用δ=6mm 厚,高0.07m 板作为内楞,间距0.4m q=58.26×0.3=17.478KN/m M=ql 2/8=17.478×0.32/8=196.6N ·M 则;W=6 1×b ×10-3×(0.07)2=4.9×10-6m 3 I=121bh 3=121×b ×10-3×(0.07)3=171.5×10-9m 4 [d]= Mmax/W=196.6/(4.9×10-6 )=40MPa <170MPa ,可以 f max =5ql 4/(384EI )=5×17.478×3004/(384×2.1×105×171.5×103)=0.051mm 4.竖肋验算 竖肋采用[8的槽钢,每1.0m 加一道外加强箍,外加强箍采用2根[16槽钢,[8的槽钢竖向间距0.3m , 截面参数:W=25.3cm 3 I=101.3cm 4

模板施工方案(有计算书)演示教学

[转帖]模板施工方案(有计算书) 工作交底 为了争创优质工程,保证工程质量,对于混凝土的成型是关键,而砼的成型关键在模板。本工程标准层以下剪力墙、电梯井、管井模板采用竹胶板、多层板,标准层以上剪力墙、电梯井采用定型组合钢模板(9号楼);平板模板采用竹胶板、多层板模板,柱模板、短肢剪力墙采用定型竹胶板及多层板。模板的采购定货统一由项目材料设备部进行调研考察,确保材料质量,模板的具体规格尺寸由项目技术部负责提供。 一、模板的加工 1、模板的组配原则 (1)、保证工程结构和构件各部分开间尺寸和相互位置的正确; (2)、具有足够的强度、刚度和稳定性,能可靠地承受新浇混凝土的重量和侧压力,以及在施工过程中所产生的荷载; (3)、构造简单、装拆方便,并便于钢筋的绑扎与安装,符合混凝土的浇筑及养护等工艺要求; (4)、模板接缝应严密、不得漏浆。 2、模板的现场堆放及标识 本工程模板的规格较多,做好现场堆放和标识工作尤为重要,整个施工过程应处于受控状态,针对本项目的特点,特设专人负责模板的现场堆放和标识工作。模板的堆放根据施工现场总平面图布置分规格、分类型进行,模板的标识,用红色油漆在模板背面显目位置标注施工部位(注明轴线位置及标高)。 3、模板的现场运输和吊装 (1)、模板从堆放场地运输到使用部位的现场过程应处于受控状态,在模板堆放场地由模板堆放负责人按模板使用调拨单进行发放,发放前检查模板的刚度强度及几何尺寸、隔离措施、核准标识与所要发放的是否吻合方可发放。

(2)、模板现场运输过程中,由模板运输负责人负责模板质量及标识的部位。因模板的堆放场地在塔吊吊运半径范围内,故模板的现场运输由塔吊进行,当模板吊运到工程使用部位时,由模板安装负责人核准模板的规格及质量方可进行安装。 (3)、当砼强度达到可拆模时,进行模板拆除工作,拆模时,不得硬撬乱捣,须保持模板原状,拆卸后,应及时将模板组织吊运到模板堆放场地,堆放时须按模板的标识分类堆放,堆放后由模板保养人员对模板进行清理、修正、刷油,对于模板标识不清的应重新描绘。 4、模板的维修与保管 (1)、拆下的模板应及时清除灰浆。难以清除时,可采用模板除垢剂清除,不准敲砸;(2)、清除好的模板必须及时涂刷脱模剂; (3)、拆下来的模板,如发现翘曲、变形、开焊,应及时进行修理。破损的板面应及时进行修补; (4)、模板及零配件应设专人保管和维修,并要按规格、种类分别存放或装箱。 5、柱、墙模板的支设 (1)、柱模板 A、地下室部分柱采用多层板,标准层以上柱(异形短肢剪力墙)模板采用竹胶合板配合60*90木方制成定型模板,柱模根部要用水泥砂浆堵严,防止跑浆,柱模的浇筑口和清扫在配模时一并考虑留出。 B、柱模板采用钢管配合Ф12钢筋柱箍进行控制尺寸,最后用花篮进行加固控制垂直度。 C、柱根部按柱宽在柱竖向钢筋上焊Ф14钢筋保证柱模下部位置,具体如图1所示。 图—1 D、柱中间采用Ф12钢筋螺杆固定模板,具体如图2所示。

钢模板计算书

湖畔郦百合苑9-13、14、15、18、19#楼及车库工程 模板工程施工方案 模板计算书 1.计算依据 1.参考资料 《建筑结构施工规范》 GB 50009—2001 《钢结构设计规范》 GB 50017—2003 《木结构设计规范》 GB 50005—2003 《混凝土结构设计规范》 GB 50010—2002 《钢结构工程施工质量验收规范》 GB 50205-2001 2.侧压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一 临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值 的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: 2/121022.0V t F c ββγ= H F c γ= 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m 2) γc ------混凝土的重力密度(kN/m 3),此处取26kN/m 3 t 0------新浇混凝土的初凝时间(h ),可按实测确定。当缺乏实验资料时,可采用 t0=200/(T+15)计算;假设混凝土入模温度为250C ,即T=250C ,t 0=5 V------混凝土的浇灌速度(m/h );取2.5m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总 高度(m );取9m β1------外加剂影响修正系数,不掺外加剂时取1;掺具 有缓凝作用的外加剂时取1.2。 β2------混凝土塌落度影响系数,当塌落度小于 30mm 时,取0.85;50—90mm 时,取1;110—150mm 时,取1.15。 大模板侧压力计算 2/121022.0V t F c ββγ=

怎样计算桥墩钢模板

一、基本资料: 1. 基本尺寸 全钢模板,面板为h=5mm厚钢板;内模竖肋6.3号槽钢,背楞为10号双槽钢,横边框100×8mm钢板;外模竖肋10号槽钢,背楞为14号双槽钢,横边框100×12mm钢板模板;内外模之间对拉螺栓及外模角部斜螺栓直径30mm。模板平面图如图1所示。 图1 模板平面图 2. 材料的性能 根据《建筑结构荷载规范GB 50009-2001》和《建筑工程大模板技术规程JGJ 74-2003》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:20℃;砼浇筑速度:2m/h;掺外加剂。 钢材取Q235钢,重力密度:78.5kN/m3;容许应力为215MPa,不考虑提高系数;弹性模量为206GPa。 根据《混凝土施工技术指南050729》D.0.1之规定,人员机具荷载取2.5kPa。风荷载取1kN/m2。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1) 振动器产生的荷载:4.0 kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2) 新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数) 当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): (1) 当v/T<0.035时,h=0.22+24.9v/T; 当v/T>0.035时,h=1.53+3.8v/T; 式中:P——新浇混凝土对模板产生的最大侧压力(kPa); H——有效压头高度(m);

V——混凝土浇筑速度(m/h); T——混凝土入模时的温度(℃); ——混凝土的容重(kN/m3); K——外加剂影响修正系数,不掺外加剂时取k=1.0,掺缓凝作用的外加剂时k=1.2; 根据前述已知条件: 因为 v/T=2.0/20=0.1>0.035, 所以 h=1.53+3.8v/T=1.53+3.8×0.1=1.91m 最大侧压力为: =1.2×26×1.91=59.59kN/m2 检算强度时最大荷载设计值为: 1.2×59.59+1.4×4.0=77.91 kN/m2; 检算刚度时最大荷载标准值为: 59.59 kN/m2; 4. 检算标准 1) 强度要求满足钢结构设计规范; 2) 结构表面外露的模板,挠度为模板结构跨度的1/500; 3) 钢模板面板的变形为1.5mm; 4) 钢面板的钢楞、柱箍的变形为3.0mm; 二、模板整体检算 (一)计算模型 建立整体模型,进行检算,模型示意图如下: 图2 模型平面图

钢模板计算书

主墩大块钢模验算书 一、薄壁墩概况 1、两河口下游永久交通大桥主线2#、3#桥墩均采用双薄壁墩,薄壁墩宽8.0m ,厚2.0m ,双壁中心间距6.0m ,双壁净距为4.0m ; 2#墩身高度50m ,3#墩身高度54m 。 2、每次浇筑节段高度:4.5m (3.0m+1.5m )。 二、薄壁墩模板设计 1、按高度分为1.5m 、3.0m 两种模板,1.5m 高度的设8套,3.0m 高度的设4套。 2、块件组合:一套1.5m 高模板包括800×150cm 大板两块、200×150cm 大板两块;一 套3.0m 高模板包括800×300cm 大板两块、200×300cm 大板两块。 模板构造:面板采用6mm 钢板,背面设置竖向小肋(100×5mm 扁钢/间距0.25m ), 每隔0.5m 高度设置一层工10#工字钢水平肋,模板最外侧采用2[10#槽钢作竖向背杠,平向间距1.2m 。详见构造设计图。 三、模板验算依据 1、 计算依据: ⑴、《公路桥涵施工规范》对模板的相关要求; ⑵、《路桥施工计算手册》对模板计算的相关说明。 2、 荷载组合: ⑴、强度校核:新浇砼对侧模板的压力+振捣砼产生的荷载 ⑵、挠度验算:新浇砼对侧模板的压力 ⑶、采用Q235钢材: 轴向应力:140 1.25()175MPa ?=提高系数 弯曲应力:145 1.25()181MPa ?=提高系数 剪 应 力: 85 1.25()106MPa ?=提高系数 弹性模量:52.110E MPa =? 3、 变形量控制值: 结构外露模板,其挠度值为≤L/400 钢模面板变形≤1.5mm 钢模板的钢棱、柱箍变形≤L/500

桥墩模板计算

3#墩墩身模板计算书 一、基本资料: 1. 桥墩模板的基本尺寸桥墩浇筑时采用全钢模板,模板由平面模板和平面模板带半弧模板对 接组 成,单块模板设计高度为2250mm面板为h=6伽厚钢板;竖肋[10#,水平间距为L i=300mm横肋为10mn厚钢板,高100mm竖向间距L2=500mm背楞:平面模板为双根[20#槽钢、平面模板带半弧模板为双根[14#槽钢,纵向间距为:800mm; 2. 材料的性能 根据《公路桥涵施工技术规范JTG/T F50-2011》和《钢结构焊接规范GB 5066-2011 》的规定,暂取: 砼的重力密度:26 kN/m3;砼浇筑时温度:10C;砼浇筑速度:2m/h;不掺外加剂。 钢材取Q235钢,重力密度:m;容许应力为215MPa不考虑提高系数;弹性模量为 206GPa。 3. 计算荷载 对模板产生侧压力的荷载主要有三种: 1)振动器产生的荷载:kN/m2;或倾倒混凝土产生的冲击荷载:4.0km/m2;二者不同时计算。 2)新浇混凝土对模板的侧压力; 荷载组合为:强度检算:1+2;刚度检算:2 (不乘荷载分项系数)当采用内部振捣器,混凝土的浇筑速度在6m/h以下时,新浇的普通混凝土作用于模板的最大侧压力可按下式计算(《桥梁施工工程师手册》P171杨文渊): P二kY (1) 当v/T< 时,h=+T; 当v/T> 时,h=+T; 式中:P—新浇混凝土对模板产生的最大侧压力(kPa); h—有效压头高度(m); v—混凝土浇筑速度(m/h);

T—混凝土入模时的温度(C); 3 丫―混凝土的容重(kN/m); k-外加剂影响修正系数,不掺外加剂时取k=,掺缓凝作用的外加剂时k=; 根据前述已知条件: 因为:v/T=10=> , 所以h = +T=+X = 最大侧压力为:P二k Y = 26X = tf 检算强度时荷载设计值为:q'二X + x = 77 kN/m 2; 检算刚度时荷载标准值为:q''= kN/m 2; 4. 检算标准 1)强度要求满足钢结构设计规范; 2)结构表面外露的模板,挠度为模板结构跨度的1/400 ; 3)钢模板面板的变形为1.5mm; 4)钢面板的钢楞的变形为3.0mm; 二、面板的检算 1. 计算简图 面板支承于横肋和竖肋之间,横肋间距为50cm,竖肋间距为30cm,取横竖肋间的面板为一个计算单元,简化为四边嵌固的板,受均布荷载q;则长边跨中支承处的负弯矩为最大,可按下式计算: M = Aq'l x2l y (2)式中:A—弯矩计算系数,与l x/l y有关,可查《建筑结构静力计算实用手册(第二版)》(中国建筑工业出版社2014)P154表得A=; l x、l y —分别为板的短边和长边; q' —作用在模板上的侧压力。 板的跨中最大挠度的计算公式为: 4 f =BXq''l x4/B c (3)

钢模板设计-验算

工程承台钢模板(侧模)计算 一、浇筑砼最大侧压力计算 已知:最高台身H=2.5 m,浇筑速度V=2.5/2.4 m/h=1.04m/h<6m/h,混凝土入模温度T=15℃,混凝土不掺外加剂,v/T=1.04/15=0.069>0.035,γ=25KN/m3 (1)P m=K*γ*h =1*25*(1.53+3.8*0.069)=44.8KN/m2; (2)振捣混凝土时对侧面模板的压力按4KPa计; 二、模板面板强度和刚度计算 (1)模板面板厚度的选定 钢结构对钢模板的要求,一般为其跨径的l/100,且不小于6~8mm,本钢模竖肋最大跨径为1000mm,故δ=1000/100=10mm,由于钢模板为临时结实结构,且本工程特殊—为旧模板利用,δ=6mm; (2)模板面板强度和刚度验算 P=48.8KN/m2(考虑动荷载4KN/m2); 竖肋间距:l1=1000mm; 横肋间距:l2=400mm;经初步查表估算1000mm太大,现采用400mm进行验算; 模板厚度:δ=6mm; 跨径l=l2=400mm=40cm;板宽b取1m,即 q=P*b=48.8*1=48.8KN/m; 考虑到板的连续性,其强度和刚度计算: M max=1/10*q*L2=1/10*48.8*402*10-4=0.781KN*m;

W=1/6*b*h2=1/6*100*0.62=6cm3; σ= M max/W=130.1MPa<[σw]=181MPa; f max=ql4/128*EI=0.237cm<0.3cm; 模板面板在内楞间距400mm显得比较薄,但考虑到实际情况,为旧模板利用,仍采用δ=6mm; 二、内钢楞计算 ]10槽钢:I=88.52*104,W=12.2*103,E=2.1*105MPa,f=215MPa (一)计算横肋间距: (1)按抗弯强度计算 b=(10*f*w/(P*a))1/2 =[(10*215*12.2*103)/(48.8*10-3*1000)]1/2=733mm; 取b=450mm, (2)按挠度计算 b=[(150*[W]*E*I)/(P*a)]1/4=1144mm; 按以上计算原来的[10槽钢,跨度1000mm,间距1000不能满足要求,需要加密,内钢楞间距建议加密为选择400mm的常用模数,符合要求; (二)纵肋、横肋强度和刚度计算 (1)均布荷载仍按48.8*0.40=19.52KN/m; (2)强度验算: 按简支梁简化近似计算,跨中位置弯矩最大值: M max=1/8*19.52*1002*10-4=2.44KN*m;

墩柱模板计算书-midas civil

墩柱模板计算书 一、计算依据 1、《铁路桥涵设计基本规范》(TB10002.1-2005) 2、《客运专线铁路桥涵工程施工技术指南》(TZ213-2005) 3、《铁路混凝土与砌体工程施工规范》(TB10210-2001) 4、《钢筋混凝土工程施工及验收规范》(GBJ204-83) 5、《铁路组合钢模板技术规则》(TBJ211-86) 6、《铁路桥梁钢结构设计规范》(TB10002.2-2005) 7、《铁路桥涵施工规范》(TB10203-2002) 8、《京沪高速铁路设计暂行规定》(铁建设[2004]) 9、《钢结构设计规范》(GB50017—2003) 二、设计参数取值及要求 1、混凝土容重:25kN/m3; 2、混凝土浇注速度:2m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、最大墩高17.5m; 7、设计风力:8级风; 8、模板整体安装完成后,混凝土泵送一次性浇注。 三、荷载计算 1、新浇混凝土对模板侧向压力计算 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。新浇混凝土对模板侧向压力分布见图1。

图1新浇混凝土对模板侧向压力分布图 在《铁路混凝土与砌体工程施工规范》(TB10210-2001)中规定,新浇混凝土对模板侧向压力按下式计算: 在《钢筋混凝土工程施工及验收规范》(GBJ204-83) 中规定,新浇混凝土对模板侧向压力按下式计算: 新浇混凝土对模板侧向压力按下式计算: Pmax=0.22γt 0K 1K 2V 1/2 Pmax =γh 式中: Pmax ------新浇筑混凝土对模板的最大侧压力(kN/m2) γ------混凝土的重力密度(kN/m3)取25kN/m3 t0------新浇混凝土的初凝时间(h ); V------混凝土的浇灌速度(m/h );取2m/h h------有效压头高度; H------混凝土浇筑层(在水泥初凝时间以内)的厚度(m); K1------外加剂影响修正系数,掺外加剂时取1.2; K2------混凝土塌落度影响系数,当塌落度小于30mm 时,取0.85;50~90mm 时,取1;110~150mm 时,取1.15。 Pmax=0.22γt0K1K2V1/2=0.22×25×8×1.2×1.15×21/2=85.87 kN/m2 h= Pmax/γ =87.87/25=3.43m max 72722 40kPa 1.62 1.6P υυ?===++

模板设计计算书完整版

福建工程学院土木工程系 课程设计 (《建筑施工技术》——模板设计) 专业: 学号: 班级: 姓名: 指导老师: 日期:

目录 1.工程简介 (3) 2.模板选型 (3) 3.施工方法 (3) 4.模板安装 (4) 5.保证安全生产和要求……………………………………………………… 6.模板设计 (6) 7.模板拆除 (6) 8.柱模板计算书 (9) 9.墙模板计算书 (18) 10.梁模板计算书 (26) 11.板模板计算书 (39)

模板设计 一,工程简介 本工程,地下1层,地面28层。冲(钻)孔灌注桩基础,主体设计为:一~四层为裙楼,五层为转换层,A塔楼二十六层,B、C塔楼为二十八层。裙楼为钢筋混凝土框架结构,塔楼为框肢剪力墙结构。其中底层层高最大为4.8m,最大柱截面为0.8X1.2m,最大截面梁为0.6X0.8m楼板最大厚度为0.14m,最大柱矩为8.0x7.8m。标准层剪力墙高2.9m 墙厚0.4m。一~五层柱混凝土强度为C40,塔楼柱混凝土强度为C35墙和板混凝土强度为C30。本工程采用泵送混凝土,掺有粉煤灰,坍落度为10-12cm。不惨缓凝剂。 二、模板选型 1、柱模板 18厚覆面木胶和板模板,75×100松枋作木楞,用Φ48×3.5mm钢管柱箍。按柱截面和净高制成定型模板 2、墙体模板 18厚覆面木胶和板模板,75×100松枋作内楞,Φ48×3.5mm钢管做外楞,M14对拉螺栓固定。 3、梁模板 梁模板采用18厚覆面木胶和板作面板,75×100松枋作内外楞,用M12螺体穿梁对拉两道。支撑系统采用φ48×3.5钢管脚手架。 4、顶板模板 18厚覆面木胶和板模板,75×100松枋作木楞,支撑系统采用φ48×3.5扣件式钢管脚手架。 三、施工方法 (一)施工准备 1、模板安装前基本工作: (1)放线:首先引测建筑的边柱、墙轴线,并以该轴线为起点,引出各条轴线。模板放线时,根据施工图用墨线弹出模板的中心线和边线,墙模板要弹出模板的边线和外侧控制线,以便于模板安装和校正。 (2)用水准仪把建筑水平标高根据实际标高的要求,直接引测到模板安装位置。

大钢模板计算书

全钢大模板计算书 一、已知条件: 剪力墙层高2900mm,钢模板面板为6mm厚钢板,肋为[8#,水平间距为300mm,背楞为双根[10#,最大间距为1200mm,穿墙螺栓最大间距为1200mm,吊钩为φ18圆钢。 二、面板计算: 故面板最大内力值为: σ=Mmax/(r x W x)=5400/(1×60)=90N/mm2

查表得挠度系数K f=0.677 f max=K f ql4/(100EI) 其中钢材弹性模量E=2.06×105N/mm2,I=bh3/12=10×63/12=180mm4 故f max=0.667×0.6×3004/(100×2.06×105×180)=0.874mm 三、肋计算: 故M max=K m ql2=0.125×18×12002=3.24×106N〃mm 查表得[8槽钢截面特征系数为:W=25.4×103mm3, I=101×104mm4 故肋最大内力值σmax=M max/W=3.24×106/(25.4×103)=128N/mm2

查表得挠度系数K f=0.912 f max=K f ql4/(100EI) 故f max=0.912×18×12004/(100×2.06×105×101×104)=1.636mm 四、背楞计算: 2根[10槽钢截面特征:W=79.4×103mm3,I=396×103mm4。 σA=M A/W=1.44×106/(79.4×103)=18.14N/mm2

模板台车设计计算书

隧道衬砌台车设计 计算书 中煤第三建设(集团)有限责任公司二O一二年四月二十七日

隧道衬砌台车设计计算书 一、台车系统结构概述 本台车适用于中煤第三建设(集团)有限责任公司,大连市地铁2号线工程项目,湾家站至红旗西路站区间、红旗西路至南松路区间隧道衬砌的模筑混凝土施工。 台车系统由模板系统、门架支撑系统、电液控制系统组成。支收模采用液压控制,行走采用电动自动行走系统。 模板结构: 台车模板长度为9m,共5榀支撑门架,门架间距为2.05m;上上纵连梁3根,单侧支撑连梁4根(结构见台车设计图)。 面板Q235,t=10mm钢板; 连接法兰-12*220钢板; 背肋,[12#槽钢,间距300mm; 门架采用H2940*200*8*12型钢; 底梁采用H482*300*11*15型钢; 上纵连梁采用H200*200*8*12型钢; 侧面模板支撑连梁采用双拼[16a#槽钢。 顶升油缸4个,侧向油缸4个,平移油缸2个;行走系统为两组主动轮系和两组被动轮系组成。电液控制系统一套。 二、设计计算依据资料 1、甲方提供的台车性能要求及工况资料、区间断面图纸;

2、《钢结构设计规范(GB50017—2003)》 3、《模板工程技术规范(GB50113—2005)》 4、《结构设计原理》 5、《铁路桥涵施工规范(TB10230—2002)》 6、《钢结构设计与制作安装规程》 7、《现代模板工程》 三、结构计算方法与原则 台车的主受力部件为龙门架、底粱、上部纵联H钢及钢模板,只需进行抗弯强度或刚度校核。 根据衬砌台车结构形式,各主要受力部件均不需要进行剪切强度校核和稳定性校核。 四、计算荷载值确定依据 泵送混凝土施工方式以20立方米/小时计。 混凝土初凝时间为t=4.5小时。 振动设备为50插入式振动棒和高频附着式振动器。 混凝土比重值取r=2.4t/m3=24kN/m3 ; 坍落度16—20cm。 荷载检算理论依据;以《模板工程技术规范(GB50113—2005)》中附录A执行。 钢材容许应力(单位;N/mm2) 牌号厚度或直径(mm) 抗拉,抗 压和抗弯f 抗剪fv 端面承压 fce ≤16 215 125 325 >16~40 205 120

承台钢模板计算书

承台钢模板计算书 编制:——————复核:——————审批:—————— 二零一八年三月

目录 1、工程简介 ......................................................................... 错误!未定义书签。 、工程概况.................................................................... 错误!未定义书签。 、模板结构形式............................................................ 错误!未定义书签。 2、设计相关参数选定 ......................................................... 错误!未定义书签。 、计算目的.................................................................... 错误!未定义书签。 、计算依据.................................................................... 错误!未定义书签。 、主要控制计算参数.................................................... 错误!未定义书签。 、设计技术参数及相关荷载大小选定........................ 错误!未定义书签。 、荷载类型............................................................ 错误!未定义书签。 、荷载组合............................................................ 错误!未定义书签。 、计算方法、模式................................................ 错误!未定义书签。 3、模板结构计算 ................................................................. 错误!未定义书签。 模板结构传力路线说明................................................ 错误!未定义书签。 面板计算........................................................................ 错误!未定义书签。 竖肋计算........................................................................ 错误!未定义书签。 横肋计算........................................................................ 错误!未定义书签。 龙骨计算........................................................................ 错误!未定义书签。 对拉拉杆计算................................................................ 错误!未定义书签。 模板底部限位受力........................................................ 错误!未定义书签。 模板外侧斜撑计算........................................................ 错误!未定义书签。 4、模板抗倾覆计算 ............................................................. 错误!未定义书签。 5、计算结果汇总 ................................................................. 错误!未定义书签。 6、结论 ................................................................................. 错误!未定义书签。

相关文档