文档库 最新最全的文档下载
当前位置:文档库 › 同济大学线性代数第六版标准答案(全)

同济大学线性代数第六版标准答案(全)

同济大学线性代数第六版标准答案(全)
同济大学线性代数第六版标准答案(全)

第一章 行列式

1. 利用对角线法则计算下列三阶行列式: (1)3

811411

02---;

解 3

811411

02---

=2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c

b a ;

解 b

a c a c

b c

b a

=acb +bac +cba -bbb -aaa -ccc

=3abc -a 3-b 3-c 3.

(3)2221

11c b a c b a ;

解 2

221

11c b a c b a

=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2

=(a -b )(b -c )(c -a ).

(4)y x y x x y x y y

x y x +++.

解 y

x y x x y x y y

x y x +++

=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).

2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:

(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;

解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;

解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;

解 逆序数为3: 2 1, 4 1, 4 3.

(5)1 3 ??? (2n-1) 2 4 ??? (2n);

解逆序数为

2)1

(-

n

n:

3 2 (1个)

5 2, 5 4(2个)

7 2, 7 4, 7 6(3个)

??????

(2n-1)2, (2n-1)4, (2n-1)6, ???, (2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2.

解逆序数为n(n-1) :

3 2(1个)

5 2, 5 4 (2个)

??????

(2n-1)2, (2n-1)4, (2n-1)6, ???, (2n-1)(2n-2) (n-1个)

4 2(1个)

6 2, 6 4(2个)

??????

(2n)2, (2n)4, (2n)6, ???, (2n)(2n-2) (n-1个)

3. 写出四阶行列式中含有因子a11a23的项.

解含因子a11a23的项的一般形式为

(-1)t a 11a 23a 3r a 4s ,

其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是

(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:

(1)71100251020214

214; 解 71

1

02510202142140

1

00142310

20211021

473234

-----======c c c c 34)1(1431022110

14+-?---= 143102211014--=014

171720010

99323211=-++======c c c c .

(2)2605232112131412-; 解 26

05232112131412

-2

6

050

321

2213041224--=====c c 0

41203212213

041224--=====r r 00

00032122130

41

2

14=--=====r r .

(3)ef

cf bf de cd bd ae

ac ab ---;

解 ef cf bf de cd bd ae ac ab ---e c b e c b e

c b adf ---=

abcdef adfbce 41

111111

11=---=.

(4)d

c b a 100110011001---. 解

d c b a 1

00110011001---d

c b a

ab ar r 10

011001101021---++===== d

c a ab 101101)1)(1(12--+--=+01011123-+-++=====c

d c ad

a a

b d

c c

cd

ad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:

(1)111222

2b b a a b ab a +=(a -b )3;

证明

1112222b b a a b ab a +001

2222

2221213a b a b a a b a ab a c c c c ------=====

a

b a b a b a ab 22)1(2

221

3-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y z

y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;

证明

bz

ay by ax bx az by ax bx az bz ay bx

az bz ay by ax +++++++++

bz ay by ax x by ax bx az z bx

az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=

bz ay y x by ax x z bx

az z y b y by ax z x bx az y z bz ay x a +++++++=22

z y x y x z x

z y b y x z x z y z y x a 33+=

y x z x z y z

y x b y x z x z y z y x a 33+=

y x z x z y z

y x b a )(33+=.

(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2

2

2

2

2222

2

222

2222=++++++++++++d d d d c c c c b b b b a a a a ;

证明 2

2

2

2

2222

2

222

2222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5

232125232125232125

232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 02

2

12221222122

2122222=++++=d d c c b b a a . (4)4

4

4

4

22221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 4

4

4

4

22221111d c b a d c b a d c b a )

()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a

d a c a b ---------=

)

()()(1

11))()((2

22a d d a c c a b b d c b a d a c a b +++---=

))(())((001

11))()((a b d b d d a b c b c c b

d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----=

=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).

(5)1

22

1 1 000 0

0 10

00 01a x a a a a x x x

n n n +?

??-????????????????

?????-???---Λ=x n +a 1x n -1+ ? ? ? +a n -1x +a n . 证明 用数学归纳法证明.

当n =2时, 2121

221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ? ? ? +a n -2x +a n -1, 则D n 按第一列展开, 有

1

11

00 100 01

)1(11-?????????????????????-???--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ? ? ? +a n -1x +a n . 因此, 对于n 阶行列式命题成立.

6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90?、或依副对角线翻转, 依次得

n nn n a a a a D 11111 ???????????????=, 11112 n nn n a a a a D ???????????????= , 11

113 a a a a D n n

nn ???????????????=,

证明D D D n n 2

)

1(21)

1(--==, D 3=D .

证明 因为D =det(a ij ), 所以 n

nn n n n n

nn

n a a a a a a a a a a D 221

1

111

111111 )1( ??????????????????-=???????????????=- ???=?

????????????????????--=-- )1()1(331

1

221

11121n

nn n n

n n n a a a a a a a a D D n n n n 2

)1()

1()2( 21)1()1(--+-+???++-=-=.

同理可证

nn

n n n n a a a a D ???????????????-=- )1(11112

)1(2D D n n T n n 2)

1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2

)1(2

)1(22

)1(3)1()

1()

1()

1(.

7. 计算下列各行列式(D k 为k 阶行列式): (1)a

a D n 1

1?

??=, 其中对角线上元素都是a , 未写出的元素

都是0;

解 a

a a a a D n 0

1

0 000 00 00

0 00

10 00?

????????????????????????????????=(按第n 行展开) )

1()1(1

0 000 0

0 00

0 001

0 000)1(-?-+??????????????????????????????-=n n n a

a a )1()1(2 )1(-?-????-+n n n a a a

n n n n

n a a a

+?

??-?-=--+)

2)(2(1

)1()1(=a n -a n -2=a n -2(a 2-1).

(2)x

a a a x a a a x

D n ?????????????

????????= ; 解 将第一行乘(-1)分别加到其余各行, 得 a

x x a a

x x a a x x a a

a a x D n --??????????????????--???--???=00

0 0 00 0

, 再将各列都加到第一列上, 得

a

x a

x a x a

a

a a n x D n -??????????????????-???-???-+=0000 0 000

0 )1(=[x +(n -1)a ](x -a )n -1.

(3)1

11 1 )( )1()( )1(1

1

11???-?

????????-?

?????-???--???-=---+n a a a n a a a n a a a D n n n n

n n n ; 解 根据第6题结果, 有

n

n n n n n n n n n a a a n a a a n a a a

D )( )1()( )1( 11 11)1(1

112)1(1-???--?????????-?

?????-???-???-=---++

此行列式为范德蒙德行列式. ∏≥>≥++++--+--=1

12

)1(1)]1()1[()1(j i n n n n j a i a D

∏≥>≥++---=112

)1()]([)1(j i n n n j i

∏≥>≥++???+-++-?

-?-=1

12

1

)1(2

)1()()1()1(j i n n n n n j i

∏≥>≥+-=

1

1)(j i n j i .

(4)n

n

n

n

n d c d c b a b a D ????????????=

1

1112; 解

n

n

n

n

n d c d c b a b a D ?

?????

??????=

1

1112(按第1行展开) n

n n n n n

d d c d c b a b a a 000

11

111111

----?

?????

??????=Λ

0)

1(111

1111

1

1

2c d c d c b a b a b n

n n n n n

n ----+?

?????

??????-+. 再按最后一行展开得递推公式

D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=n

i i i i i n D c b d a D 222)(.

而 1

111111

12c b d a d c b a D -==

, 所以 ∏=-=n i i i i i n c b d a D 1

2)(. (5) D =det(a ij ), 其中a ij =|i -j |;

解 a ij =|i -j |, 0

4

321

4 0123

3 10122 2101

1 3210)det(???----??????????????????-???-???-???-???==n n n n n n n n a D ij n 0 4321 1 11111 11111 1111

1 1111 2132???----????????????????

?????----???---???--???--???-=====n n n n r r r r 1

5

242321

0 22210 02210 0021

0 0001 1213-???----????????????????

?????----???---???--???-+???+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)n

n a a a D +??????????????????+???+=1 1

1 1 111

1

12

1, 其中a 1a 2 ? ? ? a n

≠0.

n

n a a a D +??????????????????+???+=1 1

1 1 111

1

12

1

n

n n n a a a a a a a a a c c c c +-???-??????????????????????

?????-???-???-???-=====--10 0001 000 100 0

100 0100 00

113322

1

2132 1

1

1

1

3

1

2

1

121110

11 000 00 110

00 011

00 001 ------+-???-????

???????????????????????-???-??????=n

n n a a a a a a a a

∑=------+?????????????????????????

??????????????=n i i n n a a a a a a a a 1

1

11

131******** 0001

0 000 00 100

00 01000 001

)11)((121∑=+=n

i i n a a a a Λ.

8. 用克莱姆法则解下列方程组:

(1)???

??=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;

解 因为

14211

2135132

41211

111

-=----=D ,

142112105132412211151-=------=D , 28411

2035122

4121

1

15

12-=-----=D , 426110135

232

42211511

3-=----=D , 1420

21321322121

5

11

14=-----=D , 所以 111==

D D x , 222==D D x , 333==D D x , 14

4-==D

D x . (2)??

?????=+=++=++=++=+15065065065165545434323

212

1x x x x x x x x x x x x x .

解 因为 6655

1

000

6510006510

0651

00065

==D , 1507510016510006510

00650

000611==D , 11455101065100065000

06010001

52-==D , 70351

1

6500006010

00051

001653==D , 3955

1

60100005100

0651010654-==D ,

2121

10000510006510

0651

100655==D , 所以

66515071=x , 665

11452-=x , 6657033=x , 6653954-=x , 6652124=x .

9. 问l , m 取何值时, 齐次线性方程组?????=++=++=++0200

321321321x x x x x x x x x μμλ有非

零解?

解 系数行列式为

μλμμμλ-==1

21111

1D .

令D =0, 得 m =0或l =1.

于是, 当m =0或l =1时该齐次线性方程组有非零解.

10. 问l 取何值时, 齐次线性方程组?????=-++=+-+=+--0)1(0)3(20

42)1(321321321x x x x x x x x x λλλ有

非零解?

解 系数行列式为

λ

λλλλλλ--+--=----=1011124

31111132421D

=(1-l )3+(l -3)-4(1-l )-2(1-l )(-3-l ) =(1-l )3+2(1-l )2+l -3. 令D =0, 得

l =0, l =2或l =3.

于是, 当l =0, l =2或l =3时, 该齐次线性方程组有非零解.

第二章 矩阵及其运算

1. 已知线性变换:

?????++=++=++=3

21332123

2113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:

?

???

?????? ?

?=???? ??221321323513122y y y x x x ,

故 ???? ?????? ?

?=???? ??-3211

221323513122x x x y y y ?

???

?????? ??----=321423736947y y y ,

?????-+=-+=+--=3

21332123

211423736947x x x y x x x y x x x y .

2. 已知两个线性变换

?????++=++-=+=321332123

11542322y y y x y y y x y y x ,

?????+-=+=+-=3

233122

11323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知

???? ?????? ?

?-=???? ??221321514232102y y y x x x ???

?

?????? ??--???? ??-=32131

010

201

3514232102z z z ???

?

?????? ??----=321161109412316z z z ,

所以有?????+--=+-=++-=3

21332123

2111610941236z z z x z z z x z z z x .

3. 设???? ??--=111111111A , ????

??--=150421321B , 求3AB -2A 及A T B .

解 ???

?

??---???? ??--???? ??--=-1111111112150421321111111111323A AB

????

??----=???? ??---???? ??-=2294201722213211111111120926508503,

???

?

??-=???? ??--???? ??--=092650850150421321111111111B A T

.

4. 计算下列乘积:

(1)???

?

?????? ??-127075321134;

解 ???? ?????? ??-127075321134???? ???+?+??+?-+??+?+?=102775132)2(71112374????

??=49635.

(2)???

?

??123)321(;

解 ????

??123)321(=(1?3+2?2+3?1)=(10).

(3))21(312-???

?

??;

解 )21(312-????

?????? ???-??-??-?=23)1(321)1(122)1(2???

?

?

?---=6321

42. (4)????

? ??---??? ??-20

4

131210131

43110412 ; 解 ????

?

??---??? ??-20

4

131210131

43110412??? ??---=6520876.

(5)???

?

?????? ??321332313232212131211321)(x x x a a a a a a a a a x x x ;

???

?

?????? ??321332313232212131211321)(x x x a a a a a a a a a x x x

=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3

a 13x 1+a 23x 2+a 33x 3)???

?

??321x x x

3223311321122

33322222111222x x a x x a x x a x a x a x a +++++=.

5. 设??? ??=31

21A , ??

? ??=2101B , 问:

(1)AB =BA 吗? 解 AB ≠BA .

因为??? ??=64

43AB , ??

? ??=8321

BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.

因为??? ??=+52

22B A , ??? ?

???? ?

?=+5222

52

22)(2B A ??

? ??=2914148,

但 ??? ??+??? ??+??? ??=++43011288611483222B AB A ??? ??=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗?

同济大学线性代数第六版答案(全)

第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).

(4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)

线性代数(同济六版)知识点总结

1. 二阶行列式--------对角线法则 : |a 11 a 12 a 21 a 22 |= a 11a 22 ?a 12a 21 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. 全排列:n 个不同的元素排成一列。 所有排列的种数用P n 表示, P n = n ! 逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即n! 2 对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4. 其中:j 1j 2j 3 是1,2,3的一个排列, t(j 1j 2j 3)是排列 j 1j 2j 3 的逆序数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D = D T ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值为零。 互换两行:r i ? r j ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k :r i x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 ⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。如: ⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。如 第j 列的k 倍加到第i 列上:c i +kc j 33 323123222113 1211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---321321233123222113 12113j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1) (∑-=n n 2211n n n 2n 1222111 ...a a a a ...a a 0a a a =O M M n ...λλλλλλ21n 21=O n 21λλλN n 2121)n(n λλλ1)(ΛΛ--=n n n j n j n 2n 12n 2j 2j 22211n 1j 1j 1211a )c (b a a a )c (b a a a )c (b a a ΛΛM M M M ΛΛΛΛ+++n n n j n 2n 12n 2j 22211n 1j 1211n n n j n 2n 12n 2j 22211n 1j 1211a c a a a c a a a c a a a b a a a b a a a b a a ΛΛ M M M M ΛΛ ΛΛΛΛM M M M ΛΛ ΛΛ+=n n n j n j n i n 12n 2j 2j 2i 211n 1j 1j 1i 11a a ka a a a a ka a a a a ka a a Λ ΛΛ M M M M ΛΛ ΛΛΛΛ+++n n n j n i n 12n 2j 2i 211n 1j 1i 11a a a a a a a a a a a a Λ Λ ΛM M M M ΛΛΛ Λ ΛΛ=

同济大学线性代数第五版课后习题答案

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 132(1)8 1( 4) (1) 248164 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2 221 11c b a c b a

解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1

解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6

同济大学线性代数第六版答案(全)

同济大学线性代数第六版答案(全) 1 利用对角线法则计算下列三阶行列式201 (1)1 4 ***** 解1 4 183 2 ( 4) 3 0 ( 1) ( 1) 1 1 8 0 1 3 2 ( 1) 8 1 ( 4) ( 1) 2 4 8 16 4 4 abc (2)bca cababc 解bca cab acb bac cba bbb aaa ccc 3abc a3 b3 c3 111 (3)abc a2b2c2111 解abc a2b2c2 bc2 ca2 ab2 ac2 ba2 cb2 (a b)(b c)(c a) xyx y (4)yx yx x yxyxyx y 解yx yx x yxy x(x y)y yx(x y) (x y)yx y3 (x y)3 x3 3xy(x y) y3 3x2 y x3 y3 x3 2(x3 y3) 2 按自然数从小到大为标准次序求下列各排列的逆序数 (1)1 2 3 4 解逆序数为0 (2)4 1 3 2

解逆序数为4 41 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n) n(n 1) 解逆序数为 2 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) (6)1 3 (2n 1) (2n) (2n 2) 2 解逆序数为n(n 1) 3 2(1个) 5 2 5 4 (2个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n 2) (n 1个) 3 写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为 ( 1)ta11a23a3ra4s 其中rs是2和4构成的排列这种排列共有两个即24和42 所以含因子a11a23的项分别是 ( 1)ta11a23a32a44 ( 1)1a11a23a32a44 a11a23a32a44 ( 1)ta11a23a34a42 ( 1)2a11a23a34a42 a11a23a34a42 4 计算下列各行列式 41 (1)***-*****14 2 07 41 解***-*****c2 c***** 1 ***** 104 1 10 2 122 ( 1)4 3 *****c 4 7c***** 3 1 4 4 110c2 c***** 123 142c00 2 0 1 2c***** 2 (2)31 1***** 22 4 解31 ***** c 4 c3 223 1202r 4 r ***-*****06 ***-*****

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3811411 02---; 解 3 81141102--- =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4. (2)b a c a c b c b a 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2 +ca 2 +ab 2 -ac 2 -ba 2 -cb 2 (a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3 -(x +y )3 -x 3 =3xy (x +y )-y 3 -3x 2 y -x 3 -y 3 -x 3 =-2(x 3 +y 3 ). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n -1) 2 4 × × × (2n ); 解 逆序数为 2 ) 1(-n n :

线性代数同济六版知识点总结

1。 二阶行列式——-----—对角线法则 : 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. 全排列:n 个不同的元素排成一列. 所有排列的种数用 表示, = n! 逆序数:对于排列 … ,如果排在元素前面,且比大的元素个数有个,则这个元素的逆序数为。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性。 4. 其中: 是1,2,3的一个排列, t( )是排列 的逆序数 5。 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6。 行列式的性质: ①行列式与它的转置行列式相等。 (转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值为零。 互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 ⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。如: 33323123222113 12 11 a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---321321233123222113 12113j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1)(∑-=n n 2211n n n 2n 1222111 ...a a a a ...a a 0a a a = n ...λλλλλλ21n 21= n 21λλλ n 2121)n(n λλλ1)( --=1n 1j 1j 1211a )c (b a a a )c (b a a +1n 1j 12111n 1j 1211a c a a a c a a a b a a a b a a

同济大学线性代数第六版答案(全)

同济大学线性代数第六版答案(全) 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 811411 02---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2221 11c b a c b a ; 解 2 221 11c b a c b a

=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b)(b -c)(c -a). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x(x +y)y +yx(x +y)+(x +y)yx -y 3-(x +y)3-x 3 =3xy(x +y)-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3.

(5)1 3 ??? (2n-1) 2 4 ??? (2n); 解逆序数为 2)1 (- n n: 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n-1)2,(2n-1)4,(2n-1)6,???,(2n-1)(2n-2) (n-1个) (6)1 3 ???(2n-1) (2n) (2n-2) ??? 2. 解逆序数为n(n-1) : 3 2(1个) 5 2, 5 4 (2个) ?????? (2n-1)2,(2n-1)4,(2n-1)6,???,(2n-1)(2n-2) (n-1个) 4 2(1个) 6 2, 6 4(2个) ?????? (2n)2, (2n)4, (2n)6,???, (2n)(2n-2) (n-1个)

《线性代数》同济大学版-课后习题答案详解

《线性代数》同济大学版 课后习题答案详解 第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)381141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为 2 ) 1(-n n :

线性代数(同济六版)知识点总结归纳

1. 二阶行列式--------对角线法则 : 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. … 且比大的元素个数有个, 则。 排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性4. 其中: 数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值 33 323123 222113 1211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=31 2213332112322311a a a a a a a a a ---31 2111 a a a n n 2211n n n 2n 1222111 ...a a a a ...a a 0 a a a = n ...λλλλλλ21n 21 = n 2 1 λλλ n 212 1) n(n λλλ1) ( --=

为零。 互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 第列上:7. (下) 8. 剩下的( 的余子ij 代数余子式:记 A ij = ( ?1 ) i+j M ij 为元素 a ij 的代数余子式 。 ②重要性质,定理 1)第i 行各元素的余子式,代数余子式与第i 行元素的取值无关。 2)行列式按行(列)展开法则:行列式等于它的任意一行(列)的各元素与 其对应的代数余子式乘积之和, 即: in in i2i2i1i1A a A a A a D +++= nj nj 2j 2j 1j 1j A a A a A a D +++= 或

同济版_工程数学-线性代数第五版答案

同济版 工程数学-线性代数第五版答案 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 811411 02---; 解 3 81141102--- =2′(-4)′3+0′(-1)′(-1)+1′1′8 -0′1′3-2′(-1)′8-1′(-4)′(-1) =-24+8+16-4=-4. (2)b a c a c b c b a 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 (a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 × × × (2n -1) 2 4 × × × (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) × × × × × × (2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个) (6)1 3 × × × (2n -1) (2n ) (2n -2) × × × 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) × × × × × × (2n -1)2, (2n -1)4, (2n -1)6, × × ×, (2n -1)(2n -2) (n -1个) 4 2(1个)

《线性代数》同济大学版 课后习题答案详解

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 《线性代数》同济大学版 课后习题答案详解 第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解 3 811411 02--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解 b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解 2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++. 解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ? ? ? (2n -1) 2 4 ? ? ? (2n ); 解 逆序数为2 ) 1(-n n : 3 2 (1个)

同济大学线性代数第六版课后答案(全)

第一章行列式 1.利用对角线法则计算下列三阶行列式: (1)3 81141102---; 解3 81141102--- =2?(-4)?3+0?(-1)?(-1)+1?1?8 -0?1?3-2?(-1)?8-1?(-4)?(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ; 解b a c a c b c b a =acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3. (3)2 22111c b a c b a ; 解2 22111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ). (4)y x y x x y x y y x y x +++.

解 y x y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3 =-2(x 3+y 3). 2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; 解逆序数为0 (2)4 1 3 2; 解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1; 解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3; 解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ??? (2n -1) 2 4 ??? (2n ); 解 逆序数为2 )1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ?????? (2n -1)2, (2n -1)4, (2n -1)6,???, (2n -1)(2n -2)(n -1个) (6)1 3 ??? (2n -1) (2n ) (2n -2) ??? 2.

同济大学工程数学线性代数第六版答案(全)

第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3 811 411 02--- 解 3 811411 02--- 2(4)30(1)(1)118 0 1 32(1) 81(4) (1) 24816 44 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3 b 3 c 3 (3)2 221 11c b a c b a 解 2 221 11c b a c b a

bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a ) (4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3(x y )3x 3 3xy (x y )y 33x 2 y x 3 y 3x 3 2(x 3 y 3) 2 按自然数从小到大为标准次序 求下列各排列的逆 序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3

解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 2)1 ( n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个)

《线性代数》同济大学版 课后习题答案详解

《线性代数》同济大学版 课后习题答案详 解 第一章 行列式 1 利用对角线法则计算下列三阶行列式 (1)3 811 411 02--- 解 3 811411 02--- 2 ( 4) 3 0( 1) ( 1) 11 8 1 3 2 ( 1)8 1 (4)(1) 24 816 4 4 (2)b a c a c b c b a 解 b a c a c b c b a acb bac cba bbb aaa ccc 3abc a 3b 3c 3 (3)2221 11c b a c b a 解 2 221 11c b a c b a bc 2ca 2ab 2ac 2ba 2cb 2 (a b )(b c )(c a )

(4)y x y x x y x y y x y x +++ 解 y x y x x y x y y x y x +++ x (x y )y yx (x y )(x y )yx y 3 (x y ) 3 x 3 3xy (x y )y 33x 2 y x 3y 3x 3 2(x 3y 3) 2 按自然数从小到大为标准次序 求下列各 排列的逆序数 (1)1 2 3 4 解 逆序数为0 (2)4 1 3 2 解 逆序数为4 41 43 42 32 (3)3 4 2 1 解 逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解 逆序数为3 2 1 4 1 4 3 (5)1 3 (2n 1) 2 4 (2n ) 解 逆序数为 2 ) 1(-n n 3 2 (1个) 5 2 5 4(2个) 7 2 7 4 7 6(3个) (2n 1)2 (2n 1)4 (2n 1)6 (2n 1)(2n 2) (n 1个) (6)1 3 (2n 1) (2n ) (2n 2) 2

线性代数同济六版知识点总结

1.二阶行列式--------对角线法则:|a 11 a 12 a 21 a 22 |= a 11a 22 ?a 12a 21 2.三阶行列式 ①对角线法则 ②按行(列)展开法则 3.全排列:n 个不同的元素排成一列。 所有排列的种数用P n 表示,P n =n ! 逆序数:对于排列p 1 p 2… p n ,如果排在元素p i 前面,且比p i 大的元素个数有t i 个,则p i 这个元素的逆序数为t i 。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即n! 2 对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4. 其中:j 1j 2j 3是1,2,3的一个排列, t(j 1j 2j 3)是排列j 1j 2j 3的逆序数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6.行列式的性质: ①行列式与它的转置行列式相等.(转置:行变列,列变行)。D =D T ②互换行列式的两行(列),行列式变号。推论:两行(列)相同的行列式值为零。互换两行:r i ? r j ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数k 乘此行 33 323123 222113 12 11 a a a a a a a a a 3221312312332211a a a a a a a a a 13++=31 2213332112322311a a a a a a a a a ---3 213 2123 31 23222113 12 11 3j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1) (∑-= n n 2211n n n 2n 1222111 ...a a a a ...a a 0 a a a =O M M n ...λλλλλλ2 1n 2 1 =O n 21 λλλN n 212 1) n(n λλλ1) (ΛΛ--=

相关文档
相关文档 最新文档