文档库 最新最全的文档下载
当前位置:文档库 › 通信光缆线路中的故障点定位和有效检测技术

通信光缆线路中的故障点定位和有效检测技术

通信光缆线路中的故障点定位和有效检测技术
通信光缆线路中的故障点定位和有效检测技术

-98-科学技术创新2019.12

通信光缆线路中的故障点定位和有效检测技术

徐彬

(中国电信股份有限公司秦皇岛分公司,河北秦皇岛()66000)

摘要:信息技术现在已经成为了高新技术的重要代表,光缆线路也在不断取代宽带线路,成为了我国最为重要的信号传输通道,并且也是光纤网络应用的重要基础。但是由于其技术规格远远超过了原有的宽带线路,加之光缆线路类型多种多样,线路故障也就在所难免,一旦出现问题,就会影响区域内的网络通信情况,如何定故障点,进行检测,采取必要的手段进行修复就显得非常重要。针对这些问题进行分析和总结,希望可以给相关检修工作的开展提供一些参考。

关键词:通信光缆;线路故障点;准确定位

中图分类号:TN913.33文献标识码:A文章编号=2096-4390(2019)12-0098-02

在社会发展中,人们对网络技术的依赖程度越来越高,现在我国网络通信中,光缆线路的应用广泛,其运行质量会直接给网络通讯质量造成一定的影响。现在通信工程复杂程度越来越高,对技术的要求也是如此,整体结构也愈加复杂,所以光缆线路也更加容易出现故障。为了确保线路运行的安全稳定性,在最短的时间内发现故障点,进行检修非常重要。光缆故障因素当中,人为因素占主要部分,自然因素数量较少,只有实现故障类型和位置的精确判断,才能进一步提高光缆运行质量。

1光缆线路故障成因

1.1自然因素

光缆材料由于受到外界因素的影响,导致了光缆材料的拉断,这样的情况就是光缆线路故障的自然因素。举例来说,常见的光缆线路故障有线路自然磨损、线路老化造成的光缆断裂;同时部分自然灾害也会对光缆线路造成一定的影响,如大风、雷电以及大雪等自然灾害天气等等。

1.2人为因素

人为因素是造成光缆线路故障的主要因素,其中包括了技术人员在检修以及安装施工中由于技术选用不当,造成线路损坏;不法分子盗取光缆线路,导致线路损坏,以及人为蓄意破坏造成线路损坏;以及开挖施工中由于技术选用不当,将线路挖断,形成断路故障。

1.3光缆材质因素

光缆线路是由玻璃和塑料纤维的缆芯,这些材质非常易碎,随着光缆投入使用时间的延长,就会出现越来越严重的静态疲劳,所以会逐渐出现光纤老化的问题。抑或是接头盒出现进水故障,也会在一定程度上增加光纤损耗。如果光缆线路的工作环境温度低,也会在接着盒中存在结冰现象,受此影响,结缘套也会也现进一步收缩,造成一定的光纤芯外部压力,出现断纤问题;反之,其工作温度如果过高,也会造成绝缘套保护材料的老化,也会大大缩减光缆材料的使用寿命。

2关于如何判断光缆线路的故障

2.1接头部位的故障

在当前的光缆接头施工当中,无论是哪种方式,都会在一定程度上造成原有涂层的磨损,虽然在后续使用中,仍然可以对接头起到一定的保护作用,但会影响光纤接头的强度,同时其可绕性也会降低。除此之外,光缆的接头位置也会由于其他因素的影响出现故障。最为常见的问题就是外界环境的作用,举例来说,光缆的污染问题、自然气候对线路工作情况造成的影响、以用操作人员的使用方法等等。很多光缆都采用架空线路的方式布置,这类线路受到天气和气候的影响作用最为明显,同时车辆行驶造成的振动也会出现这样的问题,都构成了接头部位故障的成因。在正常情况下,接头即使单纤部位出现故障,就会造成整个信号的中断,让信号传输质量受到影响。对于该类型的故障来说,需要保证通信不受到的情况下,将接着位置的余量光缆松开,清洁接头盒外部,之后将所盘绕的多余光纤散开,再次检测光纤传输信号;也可以直接切断故障接头,将其放在匹配液中,如果0TDR上的菲涅尔反射峰消失,则说明此段线路出现了问题,需要更换或修理。在实际的检修工作当中,大多采用熔接法,直接在非故障的光缆上设置接头,在正常情况下,OTDR曲线就会正常化,但是也需要及时对比熔断前后的OTDR曲线,如果二者较为接近,则代表检修成功,否则需要重新进行熔接工作。新的接头安装完毕并将接头盒加以密封,之后将其放置在指定位置,如果OTDR曲线在检修后工作正常,则需要在检修后进行拍照,收录于维护管理档案中。

2.2中间部位的故障问题

在正常情况下,光缆中间故障大多是由于外部因素,对于架空线路来说,主要有老鼠啃咬、冰雪覆盖以及人为因素的影响等等。所和其他故障类型相比起来,该故障类型主要的特点为多个光纤通道在同一个位置Lt,经常在短时间内出现中断性故障,但是由于线缆长度较长,所以需要定位,这样才能保证检修效率。对于中间位置的故障,其维修操作可用的手段较为多样,举例来说,可以调整光缆线路的长度,在过去的应用中体现出了良好的灵活性和便利性,在具体应用中,也需要增加接头数量,这样才能更好地提高更换速度。在工作中如果发现无法增加光缆接头的问题,则需要直接将整段光缆更换,所以维护成本较高。具体维护方法的选择上,需要结合光缆自身的特点.如尺寸、性能以及规格等等来决定。

3光纤线路故障点定位的要点

3.1熟悉仪表操作

只有掌握了仪表的正确操作方法,保证了其工作的科学可靠性,才能保证定位的准确性。在检修工作中,最为常用的就是OTDR 仪表,在使用中,需要确保参数的正确,之后对测试范围进行选择,在此基础上,活用仪表自身的放大功能。只有保证了仪表应用的正确才能给定位与检修工作提供便利”

3.2了解线路信息

在具体工作中,也需要积极搜集光纤线路的资料,并妥善保存。在工作中也需要对其准确性进行核对,只有正确的信息才能给检修工作的开展提供参考。具体包括线路建设的年代、材质以及施工单位和设计情况等等。

3.3结合故障特点灵活地采取测试手段

对于故障点的测试工作来说,需要结合线路以及故障的情况来灵活地选择测试手段。举例来说,对于故障点,形成相(转下页)

线路故障排查和故障定位方法及措施(光、电缆)全解

1.光缆线路故障排查和故障定位方法及措施 1.1光缆线路故障的分类 根据故障光缆光纤阻断情况,可将故障类型分为光缆全断、部分束管中断、单束管中的部分光纤中断三种。 (1)光缆全断 如果现场两侧有预留,采取集中预留,增加一个接头的方式处理; 故障点附近有接头并且现场有足够的预留,采取拉预留,利用原接头的方式处理; 故障点附近既无预留、又无接头,宜采用续缆的方式解决。 (2)光缆中的部分束管中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 (3)单束管中的部分光纤中断 其修复以不影响其他在用光纤为前提,推荐采用开天窗接续方法进行故障光纤修复。 1.2造成光缆线路故障的原因分析 引起光缆线路故障的原因大致可以分为四类:外力因素、自然灾害、光缆自身缺陷及人为因素。 1.2.1外力因素引发的线路故障 (1)外力挖掘:处理挖机施工挖断的故障,管道光缆因打开故障点附近人手井查看光缆是否在人手井内受损,并双向测试中断光缆。 (2)车辆挂断:处理车挂故障时,应首先对故障点光缆进行双方向测试,确认光缆阻断处数,然后再有针对性地处理。 (3)枪击:这类故障一般不会使所有光纤中断,而是部分光缆部位或光纤损坏,但这类故障查找起来比较困难。 1.2.2自然灾害原因造成的线路故障 鼠咬与鸟啄、火灾、洪水、大风、冰凌、雷击、电击。 1.2.3光纤自身原因造成的线路故障 (1)自然断纤:由于光纤是由玻璃、塑料纤维拉制而成,比较脆弱,随着时间的推移会产生静态疲劳,光纤逐渐老化导致自然断纤。或者是接头盒进水,导致光纤损耗增大,甚至发生断纤。 (2)环境温度的影响:温度过低会导致接头盒内进水结冰,光缆护套纵向收缩,对光

人员定位、无线通信系统工程施工方案

内蒙古伊泰塔拉壕煤矿人员定位、无线通信系统 施工方案 天地(常州)自动化股份有限公司 二〇一六年六月

确认签字 经内蒙古伊泰塔拉壕煤矿、天地(常州)自动化股份有限公司双方共同努力,在现场进行勘察的基础上,最终形成详细施工方案,其内容将作为“塔拉壕煤矿人员定位、无线通信系统”后续实施的依据之一。 建设单位: 签字: 日期: 承建单位: 签字: 日期:

目录 1 编制说明 (1) 2 编制依据 (1) 3 工程范围 (2) 3.1人员定位系统部分: (2) 3.1.1 设备安装位置 (2) 3.1.2 线缆敷设线路 (5) 3.1.3 取电方法 (5) 3.2无线通信系统部分 (5) 3.2.1 设备安装位置 (5) 3.2.2 线缆敷设线路 (8) 3.2.3 设备取电方法 (8) 4 施工方法 (9) 4.1井下设备安装方法 (9) 4.2设备接线方法 (9) 4.2.1 人员定位系统设备 (9) 4.2.2 无线通信系统设备 (10) 4.3缆线敷设实施方法 (10)

详细施工方案 1 编制说明 本方案是在现场勘察的基础上,经甲、乙双方共同共同商定的情况下制定的,用于规范塔拉壕煤矿人员定位、无线通信系统施工的依据。 2 编制依据 塔拉壕煤矿矿井相关设计图纸 《煤矿安全规程》2014版 《煤矿井下作业人员管理系统使用与管理规范》AQ 1048-2007 《煤矿井下作业人员管理系统通用技术条件》 AQ 6210-2007 《煤矿通信、检测、控制用电工电子产品通用技术要求》MT 209-90《爆炸性环境用防爆电器设备本质安全性电路和电气设备要求》 《MT/T899-1999 煤矿用信息传输装置通用技术条件》 《煤矿安全装备基本要求》 《软件开发规范》 《煤炭工业矿井设计规范》 《煤矿监控系统总体设计规范》 《煤矿监控系统中心站软件开发规范》 《计算机软件开发规范》GB 8566 《电子计算机房设计规范》 《煤炭工业信息化“十一五”发展规划》 《EIA/TIA 568工业标准及国际商务建筑布线标准》 《 MT/T1007-2006矿用信息传输接口》 《矿山安全条例》

软件故障定位

传统调试技术 软件开发者使用的典型的软件调试技术主要有两种: (1)在程序中插入打印语句使得程序输出用以被分析的附加信息,可以对程 序的运行时状态有一个粗略了解。一个通常的做法是插入打印语句以指 示某个控制条件到达了某个特定程序点;另一个通常做法是插入打印语 句以输出变量的值。当程序被执行的时候,程序生成可以被开发者检查的 附加调试输出。缺点:调试输出可能相当的大,打印语句的放置和输出的 检查都是非组织和临时的,分析和放置位置也通常是基于直觉的 (2) 另一种技术是使用符号调试器。一个符号调试器是一个用来调试其他程 序的计算机程序,符号调试器支持例如断点、单步跳过、状态修改等。断 点允许程序员停止在某一个特定的程序点以检查当前状态;单步跳过允 许程序员前进到当前断点之后的下一条指令,并且在那条指令设置新的 断点;许多调试器还允许程序员不仅能够查看变量的当前状态,还能改变 它的值然后继续执行。通常地,开发者会在他感觉可能是程序错误位置的 地方设置断点,然后他会检查断点处的状态,他还可以单步跳过程序查看 每一条语句在每一个执行时的状态变化。 主要的定位方法 故障定位技术有很多种,但是根据定位故障的过程中“是否需要运行软件”的准则,可以将故障定位技术分为以下两类: (1)基于静态分析的故障定位技术(SABFL):静态方法不用运行软件,而是依据程序语言的语法和语义,静态地分析软件结构和程序实体之间的依赖关系,以发现不符合系统约束的程序实体,从而进行故障定位。 (2)基于测试的故障定位技术(TBFL):该方法首先需要设计测试用例,然后运行软件程序,最后根据软件程序的动态执行信息和输出结果进行故障定位。其典型思路是:将程序的失败运行和成功运行进行对比,从而发现失败运行中的哪些点偏离了成功运行,找到的这些偏离点很有可能就是软件故障位置所在。这些不同定位方法都采用了各自不同的运行特征进行对比。 以下是基于测试的故障定位技术: (一)基于距离度量的故障定位方法: 基本思想是:通过一定的距离计算方法,从众多的成功运行中找出与失败运行最相近的一个成功运行,利用某一种度量方法来计算此成功运行与失败运行之间的差异值,利用得出的最小差异值进行故障定位。该技术大都是在源程序上运行大量的测试用例,并收集程序运行过程中的覆盖信息,利用这些信息来进行故障定位。此方法包括 (1)Delta调试技术 把一次程序执行看做是一系列程序状态的转变(程序状态可以理解为在程序执行某个时刻出现的变量以及这些变量的取值)。程序从初始状态开始执行,每执行一步,程序当前状态就会发生改变,从当前状态转换到下一个程序状态,如此进行,最后到达了个错误的状态,标志着程序执行失败。每一个程序状态都它的前一个状态衍生而来,但是,可能只有一小部分状态与计算下一个状态是相关的,同理,也并不是所有程序状态都与执行失败相关。

自动化软件错误定位技术研究进展

自动化软件错误定位技术研究进展 虞凯;林梦香 【期刊名称】《计算机学报》 【年(卷),期】2011(034)008 【摘要】One of the most expensive and time-consuming activities of the debugging process is locating the faults. To guide the developers to locate and correct program errors, automatic fault localization techniques identify possible locations of faults by analyzing the source code, test outcomes and various program spectra. This work classifies current techniques and introduces principles and models of representative ones. Some widely-used benchmarks and evaluation metrics are provided. Finally, some on-going research issues are discussed.%调试过程中代价最昂贵和最耗时的活动之一就是定位错误.为了辅助开发人员进行程序错误的定位和修正,自动化错误定位技术通过对源程序、测试结果以及各种程序行为特征信息的计算分析,给出造成故障的软件缺陷在源代码中的可能位置.文中对现有错误定位技术进行了分类,介绍了各种代表性技术的原理以及建模方法,并给出了常用的评测基准集和评价标准,最后还指出了若干值得进一步研究的方向. 【总页数】12页(1411-1422) 【关键词】错误定位;自动化调试;程序分析;自适应测试 【作者】虞凯;林梦香 【作者单位】北京航空航天大学软件开发环境国家重点实验室北京100191;北

66kV输电线路故障定位技术的研究 滕永阁

66kV输电线路故障定位技术的研究滕永阁 发表时间:2019-04-29T16:20:17.357Z 来源:《基层建设》2019年第4期作者:滕永阁 [导读] 摘要:电力行业一直都非常重视输电线路故障点定位问题。 国网吉林省电力有限公司磐石市供电公司吉林 132300 摘要:电力行业一直都非常重视输电线路故障点定位问题。随着电力系统的不断发展,超高压、长距离输电线路越来越多,线路故障点的准确定位更彰显其重要性。为减少线路寻查的工作量,缩短故障修复时间,节约大量的人力、物力,提高供电可靠性,减少停电损失,加强并提高系统运行管理水平,迫切需要在系统发生故障时能准确查找故障点。本文就66KV输电线路故障定位技术进行研究,对提升和促进输电线路故障定位技术的应用水平具有一定借鉴意义。 关键词:66KV输电线路;故障;定位技术 随着我国工业化进程的推进,电力产业已经日益成为国民支柱产业。输电线路是电力系统中最重要的组成部分之一,承担着将电能输送至各用电场所的重任,而高压输电线路通常输电距离非常远,分布范围很广,所经过的区域又有着非常复杂的地理环境和自然环境,容易出现故障。高压输电线路是电力系统的命脉,随着馈线的增多,电容电流不断地增大,长时间的运行就易使故障区域扩大,引起全系统的过电压,进而损坏设备,破坏系统安全运行。输电线路的故障定位能够快速准确地确定故障位置,有效指导现场巡线工作,及时修复故障,恢复供电,而且能够及时发现线路的薄弱环节和潜在隐患,提高输电线路运行的可靠性。快速准确的故障定位对于电为系统的安全稳定和经济运行具有重要意义。 一、66KV输电线路的故障类型介绍 要对输出电线路的故障位置进行准确定位,首先需要了解常见故障类型。以下为输电线路常见故障类型: 1、永久性故障,此类故障是指一个或者多个导体对地以及导体之间的短路故障。这种故障多产生于外力,如风暴、施工、地震等,对输电线路造成严重的机械性损害。发生此类故障时,不可能成功地进行重合闸。 2、瞬时性故障,这类故障多属于因雷电等过电压而引起的闪络,也可能因树枝或鸟类造成短时间导体对地或导体之间的接触。发生此类故障时,不会造成致命性的绝缘伤害,可以成功地进行重合闸。在部分地区由于地形复杂、气候条件多变,闪络等瞬时性故障占90%~95%,这类故障造成的局部绝缘损伤一般没有明显痕迹,给查找带来极大困难。 3、绝缘击穿,此类故障多因输电线老化、冰雪,使之瞬时性过电压闪络破坏、污秽等原因而造成线路的某一点绝缘性能下降。在低电压情况下不会产生故障状态,在正常运行的电压情况下,会导致绝缘击穿,造成短路,并且重合闸不成功,故障切除后没有明显被破坏的迹象。 4、隐性故障,该类故障是在发展到瞬时性闪络或是输电线击穿导致永久性故障之前,一般不可测。它不妨碍电力系统的正常运行,但会缩小输电线路绝缘因承受电压冲击所设计的余量。此类故障即指一般的绝缘性老化,在正常的电压情况下不击穿。常规讨论的高压输电线路故障类型一般针对前三种。依据故障的基本形式,可将高压输电线路故障分为三相短路、两相短路、两相接地短路、单相接地短路和断相故障,多回线高压输电线路则还存在着跨线故障。大量的现场统计数据表明:在高压电网中,短路故障为电力系统中出现次数最多,危害也最严重,而单相接地故障的次数又占所有短路故障次数达83%以上。 二、66KV输电线路的故障定位方法 1、端点测量法,该方法是利用在线路端点处测量故障信息来进行故障定位的,可分为阻抗法和行波法。 2、信号注入法,其故障定位原理是:在线路发生故障后,向系统注入一个频率在次谐波与 +1次谐波中间的信号电流,并通过检测、跟踪该信号实现故障定位的。 3、区段定位法,该方法是利用户外的故障探测器检测故障点前后信息的差别来确定故障区段的。其故障定位原理是:在高压输电线路的主要节点处安装上故障探测器,通过汇总和分析探测到的故障信息来实现故障的区段定位。目前,户外的故障探测器可分为两种,即:线路FTU和线路的故障指示器。 4、智能法,该方法包括分别基于专家系统和神经网络的故障定位方法。专家系统故障定位的原理是:建立在人工智能和专家经验知识的基础上,利用启发式的知识来实现知识处理和故障定位的;神经网络故障定位的原理是:系统在通过对样本学习训练的基础上获取知识并实现故障定位的。 三、输电线路常用故障定位方法的不足 1、阻抗法,该方法基于假设的条件为:三相完全对称;工频基波量;不考虑过渡电阻、传感器特性、故障暂态谐波、系统参数及线路参数等因素的影响。因此,该方法存在两个主要问题:一是测量精度较低。它受线路结构不对称、电流互感器误差、故障点过渡电阻、故障类型和对端负荷阻抗等因素的影响较大,适应能力较弱;二是它不适用于带串补电容线路、直流输电线路、某些同杆双回线路以及T接线路的故障定位,在处理闪络故障和高阻接地故障时精度不高,只适合结构较简单的线路。 2、行波法,电力系统中的高压输电线路一般看作为均匀分布参数的电路,由于存在分布电容和分布电感,当线路中发生故障时,故障点产生的行波会向线路的两端传播。如果在传输的过程中输电线路的波阻抗和参数发生变化,那么行波将会发生折射和反射现象。虽然行波法故障定位的精度和可靠性在理论上不受故障电阻、两侧系统及线路类型的影响,但在工程实际中却受到很多因素的制约,需要进一步解决。行波法存在的主要问题如下:1)要准确提取暂态行波分量。2)识别与标定故障点的反射波。3)标定故障初始行波的到达时刻。4)确定波的速度。 3、信号注入法,主要是利用主动式的向线路注入一个信号来实现故障定位,不受消弧线圈影响,无需安装零序电流互感器。但在实际电网应用中存在如下缺点:1)注人信号强度受电压互感器容量的限制。2)电力系统的负荷种类较多和非线性特性对电网造成的污染,使得电网中存在着接近注入信号频率的信号,对信号的测量造成干扰。3)接地点存在间歇性的电弧现象会使线路中注入的信号不连续并且破坏其特征,给故障定位带来困难。当接地电阻很大时,线路上的分布电容将对注入的信号进行分流,干扰线路的故障定位。4)寻找故障点的时间较长,在此期间有可能引发系统的第二点接地,造成线路的自动跳闸。 4、区段定位法,该方法易受信号干扰和传播衰减的影响,对具体线路的不同情况需要进行修正后才能得到结果,且只能确定故障的区段,无法获得故障的具体位置。该方法在小电流接地故障检测方面效果不是很理想,线路FTu只适合实现了配电网自动化的线路,由于实现

无线通信与人员定位系统设计方案

六枝矿 无线通信及人员定位系统 设计方案 天地(常州) 自动化股份有限公司 煤科总院常州自动化研究院

目录 矿用无线通信及人员定位系统 (3) 1.1概述 (3) 1.1.1天地(常州)自动化股份有限公司简介 (3) 1.1.2无线通信及人员定位简介 (4) 1.2 无线通信及人员定位系统介绍 (6) 1.2.1 系统各产品使用环境条件 (6) 1.2.2 系统组成及框图 (7) 1.3系统主要功能 (12) 1.3.1 调度功能 (12) 1.3.2 用户(手机终端)功能 (17) 1.3.3在线实时录音功能 (18) 1.3.4 其他功能 (18) 1.3.5 备用电源 (18) 1.3.6实时监测功能 (19) 1.3.7 查询功能 (20) 1.3.8 安全保障功能 (23) 1.3.9 统计考勤功能 (25) 1.3.10 信息联网功能 (27) 1.3.11系统运行状态提示(自诊断功能) (27) 1.3.12 操作权限及操作日志 (27) 1.4工作原理及主要技术参数 (28) 1.4.1 工作原理 (28) 1.4.2 主要技术参数 (28) 1.5技术方案设计 (30) 1.5.1 基站的无线信号覆盖设计 (30) 1.5.2 系统设备的设计规程 (34) 1.5.3 系统设备配置说明 (35)

矿用无线通信及人员定位系统 1.1概述 1.1.1天地(常州)自动化股份有限公司简介 天地(常州)自动化股份有限公司(煤炭科学研究总院常州自动化研究院)专业从事煤矿安全生产监测监控、生产过程自动化和通信产品的研发、生产、销售和服务,是集科研开发、工程设计、加工制造、系统集成和工程安装、服务于一体的科技实体。 天地(常州)下设监控研究所、通信研究所、电气研究所、营销中心和产业中心、质保中心等部门。现有职工400余人,其中科研技术人员340多名,研究员及高级工程师61名,工程师78名,专业覆盖了有线通信、无线通信、计算机通信、计算机软件与网络技术、工业自动化、电子技术、测量仪表、传感技术、机械设计等煤矿自动化和通信所涉及的主要领域,专业配置齐全、合理。 天地(常州)为保证科研水平、产品质量,还建有监控、通信、光纤、传动、传感器和环境条件等实验室,从美国、德国等引进具有国际先进水平的设备,并于1998年通过了ISO 9001质量管理体系的认证,于2002年1月,通过GB/T9001-2000(idt ISO9001-2000)换版认证。 天地(常州)始终以煤矿自动化、通信为专业方向,在煤矿高新技术领域研制开发了全矿井综合自动化系统、矿井安全生产监测系统、矿井人员安全监测系统、矿井有线/无线通信系统、胶带运输监控系统、光纤工业电视系统以及矿用传感器等218项科研成果,其中33项获国家、省部级科技进步奖,并创下了数个国内第一:

输电线路故障定位技术的分析与比较

第十三卷 第三期 安徽电气工程职业技术学院学报 2008年9月V o l.13,N o.3 J O U R N A LO FA N H U I E L E C T R I C A LE N G I N E E R I N GP R O F E S S I O N A LT E C H N I Q U EC O L L E G E S e p t e m b e r 2008输电线路故障定位技术的分析与比较 房雪雷1,朱宁2* (1.安徽省电力公司培训中心,安徽合肥230022;2.铜陵供电公司,安徽铜陵244002) 摘 要:本文分析了传统的阻抗测距法存在的问题,介绍行波测距工作原理、优点和关键技术, 并根据近年来现场使用的情况,提出在实际运行维护中若干注意问题。 关键词:故障定位;阻抗法;行波测距 中图分类号: T M744 文献标识码: A 文章编号: 1672-9706(2008)03-0030-04 A n a l y s i s a n d C o m p a r i s i o n T r a n s m i s s i o nL i n e B r e a k d o w nL o c a l i z a t i o n T e c h n i q u e s F A N GX u e-l e i1,Z H UN i n g2 (1.A n h u i E l e c t r i c P o w e r T r a i n i n g C e n t e r,H e f e i230022,C h i n a; 2.T o n g l i n g P o w e r S u p p l y C o m p a n y,T o n g l i n g244002,C h i n a) A b s t r a c t:T h i s p a p e r a n a l y z e s t h e e x i s t i n g p r o b l e m s o f t h e t r a d i t i o n a l i m p e d a n c e m e t h o d,a n d d i s c u s s e s t h ep r i n c i p l e,t h ea d v a n t a g e sa n dt h ek e ya p p l i c a t i o nt e c h n i q u e so f t r a v e l i n gw a v em e t h o d.S o m e p r o b l e m s o f t h ea c t u a l o p e r a t i o na n dm a i n t e n a n c e a r ep r o p o s e db a s e do nw o r k i n ge x p e r i e n c e s o ns p o t r e c e n t y e a r s. K e y w o r d s:b r e a k d o w n l o c a l i z a t i o n;i m p e d a n c e m e t h o d;t r a v e l i n g w a v e m e t h o d 1 引言 电力行业一直都非常重视输电线路故障点定位问题。随着电力系统的不断发展,超高压、长距离输电线路越来越多,线路故障点的准确定位更彰显其重要性。为减少线路寻查的工作量,缩短故障修复时间,节约大量的人力、物力,提高供电可靠性,减少停电损失,加强并提高系统运行管理水平,迫切需要在系统发生故障时能准确查找故障点。对于大多数的能够重合成功的瞬时性故障来说,准确地测出故障点位置,可以区分内外部故障,以及时地发现事故隐患,采取有针对性的措施,避免事故再一次地发生。 长期以来,人们基本上是依赖分析故障录波结果来估算故障点位置,80年代后许多微机线路保护或故障录波装置增加了基于阻抗测量原理的故障测距功能,但受多种因素影响,测距精度仍得不到保障。随着科学技术的发展,尤其进入本世纪后,基于霍尔原理的新型电压、电流信号变换器的出现、G P S 同步时钟信号的商业运用、高速数字信号处理芯片及其它新型技术的发展,为行波信号的获取方法、精确定时问题、信号处理方法、数据处理方法等行波分析方法在电力系统相关技术领域内的运用提供了基本手段,行波故障测距技术取得了重大进展。实践证明,其实际故障测距效果良好,可以说,目前行波测距已成为输电线路故障重要的精确定位方法。 近两年,在我省各供电公司线路工区调研学习期间,发现现场运检人员非常信任行波测距的数据(尤其是220k V等级线路),但是对其工作原理不够清楚。本文首先从分析阻抗测距法存在的问题入手,然后介绍行波测距工作原理、关键技术问题的解决以及近年来实际应用中发现的若干问题。 *收稿日期:2008-07-20 作者简介:房雪雷(1969-),男,安徽阜南人,主要从事变电和线路方向培训教学工作。 朱 宁(1968-),女,安徽铜陵人,工程师。

线路故障定位系统

高压线路故障指示及故障自动定位系统 一、故障定位系统概述及特点 1.1概述 传统配网自动化系统采用馈线自动化FA实现故障定位、隔离和非故障区域自动恢复供电,但这种方式投资大、设备多、光纤通讯费用昂贵,适合多联络、多分段且一次设备具备电动操作机构和受控功能的配电网,但我国农村配电网的情况是网架结构薄弱,并且大多是辐射状配电网结构,属于不具备电动操作机构和受控功能的配电网,因此这些地区适合采用简易型配电自动化系统。简易型配电自动化系统是基于就地检测和控制技术的一种系统。它采用故障指示器来获取配电线路上的故障信息,由人工在现场巡视线路上的指示器是否翻转变色来判断线路是否发生故障(也可将故障指示信号上传到相关的主站,由主站来判断故障区段)。 故障自动定位系统就是一种简易型的配电自动化系统,该系统集成了现代故障指示器技术、GSM通信技术和分布式等技术,形成了一套自动高效的故障检测以及定位系统。主要用于配电系统各种故障的检测和定位,包括相间短路和单相接地故障。在发生故障时,智能故障定位系统的监控主站与现场大量的故障监测点相配合,在故障发生后的几分钟内即可在主站通过故障定位策略给出故障源信息,并且以短信告警的形式通知相关值班员,帮助维修人员迅速赶赴现场,隔离故障段,恢复正常供电。 1.2系统特点 为供电企业提供一套以故障定位为核心功能的自动化系统。该系统通过低廉的成本实现配电网的故障信号采集、故障区段定位,降低配电网线路的故障查找时间和查找成本,加快供电恢复,从而提高供电可靠性。 结合农村配电网现状,提出一套简易型配电自动化系统的建设模式,该模式适用于简单接线的城乡配电线路(含单辐射配电线路)和城市中无专门通信条件区域的配电线路。 先进的故障定位策略,提高故障定位搜索的时间。根据开关装置变位信号,在线路图故障分析线程结束后,定时对线路图进行拓扑分析,或者运行值班人员通过人机交互页面手动触发拓扑分析功能,此时故障定位服务会实时进行拓扑分析,因此故障信号到来时,可实时进行故障查找,而不进行拓扑分析,这就提高了故障定位搜索的时间 采用分布式结构,以组件的方式实现系统功能。如果将所有组件都部署于服务器就容易造成服务器资源短缺,系统瓶颈的问题,所以采用分布式结构,以组件的形式实现系统功能,可将组件部署于多台服务器,通过消息机制建立组件间的松散耦合关系。通过点对点消息模型,采用异步机制完成消息传输。

高压电缆在线双端故障定位系统的研究与应用

高压电缆在线双端故障定位系统的研究与应用 发表时间:2019-10-12T11:52:15.070Z 来源:《河南电力》2019年2期作者:康乙武[导读] 本文研究了双端行波故障定位的技术,通过建立模块化设计,运用集约化方式对高压电缆线路进行在线实时监测,实现了变电站站端至用户端电缆运行故障的测寻。 康乙武 (广东电网有限责任公司佛山供电局佛山 528000) 摘要:本文研究了双端行波故障定位的技术,通过建立模块化设计,运用集约化方式对高压电缆线路进行在线实时监测,实现了变电站站端至用户端电缆运行故障的测寻。文中所设计的高压电缆在线双端故障定位系统实现了可快速判断故障电缆线路及故障点距离电缆线路终端的位置,缩短故障排查时间,迅速抢修复电,为变电站运维和管理工作提供了便利,提高了电网的供电可靠性。 关键词:高压电缆;线路故障;双端行波 本文介绍了变电站高压电缆线路的运行现状(以佛山220kV红星变电站220kV红双甲、乙线为例)以及HDDBF-高压电缆双端在线故障定位系统的开发和应用,为进一步优化变电站高压电缆线路故障排查及维护提供技术支持。 1变电站高压电缆的运行现状 中心城区城市化程度的不断提高和用电负荷的快速增长给城网中、高压线路电缆化带来了广阔的应用前景,也必然导致了电缆出线变电站这种新的变电站出线方式。由于电网中电缆线路比例不断上升,而传统的系统保护和运行方式设计并没有充分考虑这一变化带来的影响,这就有可能对设备的安全运行带来严重的潜在危险和实际的危害,而且电缆线路无法实时监测其运行状态也给运行人员的维护带来不便,特别是重点高压线路,比如佛山220kV红双甲、乙线是220kV红星变电站至220kV佛山双铁站的二级重要供电线路,是为佛山西站供电的直接电源,一旦电缆线路发生瞬时接地故障或者永久性接地故障,且不能够及时查处故障,将对电力系统造成威胁以及对社会造成一定影响。 2双端行波故障定位系统的功能及组成 双端行波故障定位功能:通过安装在电缆线路两个终端的故障电流互感器,采集故障行波信号。B终端采集到故障行波信号后开始计时;A终端采集故障行波信号后,通过光电转换模块,再通过光纤发送到B终端,B终端接收到A终端的TTL信号后终止计时。B终端把故障状态及故障时间差通过光纤上传到控制中心服务器,在服务器界面直接显示故障相和故障点距B终端的距离。一套监测装置(包含A、B终端)可监测一回路电缆,系统监测B终端:记录故障点距离两个终端的时间差并锁存。系统监测A终端:当故障点行波信号到达A终端,A终端立即将TTL信号通过光电转换器再通过光纤传送到B终端,作终端B计时终止信号。电缆故障预警:电缆发生短路故障时,系统可以立即判断出发生故障电缆的线路名称及相线。由以下四部分组成:(1)服务器及智能管理平台; (2)现场数据采集装置:A终端、B终端; (3)数据传输网络:光纤; (4)光电转换模块(备注:多套装置组成一个系统时,系统采用环网通信方式,如:B1A1…AnBn…B1光电转换模块服务器。B1…Bn为n个B终端,A1…An为n个A终端)。 3双端行波故障定位系统的工作原理 双端行波故障定位系统的工作原理框图如图1,B终端和A终端同时监测A、B、C三相,图中只画一个CT示意。电缆两端分别安装采集A、B终端,当电缆中间任意一点发生故障,故障行波朝两端传播,当故障行波到达B终端时,B终端触发计时开始;故障行 波到达A终端后,A终端检测到故障行波并发送电脉冲信号通过光纤传送到B终端,B终端接收到此脉冲信号时计时结束。通过时间差计算故障点与两终端的距离,从而实现故障点的在线定位。 故障距离计算公式如下: 上式中: 为系统计时时间差值,单位为μs; 为电缆总长,单位为m; 为A终端脉冲到达B终端后硬件增加的延时,单位为μs; 为故障点距离B终端距离,单位为m; 为故障行波在所述高压电力电缆中的传播速度,通常为172m/μs。

关于软件故障定位技术的研究进展及展望

关于软件故障定位技术的研究进展及展望 摘要在软件调试工作中,故障定位非常耗时耗力,为了使调试成本进一步降低,需要由开发人员来配合进行软件故障的定位与修复,软件故障定位技术需要对源代码进行审查,并对软件在测试过程中所产生的行为,同时依据测试结果来实现故障中代码片段的定位。鉴于此,本文便对软件故障定位技术的研究进展进行了综述,以此探讨这些不同故障定位技术的原理及建模技术,并对软件故障定位技术的未来研究趋势进行了展望。 关键词软件故障;定位技术;研究進展;前景展望 1 软件故障定位技术的研究进展 根据软件故障在定位时是否需要软件协助这一特征,可将软件故障定位技术划分成两类,分别是基于静态分析的故障定位技术与基于测试的故障定位技术,以下便对这两种软件故障定位技术的研究进展进行探讨[1]。 2 软件故障定位技术的静态分析手段研究进展 在软件故障定位技术的静态分析手段中,主要包括四种形式的故障分析方法,分别是面向语句的故障定位方法、形式化故障定位方法、符号执行故障定位方法与指针分析式故障定位方法。在面句语句的故障定位方法中,主要是根据程序设计语言中所具备的基本约束来对程序的控制结构、语法和数据类型进行检测的,以实现故障的定位,并进行预警的同时给出具体的修复建议。FindBugs是面向语句的故障定位方法中的一个开源框架,在该框架中对超过300种故障及缺陷进行了预定义,而赵建军等人则在该框架的基础上,又定义了17种故障模式,并且设计了一种能够对AspectJ故障进行检测的XFindBugs系统。在形式化故障定位方法中,主要是通过相应的逻辑方法或数学算法来对软件系统进行验证与描述,其描述的内容为系统性为及性质两个方面。Flanagan等人采用自动定理与条件验证的方式对能够适用于Java代码进行静态检查的检查器进行了设计,该检查器能够在进行java代码编译时对常见的源代码故障进行检测。 在符号执行故障定位方法中,其是通过符号来当作变量值,并模拟程序路径,同时对路径中的变量值进行跟踪,以获得相应的路径条件,并采用约束求解法来对路径条件的满足性与否进行判定。King在调试过程中便通过符号执行故障定位法的应用来对顺序程序进行调试,并取得了良好的调试效果。Young等人则研发出一种能够对并发程序故障进行检测的符号执行并发故障定位技术,其利用Taylor算法来对程序流图进行生成,并在各个流图中对控制线程进行分配,并通过路径表达式来对符号执行值进行表示,同时由路径条件对符号执行条件进行表示,然后按照自上而下的方式来对该程序流图进行执行,从而使死锁、访问冲突等故障得到了准确的定位。在指针分析式故障定位方法中,主要是根据指针所指的对象存储位置及其指针值来对故障进行定位的。在指针分析式故障定位方法中,NPR问题是其重点内容。对于NPR问题来说,其具体分析方法的研究进展

10kV配电网故障定位系统研究与应用

10kV 配电网故障定位系统研究与应用 摘要:在整个电力系统中,配电网处于最末端的位置,运行过程中的故障直接影响着供电的安全性、可靠性及电能质量,与电力用户用电关系密切,所以研究配电网故障点的迅速查找与隔离有着巨大的现实意义。本文针对10kV 配电网接地短路故障设计了一种新型的配电网故障定位系统,简述了该系统的设计理念与实现,以及故障自动定位过程。运行实践证明,这一系统在10kV 配电网发生故障后,能够快速的帮助检修人员准确的找到故障点。 关键词:10kV 配电网;故障点;查找与隔离;故障定位系统 中图分类号:TM76 文献标识码:A 随着经济社会的发展,电能的使用越来越多,对供电的安全可靠和电能质量提出了更高的要求。配电网是电力系统构成的最后一部分,由铁搭、变压器、配线路、无功补偿电容等设备组成,与电力用户直接相连,其中任何一个设备、一条线路发生故障,都会导致与其相连的电力用户停电,带来了负面影响是无法估量的。特别是配电线路一般较长,南方地区夏季雨水较多,配电网易受雷雨天气影响而发生故障,针对南方电网的这种特点,如何建立一个适合的配电网故障定位系统,实现对故障点的迅速查找与隔离,减少停电面积,仍是南方供电企业要考虑的重点问题。研究10kV 配电网故障定位系统,不仅利

用供电企业实施故障检测,也利于实现配电网络自动化,对智能电网建设的影响重大。 一、10kV 配电网线路特点 作为配电网的一种型式,10kV 配电网线路有着自身独特的特点,决定着该配电网故障定位系统的设计思路与实现。第一,10kV 配电网线路分支较多,且分支又能产生子分支,往往有数十代之多,信号随着一代代分支的出现而不断衰减,加大了故障检测难度;第二,10kV配电网的杆塔多是石灰杆,若发生接地故障,电阻数值会加大到几千欧,有时甚至达到几十千欧,但是故障信号却较弱,不容易检测到;第三,通常配电线路越长,线路的对地电容越大,而对地电容对注入交流信号具有分流作用。10kV配电网线路一般都较长,这样一来,对注入交流信号的分流作用也会变大,故障信号将会越来越弱,为故障点定位带来了难度。 二、10kV配电网故障定位系统设计思路与实现 (一)设计思路 实用的10kV配电网故障定位系统要求在满足故障定位检测的基础上,使用更方便,基于这样的要求及10kV配电 网线路特点,提出建立一种无源的实用型故障定位系统,主要利用中心主站系统、故障信息采集系统和故障指示器来查找故障点。故障指示器在配电网中,主要负责指示故障电流通路,可根据故障检测的种类显示不同的报警形式,便于检修人员第一时间确定故障类型。中心主站系统、故障信息采集系统,能够对配电网线线路故障

[故障,规则,技术]基于关联规则的软件多故障定位技术

基于关联规则的软件多故障定位技术 摘要:为了提高软件故障的定位效率,提出一种基于关联规则的软件多故障定位技术。通过使用聚类方法把失败的测试用例分成针对特定错误的聚类,使用基于交叉表的软件故障定位方法发现软件中的故障,在定位过程中使用关联规则挖掘高可疑代码与软件故障的关系,提高故障定位的效率,最后对Siemens用例集和Tarantula方法进行对比。实验表明基于关联规则的软件多故障定位技术在软件多故障定位方面效率优于Tarantula方法。 关键词:关联规则;多故障定位;提高定位效率;聚类方法 0 引言 Jones和Harrold提出了一种并行调试技术[7],通过对可能导致同一个故障的测试用例进行分类,然后结合成功执行的测试用例构造用以测试每个故障的测试用例子集,来同时定位不同的软件故障。但现有的基于覆盖率的错误定位(Coverage Based Fault Localization,CBFL)方法只是统计代码语句或代码基本块的覆盖率,并没有考虑程序执行的数据依赖和控制依赖,因此会出现定位不准确的情况。结合以上两点,本文将在并行的基础上使用关联规则挖掘软件故障。 1 相关工作 许多该领域的学者提出了不同的软件故障定位技术。这些技术大多通过收集语句或者谓词等程序实体的覆盖信息,然后对收集到的信息利用相应的怀疑度公式计算每条语句的怀疑度,据此找出软件中的故障。本文也使用这种方式,同时,结合关联规则的思想来提高软件的多故障定位效率。 1.1 基于交叉表的故障定位技术 W.Eric提出了一种基于交叉表的技术进行软件故障定位的方法[4,8]。该方法的主要思路是:针对每个测试用例的每一条语句构造一个交叉表,通过该交叉表收集语句的覆盖信息和执行结果。然后,利用每条语句的统计信息计算该语句的怀疑度(Suspiciousness)。通过这种方式,所有的语句都可以根据计算出的怀疑度来降序排名。语句的怀疑度越高,该语句越会被优先检查,可以通过排名依次检查语句,直至发现软件的故障。 该技术通过引用一个名为Chi?square test的假设测试来检查测试用例执行结果和语句覆盖信息之间的依赖关系。Chi?square 的数据通过交叉表中的数据计算而来,同时与Chi?square中的关键值进行对比,决定这个假设(即执行结果独立于与语句的覆盖信息)被接受还是被抛弃,然后,通过计算语句的怀疑度数值[ζ]进行故障定位。[ζ]的数值越大表示语句的怀疑度越高,怀疑度越高则会被优先检查。基于交叉表的软件故障定位技术通过计算语句的怀疑度来预测语句包含故障的可能性。其实验结果表明基于交叉表的软件故障定位技术相比于绝大多数的软件故障定位技术,如Tarantula、Liblit05、SOBER等方法,效果更好。 通常状况下,一个软件出现失效状况下,软件中会包含多个故障,同时软件调试的人员

OTN介绍及故障定位方法

OTN介绍及故障定位方法 1 OTN帧结构简介 1.1 OTN产生的背景 目前随着通信行业的发展,对光网络的要求越来越高,要求光网络所承载的信息量也越来越大,承载的客户信号种类也各种各样,包括SDH、ATM、以太网、IP等多种信号都要求能在光网络中快速、高效、透明、可靠的传输。为此,国际电信联盟ITU制订光传送网OTN的相关标准,来指导OTN的发展。 光传送网OTN是下一代光网络的发展方向。OTN设备主要完成的功能就是将客户信号封装在OTN的相应帧格式中,透明、高效的进行传输,同时,通过相应的OTN开销对信号的好坏进行检测。因此,理解好OTN开销对深入理解OTN设备有着重要意义。 ITU-T在G.709标准中规定了OTN的帧格式和映射方式,;在G.798标准中规定了设备的功能特性。因此,本手册主要以G.709和G.798为标准,结合我司M820V2.5设备和 ZXONE 8X00设备,主要讲述我司设备OTN开销的实现以及检测。 1.2 OTN的网络层次 光传送网OTN的一个主要特征就是网络的层次化。将光传送网划分为多个网络层次,每个层次之间彼此互为服务层与客户层。客户信号在不同层次之间进行传输,每一层次都有着自己的开销,用于检测本层次信号的好坏。 根据ITU-T的G.709规定,OTN分为客户信号层、光通道净荷单元(OPU)、光通道数据单元(ODU)、光通道传送单元(OTU)、光通道层(OCH)、光复用段层(OMS)、光传输段层(OTS)。以上各层之间,前者是后者的客户层,后者是前者的服务层。下面是对各层的简单说明: 1. 客户信号层:该层主要指OTN网络所要承载的局方信号,主要包括:SDH、以太网、 IP业务等。 2. 光通道净荷单元OPU:该层主要是用来适配客户信号以便使其适合在光通道上传输, 即:承载客户信号的“容器”。该层的开销主要用来指示客户信号映射到OTN信号的过程。 3. 光通道数据单元ODU:该层是由OPU层和ODU层相关开销构成的,该层的开销可 以支持对传输信号质量端到端的检测。 4. 光通道传送单元OTU:该层是在光路上传输信息的基本单元结构,有ODU层和OTU 层相关开销构成。

故障定位系统综述

第一章系统设计概述 1.1系统概述 本项目利用现代科技、电子信息和通信技术,对配网线路的短路和单相接地故障进行监测,能迅速给出故障具体地理位置和故障时间的指示信息,帮助维修人员迅速赶赴现场,排除故障,恢复正常供电,大大提高供电可靠性。该系统的建成还能有效地提高配网设备健康水平和运行管理水平,降低故障判断对人的经验依赖,减少和缩短设备检修停电操作时间和范围。 本系统基于故障指示器技术、单相接地故障检测技术和现代通信技术,在配网故障后,它能够在故障后的几分钟内将故障线路和故障地点等信息通过GSM网络传送至控制中心的计算机,在屏幕上显示出故障具体地理位置和故障时间的指示信息,帮助维修人员迅速赶赴现场,排除故障,恢复正常供电 1.2系统实施意义 配电网直接联系用户,其可靠供电能力和供电质量既是电力企业经济效益的直接体现,又对应着不可估量的社会效益。配电网故障自动定位作为配电自动化的一个重要内容,对提高供电可靠性有很大影响,也得到了越来越多的重视。 配电系统因为分支线多而复杂,在中国发生短路故障时一般仅出口断路器跳闸,即使在主干线上用开关分段,也只能隔离有限的几段,要找出具体故障位置往往需耗费大量人力、物力和时间。故障查找在中国虽研究较多,也有各种成型产品提供,但基本上都需人工现场查找,自动化水平不高。 故障定位系统是基于故障指示器技术和GIS(地理信息系统)技术的一套自动高效的故障点检测及定位系统,主要用于配电系统各种短路故障点的检测和定位,包括相间短路和单相接地故障。配电控制中心的故障定位软件系统与大量现场的故障检测和指示装置相配合,在故障发生后的几分钟内即可在控制中心通过与地理信息系统的结合,给出故障位置和故障时间的指示信息,帮助维修

10kV配网故障定位系统的研究与应用

10kV配网故障定位系统的研究与应用 发表时间:2018-04-16T15:53:00.047Z 来源:《电力设备》2017年第32期作者:戴云锋周峰号孙龙[导读] 摘要:余姚供电网以10kV配网为主,许多线路通往山区,一旦发生故障需要花费很长的时间查找故障点。 (国网浙江余姚市供电有限公司浙江余姚 315400)摘要:余姚供电网以10kV配网为主,许多线路通往山区,一旦发生故障需要花费很长的时间查找故障点。本文从余姚配网的现状出发,阐述了故障定位系统在余姚配网中应用的必然性和可行性,阐述了故障定位系统的检测技术、系统构成等。通过故障定位系统能够准确定位故障区段,从而提高各种复杂情况中配网故障定位的准确性,确保配网供电的可靠性。 关键词:故障定位系统;配网线路;故障类型;可靠性 一、引言 余姚电网主要由城乡线路与山区线路组成,目前拥有10kV配网线路652条,随着用电负荷的增加,线路供电半径也在逐步扩大,一旦发生线路故障,查找故障点非常困难,少则两、三个小时,多则数小时,不仅影响电网供电的可靠性,还造成经济效益和社会效益的损失。 目前配网线路运行人员配备不足,设备管理无法满足日益增长的配网运行需求,因此在配网运行管理上需要利用新技术来解决以上矛盾,利用先进科技手段帮助运行、检修人员迅速赶赴现场,排除故障,恢复正常供电,提高供电可靠性。配网故障定位系统的应用将切实解决以上问题。 二、配网线路常见的故障分析 配网线路面向用户终端,线路通道远比输电网复杂,跨越各类线路、道路,极易引发线路故障[l]。同时,配网线路的供电范围广,导线跨越地区地形空旷,附近少有高大建筑物,所以在每年的雷雨季节中极易遭遇雷击。另一方面,随着城市建设的不断发展,城市绿化已经进入高速发展期,在带来宜人环境的同时,也对配电线路造成一定的影响,树木碰触裸导线造成事故的现象时有发生,情形不容忽视。 现存配网线路中,仍然存在着部分用户产权的电力设施,这类设施普遍存在无人管理、配电房防护措施不完善、电缆沟坍塌积水等问题。由于技术发展的需要,这些老旧型号设备难以满足现行配网运行的需要,同时,老旧设备内部绝缘、瓷瓶老化严重,经高温或风吹雨淋后极易发生故障[2]。 三、配网故障定位及负荷监测技术方案 10kV配网故障定位及负荷监测系统以二遥故障指示器为基础,应用无线通信技术,实现故障点的快速定位和线路负荷波动的实时监测,是一种经济实用型馈线自动化技术[3]。 该系统的建设旨在实现故障的快速定位,减少故障巡查和故障处理时间。通过二遥故障指示器,二遥数据转发站,可变负荷柜及主站系统的建设,具备易实施,免维护,良好的可扩展性和兼容性等特点。该系统适用于10kV配网系统,尤其是一些不带开关、或原为手动开关不准备(或暂不适合)改造为电动开关的架空线分支处、环网柜、开闭所、配电房等电缆设备进出线,系统可以满足资金投入有限的系统,实现对电缆线路及架空线路故障点的自动定位及开关状态监控。 (一)基于负荷电流自适应智能突变法短路检测技术二遥故障指示器短路动作判据采用负荷电流自适应智能突变法,原理是根据配电线路故障时,线路电流从运行电流突增到故障电流,线路停电时电流下降为零的特性。显然它只与故障时短路电流突变量有关、而与正常工作时线路电流的大小没有直接关系,是一种能适应负荷电流变化的故障检测系统。 (二)基于可变负荷法的小电流单相接地故障检测技术目前配网采用的是中性点不直接接地系统,这类系统发生单相接地故障时,因故障电流较小,故障特征复杂,因而故障点的查找非常困难[5]。 可变负荷法检测单相接地故障的原理就是按照小电流接地系统单相接地故障的特点,通过检测故障线路上瞬时产生的特征负荷电流突变信号来实现故障选线和故障点定位的。首先判断出故障相,然后对故障相瞬时接入阻性负载,按照设定时序改变线路负荷电流变化,安装在线路上的故障检测装置检测流过本线路负荷变化特征信号,若满足设定的变化规律则故障检测装置给出报警,从而指示出故障位置。 可变负荷柜在永久性接地故障发生时,在变电站短时投入阻性接地负载,在变电站和现场接地点之间产生负荷变化特征电流信号(频率为50Hz),不但可以产生可供检测的信号电流,而且有利于消除谐振过电压。 四、系统构成 在通信传输方面,二遥故障指示器采用433M无线通信实现与二遥数据转发站接通,实现数据实时上传,转发站采用GPRS公网通信方案与配网自动化主站系统实现互联互通。在系统建设方面,配网故障定位系统由主站层、通信层和终端层三个部分组成,终端层作为系统最底层,提供线路运行状态数据,是整个系统的重要组成部分,通信层实时传输数据,主站层负责信息处置与决策。 五、故障指示系统带来的效益 余姚市供电有限公司在配网故障定位系统上线后取得了很好的经济效益与社会效益。故障停电时间从原先发生故障时传统方法排除故障所需的三小时以上缩短到至今的一小时左右。 以某条10kV线路为例,这条线路公变负荷为10400kVA、专变负荷4585KVA。事故停电损失32520kWh为例。在每年的台风雷雨季节,以每年接地次数6次计算,按照发现故障点最短的时间3小时计算,每年电量损失在(10400+4585)*3*6/1000=26.973万千瓦时左右。 通过配网故障定位系统把故障排除时间节约到半个小时到一个小时左右,这样每条配电线路发生故障时电量损失在(10400+4585)*1*6/1000=8.991万千瓦时左右,减少损失电能损失17.982万千瓦时。 六、结束语 余姚电网自配网故障定位系统上线后,极大的减少了工作人员查找故障的时间。一旦线路发生短路或接地故障,巡线人员可借助指示器上的红色报警显示迅速确定故障点所在的分支区段及故障点。及时发现并排除线路故障,极大的缩短故障停电时间,提高电网供电能力。

相关文档
相关文档 最新文档