文档库 最新最全的文档下载
当前位置:文档库 › 载重汽车双联驱动桥的结构特点及使用故障分析

载重汽车双联驱动桥的结构特点及使用故障分析

载重汽车双联驱动桥的结构特点及使用故障分析
载重汽车双联驱动桥的结构特点及使用故障分析

汽车驱动桥设计

徐州工程学院成人教育学院 图书分类号: 密级: 毕业设计(论文) 汽车驱动桥设计Automobile driving axle design 姓名史志伟 学号070900074 专业机械设计制造及其自动化 指导教师李志 2011年11月18日

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键字:轻型货车;驱动桥;主减速器;差速器

Abstract Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed,bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given ,firstly determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Key words light truck drive axle single reduction final drive

驱动桥差速器设计说明书

摘要 汽车驱动桥是汽车的主要部件之一,其基本的功用是增大由传动轴或直接由变速器传来的转矩,再将转矩分配给左右驱动车轮,并使左右驱动车轮具有汽车行驶运动所要求的差速功能。汽车差速器位于驱动桥内部,为满足汽车转弯时内外侧车轮或两驱动桥直接以不同角度旋转,并传递扭矩的需求,在传递扭矩时应能够根据行驶的环境自动分配扭矩,提高了汽车通过性。其质量,性能的好坏直接影响整车的安全性,经济性、舒适性、可靠性。 随着汽车技术的成熟,轻型车的不断普及,人们根据差速器使用目的的不同,设计出多种类型差速器。与国外相比,我国的车用差速器开发设计不论在技术上,还是在成本控制上都存在不小的差距,尤其是目前兴起的三维软件设计方面,缺乏独立开发与创新能力,这样就造成设计手段落后,新产品上市周期慢,材料品质和工艺加工水平也存在很多弱点。 本文认真地分析了国内外驱动桥中差速器设计的现状及发展趋势,在论述汽车驱动桥的基本原理和运行机理的基础上,提炼出了在差速器设计中应掌握的满足汽车行驶的平顺性和通过性、降噪技术的应用及零件的标准化、部件的通用化、产品的系列化等关键技术;阐述了汽车差速器的基本原理并进行了系统分析;根据经济、适用、舒适、安全可靠的设计原则和分析比较,确定了轻型车差速器总成及半轴的结构型式;轻型车差速器的结构设计强度计算运用了理论分析成果;最后运用CATIA软件对汽车差速器进行建模设计,提升了设计水平,缩短了开发周期,提高了产品质量,设计完全合理,达到了预期的目标。 关键词:驱动桥;差速器;半轴;结构设计;

Automobile driving axle is one of the main components of cars, its basic function is increased by the transmission shaft or directly by coming from torque, again will torque distribution to drive wheels, and make about driving wheel has about vehicle movement required differential function. Auto differential drive to meet internal, located in car wheel or when turning inside and outside two axles directly with different point of view, and transfer the rotating torque transmission torque in demand, according to the environment should be driving torque, improve the automatic assignment car through sex. Its quality, performance will have a direct impact on the security of the vehicle, economy, comfort and reliability. As car technology maturity, the increasing popularity of small, people of different purposes according to differential, the design gives a variety of types differential. Compared with foreign countries, China's automotive differential development design whether in technology, or in the cost control there are large gap, especially at present the rise of 3d software design, lack of independent development and innovation ability, thus causing design means backward, new products listed cycle slow, materials quality and craft processing level also has many weaknesses. This paper conscientiously analyzes the differential drive axle design at home and abroad in the present situation and development trend of automobile driven axle, this basic principle and operation mechanism, carry on the basis of the differential practiced a meet the design should be mastered in smooth and automobile driving through sexual, noise reduction technology application and parts of standardization, parts of generalization, serialization of products, and other key technology; Expounds the basic principle and automotive differential system analysis; According to economic, applicable, comfortable, safe and reliable design principles and analysis comparison, determine the small differential assembly and half shaft structure type; Small differential structure design strength calculation using theoretical analysis results; Finally using CATIA software modeling design of automotive differential, promoted design level, shorten the development cycle, improve the product quality, design completely reasonable, can achieve the desired goals. Key words:Differential mechanism;Differential gear;Planetary gear;Semiaxis;

汽车驱动桥的详细结构与分类

驱动桥的详细结构及分类 我爱车网类型:转载来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

江淮帅铃汽车驱动桥设计说明书

第1章绪论 1.1 本课题的目的和意义 本课题是对江淮帅铃货车驱动桥的结构设计。通过此次毕业设计,训练学生的实际工作能力。掌握汽车零部件设计与生产技术是开发我国自主品牌汽车产品的重要基础,汽车驱动桥时传动系统的重要部件。设计汽车驱动桥,需要综合考虑多方面的因素。设计时需要综合运用所学的知识,熟悉实际设计过程,提高设计能力。驱动桥的设计,由驱动桥的结构组成、功用、工作特点及设计要求讲起,详细地分析了驱动桥总成的结构形式及布置方法;全面介绍了驱动桥车轮的传动装置和桥壳的各种结构形式与设计计算方法。 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。汽车驱动桥是汽车的重大总成,承载着汽车的满载簧荷重及地面经车轮、车架及承载式车身经悬架给予的铅垂力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩,桥壳还承受着反作用力矩。汽车的经济性日益成为人们关心的话题,这

不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在四吨以上的载货汽车的发动机,最大功率在99KW,最大转矩也在350N·m 以上,百公里油耗是一般都在30升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过 程中的损失。驱动桥是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操作性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。 1.2 驱动桥的分类 1.2.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种家庭乘用车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

毕业设计(论文)--重型载货汽车驱动桥设计

毕业设计(论文)--重型载货汽车驱动桥设计 毕业设计任务书 一、毕业设计原始资料 发动机最大功率及转速:206kw/2400r/min; 发动机最大扭矩:N.m/ r/min 装载质量:20870kg; 总质量:kg; 二、毕业设计任务及要求 1.查阅相关资料,对国内外低速载货汽车驱动桥发展状况进行分析,撰写开题报告。 2.低速载货汽车驱动桥的工作分析,完成驱动桥结构方案拟定。 3.低速载货汽车驱动桥整体设计。 4.完成主减速器设计、差速器设计、半轴的设计,进行主要零件计算及强度校核。 5.写出设计计算说明书一份。 6.并完成各非标准零件图和整机的装配图。 三、毕业设计工作量 1.设计说明书 毕业设计说明书应包括下列内容:设计说明书的字数应在0000字以上,采用A4纸

2.查阅参考文献 查阅文献10篇以上,其中查阅与课题有关的外文文献2篇以上,并将其中的1篇文献的摘要的原文和译文(不少于3000汉字)附在附录中。 3.设计图纸 毕业设计图纸应符合国家有关制图标准,正确体现设计意图,图面整洁,布置匀称,尺寸标注齐全,字体端正,线型规范。图纸全部由计算机绘制。 序号图纸内容规格比例 1 装配图1张0号2零件图3张2号 四、毕业设计进度安排 序号起止日期设计内容 1 3月 1日~3月14日调查研究,收集资料,总体设计,方案论证 2 3月15日~3月31日撰写开题报告,开题答辩 3 4月 1日~4月20日部件、零件设计计算阶段编写设计计算说明书 5 5月11日~5月23日绘制图纸 6 5 月24日~ 5月30日毕业设计答辩7 5月31日~ 6月6日毕业设计整改 六、审批意见 1.教研室意见: 教研室主任签名: 年月日 2.学院意见: 教学院长签名: 年月日

汽车驱动桥的基本结构及发展方向

万方数据

重型汽车驱动桥的基本结构及发展方向 作者:高志刚 作者单位:河北省张北县交通局,076450 刊名: 科学与财富 英文刊名:SCIENCES & WEALTH 年,卷(期):2010,(8) 被引用次数:0次 相似文献(10条) 1.期刊论文刘永辉.朱小波重型汽车驱动桥的基本结构及发展方向-科技经济市场2006(8) 全面阐述了重型汽车驱动桥的基本结构及发展趋势. 2.期刊论文金荣植新型重型汽车驱动桥锥齿轮材料17Cr2Mn2TiH钢-汽车工艺与材料2008(9) 对采用我国新研制的17Cr2Mn2TiH钢生产的重型汽车驱动桥圆锥齿轮进行了台架寿命试验,结果表明,该齿轮完全可以达到重型汽车驱动桥齿轮的相关技术要求.同时,采用17Cr2Mn2TiH钢替代含Ni较高的17CrNiM06H、20CrNi3H等钢,不仅大大降低了齿轮钢材成本,而且热处理工艺简单.因此可以大大降低其制造成本.这是目前我国重型汽车驱动桥齿轮行业摆脱制造成本过高的一种很好尝试. 3.会议论文严欣贤.周跃良.白志成重型汽车主减速器疲劳寿命试验扭矩的确定研究2005 本文通过对重型汽车驱动桥的疲劳寿命试验方法的研究,在指出传统等幅加载方法不足的的基础上,根据汽车齿轮的疲劳寿命与应力的关系曲线重新确定了重型车驱动桥疲劳寿命试验方法,其它类型的车辆的驱动桥疲劳台架试验可参考该方法确定驱动桥的疲劳试验载荷. 4.期刊论文严伯昌重型汽车驱动桥总成的检修-工程机械与维修2007(11) 重型汽车驱动桥总成主要由驱动桥壳体、主减速器总成(含差速器)、轮边减速器总成、制动钳以及全浮式左右半轴等部分组成.任何壳体类零件出现微小裂纹或壳体轻微变形均可导致零件间相对位置精度及齿轮间的啮合关系发生改变,从而降低驱动桥的作业效率和使用寿命,影响整机的使用性能和作业能力.因此应做好以下几个部件的检修. 5.期刊论文金荣植重型汽车驱动桥齿轮材料与工艺对疲劳性能影响的探讨-汽车工艺与材料2009(11) 对于重型汽车驱动桥齿轮一般需进行疲劳性能考核.试验方法是将被考核齿轮以总成形式安装在总成试验台上,使其在与实际工作条件接近一致的情况下运行. 6.学位论文李欣重型货车驱动桥桥壳结构分析及其轻量化研究2006 驱动桥桥壳是汽车上重要的承载件和传力件,作为具有广泛应用市场的非断开式驱动桥的桥壳不仅支承汽车重量,将载荷传递给车轮,而且还承受由驱动车轮传递过来的牵引力、制动力、侧向力、垂向力的反力以及反力矩,并经悬架传给车架或车身。并且在汽车行驶过程中,由于道路条件的千变万化,桥壳受到车轮与地面间产生的冲击载荷的影响,可能引起桥壳变形或折断。因此,驱动桥壳应具有足够的强度、刚度和良好的动态特性,合理地设计驱动桥壳也是提高汽车平顺性的重要措施。 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低,由于与带轮边减速器的驱动桥相比,单级减速驱动桥机械传动效率提高,易损件减少,可靠性增加,结构简单。因此,未来重型车车桥将由典型的斯太尔双级减速驱动桥向单级桥方向发展。本文正是以新型的10T级的单级减速驱动桥的桥壳为研究对象。 本文的重点是:以有限元静态分析、动态分析及机械结构优化设计理论为基础,将CAD软件UG和有限元分析软件ANSYS结合起来,完成了从驱动桥壳三维建模到有限元分析的整个过程,得出了驱动桥壳在四种典型工况下的应力分布和变形结果及它在自由约束状态的前16阶固有频率和振型,计算证明,该桥壳满足强度要求,可以认为它在汽车各种行驶条件下是可靠的,并且不会引起共振。在此基础上,应用ANSYS的优化模块对其进行结构优化,优化结果表明,桥壳质量有了明显的减少,最大等效应力接近许用应力,大大提高了材料的利用率,且应力分布更加合理。其中,本文总结了使用以上软件建立模型及有关分析和优化工况的规范化步骤,以达到提高工作效率的目的,得到了有益于工程实际的结论。 研究结果表明,利用CAD建模技术和CAE分析技术可以显著提高汽车驱动桥桥壳的设计水平、缩短设计周期、降低开发成本并提高产品竞争力。该方法具有普遍性,可以为其他类型的驱动桥桥壳的设计和分析提供借鉴和参考。 7.期刊论文赵娜.李静.ZHAO Na.LI Jing新型独立悬架断开式重型驱动桥-农业装备与车辆工程2009(12) 自行设计的独立悬架断开式重型驱动桥由主减速器、差速器、半轴、油气弹簧、上下摆臂和桥壳等组成.其应用提高了重型汽车的动力性、平顺性和通过性. 8.期刊论文范翠玲.牟均发.Fan Cuiling.Mou Junfa TL3400系列非公路用自卸车-工程机械2007,38(10) TL3400系列非公路用自卸车是陕西同力重工有限公司在吸收国内外重型汽车、工程机械先进技术基础上,历时近三年研发成功的具有自主知识产权、适应于多种特定用途的经济适用型非公路运输车辆.为土方运输和各种露天矿剥岩、矿石运输提供了经济、高效、低耗的运输设备.介绍TL3400系列非公路自卸车的主要技术指标,结构及特点.该车具有适应重载工况而特殊设计的悬挂系统、16t级加强型宽体工程驱动桥、14.00-20型宽大工程轮胎,使得该车具有超强的承载能力,同时提供了超强的附着能力,保证了车辆的制动稳定性和良好的通过性,采用了大速比工程驱动桥,其输出转矩比同功率公路车大30%以上,爬坡能力强劲,重载起步顺畅.转向系统采用了机械式液压内助力加外助力的结构,保证重型车转向操纵的轻便性和准确性. 9.期刊论文杨金文.YANG Jin-wen冲焊式153载重汽车驱动后桥壳加工工艺的改进-机械工程师2009(7) 153载重汽车驱动桥是重型汽车选用较广的驱动后桥,而冲焊桥壳具有外观好、重量轻、清洁度高、故障率低等优点.文中介绍了改善桥壳外观、提高焊接质量、减少生产过程中的桥壳变形、提高桥壳加工精度的工艺改进. 10.期刊论文王元荪重型汽车专利摘编(六)-重型汽车2005(6) 专利名称:一种铸态高屈服强度球墨铸铁材料 专利申请号:200310114496.7 公开号:CN1554793 申请人:中国重型汽车集团有限公司 本发明属于铸造材料的技术领域,特别涉及一种铸态高屈服强度球墨铸铁材料.用于重型汽车大吨位、高牵引力的驱动桥差速器壳.本发明的球墨铸铁材料,其化学成分的重量百分比为,C:3.5~ 3.8%,Si:2.0~2.5%,Mn:0.4~0.6%,Cu:0.5~0.7%,Mo:0.25~0.35%,Ni:0.3~0.5%,P≤0.06%,S≤0.03%,Ti≤0.05%,Cr≤0.1%,余量为Fe. 本文链接:https://www.wendangku.net/doc/859317666.html,/Periodical_kxycf201008018.aspx

商用车驱动桥设计说明书

商用车驱动桥设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率的需要时,必须要搭配一个高效、可靠的驱动桥。本文参照传统驱动桥的设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支撑轴承进行了寿命校核。本文还是采用传统的锥齿轮作为商用车的主减速器。 关键词:商用车,驱动桥,主减速器,螺旋锥齿轮

THE DESIGNING OF BUSINESS AUTOMOBILE REAR DRIVE AXLES ABSTRACT Drive axle is one of automobile four important assemblies. Its performance directly influence on the entire automobile, especially for the heavy truck. When using the big power engine with the big driving torque to satisfy the need of high speed, heavy-loaded, high efficiency, high benefit. Today heavy truck must exploit the high driven efficiency single reduction final drive axle. Becoming the heavy traditional designing method of the drive axle: first, make up the main parts structure and the key designing parameters; then reference to the similar driving axle structure, decide the entire designing project; finally check the strength of the axle drive bevel pinion, bevel gear wheel, the differential planetary pinion, differential side gear, full-floating axle shaft and the banjo axle housing, and the life expection of carrier bearing. The designing takes spiral bevel gear as the gear type of business automobile’ final drive. KEY WORDS: business automobile, drive axle, final drive , spiral bevel gear

重型商用车驱动桥设计 开题报告

华南理工大学广州汽车学院 本科生毕业设计(论文)开题报告论文题目重型商用车驱动桥设计 班级07车辆4班 姓名陈威 学号200730851303 指导教师上官文斌 填表日期2011-2-26 二〇一一年二月

说明 1.毕业设计的开题报告是保证毕业设计质量的一个重要环节,为规范毕业设计的开题报告,特印发此表。 2.学生应在开题报告前,通过调研和资料搜集,主动与指导教师讨论,在指导教师的指导下,完成开题报告。 3.此表一式三份,一份交学院装入毕业设计(论文)档案袋,一份交指导教师,一份学生自存。 4.开题报告需经各系或论文指导小组讨论、学院教学指导委员会审查合格后,方可正式进入下一步毕业设计(论文)阶段。

姓名陈威开题时间2011-02 学制本科4年 专业车辆工程指导教师 上官文斌 (导师组长) 论文题目:重型商用车驱动桥设计 开题报告内容: 一、论文的选题背景和意义: 汽车驱动桥位于传动系的末端。其基本功用首先是增扭,降速,改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机—传动轴—驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。 二、工作任务分析: 以重型商用车(斯太尔1291.260/N65车型 )为设计对象,进行驱动桥的设计。 (1)熟悉驱动桥的主要结构形式 (2)合理设计驱动桥主减速器、差速器、半轴、桥壳的结构 (3)经过计算,合理选择驱动桥各部件的主要参数 (4)利用CATIA软件进行驱动桥各部件的三维建模

汽车驱动桥设计

车辆工程专业课程设计 学院机电工程学院班级 12级车辆工程 姓名黄扬显学号 20120665130 成绩指导老师卢隆辉 设计课题某型轻型货车驱动桥设计 2015 年11 月15 日

整车性能参数(已知) 驱动形式: 6×2后轮 轴距: 3800mm 轮距前/后: 1750/1586mm 整备质量 4310kg 额定载质量: 5000kg 空载时前轴分配轴荷45%,满载时前轴分配轴荷26% 前悬/后悬: 1270/1915mm 最高车速: 110km/h 最大爬坡度: 35% 长宽高: 6985 、2330、 2350 发动机型号: YC4E140—20 最大功率: 99.36kw/3000rmp 最大转矩: 380N·m/1200~1400mm 变速器传动比: 7.7 4.1 2.34 1.51 0.81 倒档传动比: 8.72 轮胎规格: 9.00—20 离地间隙: >280mm

1总体设计 (3) 1.1 非断开式驱动桥 (3) 1.2 断开式驱动桥 (4) 2 主减速器设计 (4) 2.1 主减速器结构方案分析 (4) 2.1.1 螺旋锥齿轮传动 (4) 2.2 主减速器主、从动锥齿轮的支承方案 (5) 2.2.1 主动锥齿轮的支承 (5) 2.2.2 从动锥齿轮的支承 (5) 2.3 主减速器锥齿轮设计 (5) 2.3.1 主减速比i0的确定 (6) 2.3.2 主减速器锥齿轮的主要参数选择 (7) 2.4 主减速器锥齿轮的材料 (8) 2.5 主减速器锥齿轮的强度计算 (9) 2.5.1 单位齿长圆周力 (9) 2.5.2 齿轮弯曲强度 (9) 2.5.3 轮齿接触强度 (10) 2.6 主减速器锥齿轮轴承的设计计算 (10) 2.6.1 锥齿轮齿面上的作用力 (10) 2.6.2 锥齿轮轴承的载荷 (11) 2.6.3 锥齿轮轴承型号的确定 (13) 3 差速器设计 (15) 3.1 差速器结构形式选择 (15) 3.2 普通锥齿轮式差速器齿轮设计 (15) 3.3 差速器齿轮的材料 (17) 3.4 普通锥齿轮式差速器齿轮强度计算 (18) 4 驱动桥壳设计 (19) 4.1 桥壳的结构型式 (19) 4.2 桥壳的受力分析及强度计算 (20) 致谢 (22) 参考文献 (23)

汽车车桥设计

YC1090货车驱动桥的设计 汽车设计课程设计说明 书 题目:汽车驱动桥的设计 姓名:张华生 学号:2009094643020 专业名称:车辆工程 指导教师:伍强 日期:2011.11.28-2011.12.04

盐城工学院本科生毕业设计说明书2007 一主减速器设计 主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力。 驱动桥中主减速器、差速器设计应满足如下基本要求: a)所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。 b)外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。 c)在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。 d)在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。 e)结构简单,加工工艺性好,制造容易,拆装、调整方便。 3.1 主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 3.1.1 螺旋锥齿轮传动 图3-1螺旋锥齿轮传动 按齿轮副结构型式分,主减速器的齿轮传动主要有螺旋锥齿轮式传动、双曲面齿轮式传动、圆柱齿轮式传动(又可分为轴线固定式齿轮传动和轴线旋转式齿轮传动即行星齿轮式传动)和蜗杆蜗轮式传动等形式。 在发动机横置的汽车驱动桥上,主减速器往往采用简单的斜齿圆柱齿轮;在发动机纵置的汽车驱动桥上,主减速器往往采用圆锥齿轮式传动或准双曲面齿轮式传动。 为了减少驱动桥的外轮廓尺寸,主减速器中基本不用直齿圆锥齿轮而采用螺旋锥齿轮。因为螺旋锥齿轮不发生根切(齿轮加工中产生轮齿根部切薄现象,致使齿

五菱之光微型客车后驱动桥设计开题报告 (30)

毕业设计(论文)开题报告 题目:五菱之光微型客车后驱动桥设计

一.毕业设计(论文)综述 1.题目背景和研究意义 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理地分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直力和横向力[1]。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。随着高等级公路的发展,汽车的车速正在日益提高,同时节约能源,减少污染的环境意识使得发动机又正向着大转矩和低转速的方向发展。为适应以上情况,汽车驱动桥的减速比应该减小,此时不必在桥中采用双级减速。因而目前在国外的公路型车上已广泛地采用单级减速桥,单级桥具有成本低,质量轻,维修保养简单,传动效率高,噪音小,温升低和整车油耗低等优点。目前,国外单级驱动桥与双级驱动桥应用比例约为8:2[2]。 随着中国公路建设水平的不断提高,公路运输车辆正向大吨位,多轴化,大马力方向发展,使得重型车桥总成也向传动效率高的单级减速方向发展单级驱动桥结构简单,机械传动效率高,易损件少,可靠性高。由于单级桥传动链减少,摩擦阻力小,比双级桥省油,噪声也小过去,单级桥因为桥包尺寸大,离地间隙小,导致通过性较差,应用范围相对较小,但是现在公路状况已经得到了显著改善,重型汽车使用条件对通过性的要求降低这种情况下,单级桥的劣势得以忽略,而其优势不断突出[3]。陕汽总厂现有驱动桥结构中除了引进的斯太尔轮边行星式双级减速桥技术性比较先进外,其它类品种均不能令人满意,虽然斯太尔轮边桥有一定的优势,但显然其结构复杂,成本较高,而且它不适用于客车[4],所以对驱动桥的研究有重要意义。 2.国内外相关研究情况 虽然驱动桥现状有所改观,但由于我国汽车行业起步晚,而且多数技术依赖于进口,所以,想达到全盘优化还存在着很多困难[5]。例如:缺乏设计和研发能力;基础材料水平比较落后,主要体现在材料分类和使用方面比较粗放;技工技术的欠缺也是一大障碍,驱动桥内重要部分是减速器,主要是主动锥齿轮和起差速作用的行星齿轮,因此齿轮的加工技术和热处理能力从很大程度上决定了车桥的稳定性和可靠性,齿轮的材料和加工精度决定着车桥的承载能力和使用寿命[6]。 此次课题对驱动桥的研究,主要是在驱动桥满足汽车使用要求和结构强度要求的基础上,设计出结构合理,体积小,质量轻的驱动桥,实现轻量化和汽车通过性以及对道路环境适应性的优化。驱动桥设计应当满足如下基本要求[7]: 1)所选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 2)外形尺寸要小,保证有必要的离地间隙。 3)齿轮及其他传动件工作平稳,噪音小。

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

相关文档
相关文档 最新文档