文档库 最新最全的文档下载
当前位置:文档库 › New Nanostructured Li2S-Silicon Rechargeable Battery with High Specific Energy

New Nanostructured Li2S-Silicon Rechargeable Battery with High Specific Energy

New Nanostructured Li2S-Silicon Rechargeable Battery with High Specific Energy
New Nanostructured Li2S-Silicon Rechargeable Battery with High Specific Energy

New Nanostructured Li 2S/Silicon Rechargeable Battery with High Speci?c Energy

Yuan Yang,?,§Matthew T.McDowell,?,§Ariel Jackson,?,§Judy J.Cha,?Seung Sae Hong,?and Yi Cui*,?

?

Department of Materials Science and Engineering and ,?Department of Applied Physics,,and Stanford University,Stanford,California 94305

ABSTRACT Rechargeable lithium ion batteries are important energy storage devices;however,the speci?c energy of existing lithium ion batteries is still insuf?cient for many applications due to the limited speci?c charge capacity of the electrode materials.The recent development of sulfur/mesoporous carbon nanocomposite cathodes represents a particularly exciting advance,but in full battery cells,sulfur-based cathodes have to be paired with metallic lithium anodes as the lithium source,which can result in serious safety issues.Here we report a novel lithium metal-free battery consisting of a Li 2S/mesoporous carbon composite cathode and a silicon nanowire anode.This new battery yields a theoretical speci?c energy of 1550Wh kg -1,which is four times that of the theoretical speci?c energy of existing lithium-ion batteries based on LiCoO 2cathodes and graphite anodes (~410Wh kg -1).The nanostructured design of both electrodes assists in overcoming the issues associated with using sulfur compounds and silicon in lithium-ion batteries,including poor electrical conductivity,signi?cant structural changes,and volume expansion.We have experimentally realized an initial discharge speci?c energy of 630Wh kg -1based on the mass of the active electrode materials.KEYWORDS Energy storage,lithium -sulfur battery,mesoporous carbon,silicon nanowires

R

echargeable batteries are critical power sources for mobile applications such as portable electronics and electric vehicles.However,the speci?c energy of

existing lithium ion batteries is still insuf?cient for many applications due to the limited speci?c charge capacity of the electrode materials.1-6Despite signi?cant progress in the development of high capacity anodes such as Si nano-structures,7-11the relatively low charge capacity of cathodes remains the limiting factor preventing higher energy density.Current cathode materials,such as those based on transition metal oxides and phosphates,have an inherent theoretical capacity limit of ~300mAh g -1,and a maximum practically usablecapacityofonly ~210mAhg -1hasbeenreported.3,6,12The lithium/sulfur system,which during the redox process behaves according to the reaction 2Li +S ->Li 2S,has the potential to overcome these capacity limitations.Although the system has an average voltage of ~2.2V vs Li/Li +(about 60%of the voltage of conventional Li-ion batteries),the theoretical capacity of sulfur is 1672mAh g -1,which leads to a theoretical speci?c

energy of ~2600Wh kg -1for the lithium/sulfur battery.2,13However,sulfur-based cathodes present a variety of problems,including low electronic conductivity,signi?cant structural and volumetric changes during reaction,and dissolution of lithium polysul?des in the electrolyte.Much effort has been dedicated to improving this system,including the development of electrode coatings,14conductive additives,6,15-17and novel electrolytes.18,19Re-cently,cells utilizing a sulfur/mesoporous carbon nanocom-posite exhibited capacity exceeding 1000mAh g -1and moderate cycle life.6Despite these advances,the use of elemental lithium as the anode in lithium/sulfur batteries remains a major problem due to safety concerns arising from the formation of lithium dendrites during cycling,which can penetrate the separator and lead to thermal runaway.Even though much research has been dedicated to solving this problem,an elemental lithium anode has not yet been commercialized for use in secondary batteries with a liquid electrolyte.20

One way to avoid this safety issue in the lithium/sulfur system is to use a high-capacity anode material other than elemental lithium while replacing sulfur in the cathode with its lithiated counterpart,lithium sul?de (Li 2S).Li 2S has a theoretical capacity of 1166mAh g -1,but its poor electronic conductivity restricts its actual capacity to much lower values that are not competitive with current commercial cathode materials.21,22Metal additives have been employed to enhance the conductiv-ity of Li 2S-based cathodes with limited success.These experi-ments have mainly tested low-rate behavior 21,23or have been based on very thin ?lms.22The metal additives also alter the nature of the reaction,which results in a lower output volt-age.22,23Moreover,a suitable anode with high capacity and low potential,which is crucial for achieving high speci?c energy,has not been demonstrated for a Li 2S-based cathode.In this study,we propose a novel nanostructured rechargeable battery consisting of a Li 2S/mesoporous carbon cathode and a silicon nanowire anode.

Figure 1a is a schematic showing the structure of this new Li 2S/Si battery.The cathode is comprised of a nanocompos-*To whom correspondence should be addressed.E-mail:yicui@https://www.wendangku.net/doc/8a6793789.html,.§

These authors contributed equally to this work.Received for review:02/10/2010Published on Web:02/25/2010

ite in which Li 2S ?lls the pores of CMK-3mesoporous carbon particles.CMK-3carbon is made up of hexagonally arranged 7-8nm thick carbon nanorods separated by 3-4nm pores.24A previous study has shown that sulfur/CMK-3composites exhibit good cycling behavior in lithium/sulfur batteries by partially con?ning readily dissolved lithium polysul?des formed during redox reactions within the me-soporous structure.6In addition,the interconnected carbon rods act as conductive pathways to provide electronic access to insulating Li 2S within the pores,while the submicrometer size of the carbon particles helps to shorten lithium diffusion paths.As a result,the problems associated with the slow kinetics of Li 2S-based cathodes can be solved.In the present case,the mesoporous carbon performs a similar role,al-though our new development is to use lithiated sulfur (Li 2S)as the starting active material in the cathode instead of sulfur.The anode shown in Figure 1a consists of silicon nanowires;silicon has a theoretical capacity of 4212mAh g -1and a low equilibrium potential of ~0.3V versus Li/Li +.Previous work from our group has shown that silicon nanowires can undergo the requisite 400%volume change upon insertion and extraction of lithium without pulveriza-tion or signi?cant capacity fading over a number of cycles,which has plagued many previous silicon-based electrodes;furthermore,silicon anodes with a practical capacity of 2000mAh g -1and long cycle life have been fabricated.7,8In this report,we will demonstrate the successful coupling of silicon nanowire anodes with Li 2S-mesoporous carbon cathodes to attain high speci?c energy for the full battery cells.

Figure 1b compares the theoretical speci?c energy of our Li 2S/Si battery with other types of Li-ion batteries.The theoretical speci?c energy is based on the theoretical capac-ity of the active materials in both electrodes and their voltage difference (see Supporting Information for more details).The

Li 2S/Si battery has a theoretical speci?c energy of 1550Wh kg -1,which is four times that of the LiCoO 2/graphite or LiFePO 4/graphite systems.This value is also 60%higher than the theoretical limit of mixed-layer oxide/silicon batteries.To fabricate the Li 2S/mesoporous carbon nanocomposite cathode,ordered CMK-3mesoporous carbon is ?rst synthe-sized from a mesoporous silica template.CMK-3has a uniform pore diameter of 3-4nm,large pore volume (~1.0-1.5cm 3g -1),and an interconnected pore structure that provides a conductive backbone for electron transfer.Sulfur is mixed with CMK-3and made to diffuse into the pores by heating to 155°C,where liquid sulfur has the lowest viscosity.25Since sulfur wets carbon well,the pores of mesoporous carbon are readily ?lled with sulfur due to the action of capillary forces.An electrode ?lm is made from the sulfur/CMK-3composite and then trapped sulfur is converted to lithium sul?de through a reaction with n -butyllithium.For the fabrication of the anode,silicon nanow-ires are grown on a stainless steel substrate using the well-known vapor -liquid -solid (VLS)method with silane gas as the precursor.7,26Next,an anode and a cathode with matched capacity are assembled in a pouch cell for electro-chemical testing.The detailed fabrication process is de-scribed in the Supporting Information.

Transmission electron microscopy (TEM)was employed to analyze the composition and morphology of the as-prepared Li 2S/CMK-3nanocomposite.Figure 2a shows a bright ?eld image of a nanocomposite particle.The typical size of these particles is on the order of 0.5-1μm.Selected area electron diffraction (Figure 2a inset)reveals no diffrac-tion spots from the nanocomposite particle,indicating either that the lithiated sulfur is amorphous or the crystallite size is too small to generate diffraction spots due to the sub-5nm pore size of the mesoporous carbon.Figure 2b,c

displays

FIGURE 1.Schematic of the structure of a Li 2S/Si battery and speci?c energy comparison of different Li-ion battery systems.(a)Schematic diagram of battery structure;the cathode contains lithium sul?de (Li 2S)encapsulated within ordered mesoporous carbon,and the anode consists of silicon nanowires grown by the VLS mechanism.(b)Comparison of theoretical speci?c energy for different types of Li-ion batteries.The theoretical speci?c energy is calculated based on the theoretical capacities of the active materials in the electrodes and the average operating voltage of the battery.The Li 2S/Si battery has a much higher theoretical speci?c energy than other systems.It should be noted that the speci?c energy value for the LiCoO 2/graphite battery is based on a speci?c capacity value for LiCoO 2of 155mAh g -1,which is a value that corresponds to extracting about half the lithium from the structure;34further extraction has been shown to compromise structural stability and cycle

life.

the corresponding elemental maps of carbon and sulfur obtained by energy-dispersive X-ray spectroscopy (EDS).Lithium is not included since it is a light element that cannot be identi?ed with EDS.These elemental maps show that the element sulfur is distributed uniformly inside the mesopo-rous carbon matrix and that there is not a signi?cant portion of sulfur on the surface,which is con?rmed by superimpos-ing the two elemental maps together (Figure 2d).

Scanning electron microscopy (SEM)characterization also supports this conclusion.No obvious change in the morphol-ogy or size of the sulfur/CMK-3nanocomposite particles is observed after lithiation,which indicates formation of Li 2S within the pores of the CMK-3particles (Figure S1in the Supporting Information).However,the surface is visibly rougher,suggesting a small amount of Li 2S coating on the particles.This is likely due to the dissolution of sulfur in hexane during the lithiation process.

To further understand the composition and structure of the Li 2S/CMK-3nanocomposite particles,X-ray diffraction (XRD)is used,as exhibited in Figure 3.Figure 3a shows a scan of a mixture of sulfur and CMK-3particles before heating,and sulfur peaks are clearly present.These peaks disappear after heating because sulfur diffuses into the nanometer-sized pores of the mesoporous carbon (Figure 3b),which is in agreement with previous work.6After sulfur is lithiated by reaction with n -butyllithium,no peaks belong-ing to Li 2S or sulfur are present (Figure 3c).To verify that Li 2S is formed,sulfur was also lithiated inside macroporous carbon,which has larger pores (200-300nm)than meso-porous carbon;these larger pores allow for the formation of Li 2S crystals that are large enough for detection with XRD.

Figure 3d shows a diffraction scan of lithiated sulfur inside macroporous carbon,and as expected,Li 2S peaks are clearly evident.We believe that Li 2S is also present in lithiated sulfur/CMK-3mesoporous carbon,but the sub-5nm pores in the mesoporous carbon diminish the Li 2S diffraction peaks by limiting the crystallite size to a few nanometers.These results are consistent with TEM and SEM observations and also suggest that Li 2S is trapped inside the mesoporous carbon after lithiation.

To understand the electrochemical behavior of the Li 2S/mesoporous carbon cathode,half-cells with lithium foil as the counter electrode were tested.Figure 4a shows the voltage pro?le of a Li 2S/CMK-3mesoporous carbon cath-ode half-cell.The ?rst discharge capacity of the Li 2S/mesoporous carbon cathode reaches 573mAh g -1(all capacity calculations are based on the mass of Li 2S,not sulfur).As a result,about 50%of the theoretical capacity is achieved,which is better than values in some reports of lithium/sulfur batteries.5,15,27,28Figure S2in the Sup-porting Information displays the ?rst cycle voltage pro?les of this Li 2S/mesoporous carbon cathode and a cathode made from Li 2S powder (~500nm in size),both of which contain the same fraction of Li https://www.wendangku.net/doc/8a6793789.html,parison of the charge pro?les of the two electrodes reveals a similar electrochemical signature,which further indicates that the starting product in the CMK-3composite electrode is Li 2S.In addition,the Li 2S/mesoporous carbon electrode

exhib-FIGURE 2.TEM image and elemental mapping of Li 2S/CMK-3me-soporous carbon nanocomposite.(a)TEM image of a single Li 2S/CMK-3mesoporous carbon nanocomposite particle.The inset shows the corresponding selected area electron diffraction pattern.(b,c)Elemental mapping of carbon (b)and sulfur (c)by energy-dispersive X-ray spectroscopy (EDS).(d)Overlay of carbon and sulfur elemental maps which shows uniform distribution of lithiated sulfur within the mesoporous carbon matrix.The orange color indicates the presence of both sulfur and carbon as orange is the result of mixing red (sulfur)and green (carbon)in a RG color

scheme.

FIGURE 3.X-ray diffraction characterization of Li 2S/mesoporous carbon nanocomposite particles.(a,b)Scan of a mixture of sulfur and CMK-3mesoporous carbon powder before heating (a)and after heating at 155°C (b).(c)Scan of sulfur/CMK-3mesoporous carbon nanocomposite lithiated by reaction with n -butyllithium and heated at 105°C.The aluminum and graphite peaks are due to the carbon-coated aluminum foil substrate.(d)Scan of a sulfur/macroporous carbon nanocomposite lithiated by reaction with n -butyllithium and heated at 105°C.The aluminum peaks are due to the aluminum foil substrate.The peaks labeled “Background”in c and d result from a protective cover used to prevent oxidation.Peaks are identi?ed with the following symbols:yellow square,sulfur;blue star,alumi-num;gray diamond,graphite;open square,background;red circle,Li 2

S.

its an order of magnitude higher capacity than the Li 2S powder electrode,which demonstrates the signi?cantly improved kinetics resulting from the rational design of the Li 2S/mesoporous carbon particles.

It is evident from the voltage pro?le shown in Figure 4a that the ?rst charge is different than subsequent charges.The ?rst charge voltage is higher and shows a clear phase nucleation barrier at the onset of charging,while the voltage pro?le of the following charge/discharge cycles is similar to that of typical lithium/sulfur batteries as reported in other works;the upper plateau corresponds to the redox reaction of high-order polysul?des (Li 2S x ,4e x e 8),and the lower plateau is due to the reaction of low-order sul?des (Li 2S 2and Li 2S).13,29These observations might be attributed to the fact that before cycling,the only electrochemically active phase in the cathode is Li 2S,which is different from that in lithium/sulfur batteries.At the beginning of charge in lithium/sulfur batteries,the cathode contains a mixture of Li 2S and lithium polysul?des;these polysul?des improve the kinetic behavior of the cathode.Nevertheless,the difference in potential of only ~200mV between the ?rst charge and subsequent charges,as shown in Figure 4a,further demonstrates the substantially enhanced kinetics of Li 2S resulting from its incorporation in the mesoporous carbon nanocomposite.Figure 4b shows the discharge capacity over a number of cycles for the Li 2S cathode.The ?rst discharge capacity is

573mAh g -1,and the capacity is stabilized after ?ve cycles.We believe that further improvements in cycling behavior and capacity retention can be attained through optimization of the system,including utilization of better electrolytes and surface modi?cations of the electrodes.

To study the effect of the structure and morphology of the Li 2S/carbon nanocomposite on resulting electrochemical performance,it is useful to compare data from Li 2S/CMK-3mesoporous carbon and Li 2S/macroporous carbon tested in half-cell con?gurations.The process of lithiation and battery fabrication is the same for both cases.For the Li 2S/macroporous carbon composite,a capacity of 150mAh g -1is obtained (Figures S3and S4in the Supporting Informa-tion).The initial charging voltage is higher than in Li 2S/CMK-3half-cells,suggesting a larger overpotential.The lower capac-ity and higher overpotential of Li 2S/macroporous carbon indicates the importance of the size,morphology,and structure of porous carbon on the corresponding electro-chemical performance of the composite.Small pore size with strong con?nement is important for minimizing charge transport distances and thus achieving good performance.Since the key purpose of incorporating Li 2S instead of sulfur as the active cathode material is to avoid using potentially unsafe lithium metal anodes,full cells with silicon nanowire anodes were fabricated.This full cell con?guration can also demonstrate that the source of lithium

during

FIGURE 4.Electrochemical tests of Li 2S/Li half-cells and Li 2S/Si full cells.All speci?c capacity values are given with respect to the mass of Li 2S.(a,b)Voltage pro?le (a)and speci?c discharge capacity with cycling (b)of a Li 2S/CMK-3mesoporous carbon nanocomposite half-cell containing a lithium counter electrode.The current rate is C/8(146mA g -1)and the voltage range is 1.7-2.8V for the ?rst cycle and 1.7-2.6V for following cycles.The speci?c discharge capacity with cycling of a Li 2S commercial powder half-cell is also shown for comparison in (b).(c,d)Voltage pro?le (c)and speci?c discharge capacity with cycling (d)of a full battery cell with a Li 2S/CMK-3mesoporous carbon nanocomposite cathode and a silicon nanowire anode.The current rate is C/3(389mA g -1)and the voltage range for the full cell is 1.2-2.6V for the ?rst cycle and 1.2-2.5V for following cycles.(e)First discharge voltage pro?les of full battery cells with Li 2S/CMK-3mesoporous carbon nanocomposite cathodes and silicon nanowire anodes at rates of 1C (1166mA g -1)and C/8(146mA g -1).The inset in (e)is a plot of the ?rst discharge speci?c capacity of full cells operating at various current

rates.

charge and discharge is the Li2S cathode since there is no other lithium in the cell.In contrast,the source of lithium in the Li2S/Li half-cells is unclear since a lithium foil counter electrode is present.As the?rst step,silicon nanowire electrodes were characterized and tested in a half-cell con-?guration with lithium foil counter electrodes and the same electrolyte utilized in the Li2S/Li half-cells;the capacity reached~3000mAh g-1with moderate cycle life(Figure S5 in the Supporting Information).Next,fresh silicon nanowire anodes prepared under identical conditions were assembled together with Li2S/CMK-3cathodes for full cell electrochemi-cal tests.Figure4c shows the voltage pro?les of the?rst, second,and tenth charge and discharge cycles for a Li2S/Si battery at a rate of C/3,which corresponds to389mA g-1 with respect to Li2S.The average discharge voltage of the Li2S/Si full cell is~1.7V since the silicon anode has an average discharge potential of~0.4V versus Li/Li+,and the ?rst discharge capacity reaches423mAh g-1.The corre-sponding capacity retention with cycling for the Li2S/Si battery is shown in Figure4d.Even at a1C current rate (1166mA g-1),the initial capacity remains similar(394mAh g-1,Figure4e).The corresponding current density per unit area for a rate of1C is about1.5mA cm-2,which is more than20times greater than the current density in previous reports.21,22The discharge capacity can be further enhanced by lowering the discharge current.At C/8(146mA g-1),the ?rst discharge capacity increases to482mAh g-1(Figure4e), which results in an initial speci?c energy of630Wh kg-1 for the full cell considering active materials only.If the masses of all electrode additives(CMK-3,PVDF,Super P conductive carbon)are considered,the initial speci?c energy is calculated to be349Wh kg-1,which is similar to that of commercial Li-ion batteries(335Wh kg-1).With further optimization of this battery,however,we project that the speci?c energy could reach~600Wh kg-1considering the total electrode mass(see Supporting Information for calcula-tion details).It should be noted that since a1C current rate for Li2S is about six to eight times that of layered oxides and phosphates(140-200mA g-1),a rate of C/8for a Li2S-based cathode would provide adequate power for many applications.

From comparison of Figure4panels b and d,the speci?c capacity of the Li2S/Si full cell decays faster than the speci?c capacity of the Li2S/Li half-cell.This could be caused by the following factors:(1)In full cells,there is a limited supply of Li ions,which can be irreversibly lost in side reactions.In half-cells,Li ions that would be lost in a full cell con?guration can be replenished by the Li metal counter electrode,which is a virtually unlimited source of Li ions.(2)The voltage of each electrode is not separately controlled in full cells.The deep discharge or overcharge of Li2S or silicon is detrimental to cycling performance,and this might occur during cycling since we only control the voltage of the full cell.Although the capacity decay from the?rst to the20th cycle from our proof-of-concept Li2S/Si battery is better or comparable to many other reports on Li2S or sulfur-lithium batte-ries,22,23,27,30-33more research is required to overcome these issues and compete with well-developed Li-ion battery systems.In addition to these concerns,the volumetric energy density of our current cell is not as high as the LiCoO2/ graphite system,even though the theoretical volumetric energy density of the Li2S/Si system is about twice that of the LiCoO2/graphite system(See Table S3in the Supporting Information).

In summary,we demonstrate a new type of rechargeable Li-ion battery containing Li2S and silicon as the active materials in the cathode and anode,respectively.Li2S is made electrochemically active by incorporating it within the pores of CMK-3mesoporous carbon in the cathode.Silicon nanowire anodes are demonstrated to be ideal for this battery system due to their high capacity,low reaction potential,and moderate cycle life.The theoretical speci?c energy of this new battery is four times that of state-of-the-art battery technology,and cells with70%higher?rst discharge speci?c energy than the commercial LiCoO2/ graphite system have been fabricated.Additionally,this new battery system avoids the intrinsic safety issues associated with the use of lithium metal in previous lithium/sulfur batteries.The development of this novel battery system will have a signi?cant impact on applications that require high speci?c energy,such as batteries for electric vehicles and portable electronics.

Acknowledgment.We would like to thank Dr.Fabio La Mantia at Stanford University for helpful discussions.Y.C. acknowledges support from the King Abdullah University of Science and Technology(KAUST)Investigator Award(No. KUS-l1-001-12)and MDV Innovators Award.Y.Y.acknowl-edges support from a Stanford Graduate Fellowship.M.T.M. acknowledges support from a Stanford Graduate Fellowship and a National Defense Science and Engineering Graduate Fellowship.

Supporting Information Available.Additional?gures and tables depicting experimental results.This material is available free of charge via the Internet at http:// https://www.wendangku.net/doc/8a6793789.html,.

REFERENCES AND NOTES

(1)Tarascon,J.M.;Armand,M.Nature2001,414(6861),359–367.

(2)Mikhaylik,Y.V.;Akridge,J.R.J.Electrochem.Soc.2004,151(11),

A1969–A1976.

(3)Whittingham,M.S.Chem.Rev.2004,104(10),4271–4301.

(4)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,

W.Nat.Mater.2005,4(5),366–377.

(5)Sun,J.;Huang,Y.Q.;Wang,W.K.;Yu,Z.B.;Wang,A.B.;Yuan,

K.G.Electrochim.Acta2008,53(24),7084–7088.

(6)Ji,X.L.;Lee,K.T.;Nazar,L.F.Nat.Mater.2009,8(6),500–506.

(7)Chan,C.K.;Peng,H.L.;Liu,G.;McIlwrath,K.;Zhang,X.F.;

Huggins,R.A.;Cui,Y.Nat.Nanotechnol.2008,3(1),31–35. (8)Cui,L.F.;Ruffo,R.;Chan,C.K.;Peng,H.L.;Cui,Y.Nano Lett.

2009,9(1),491–495.

(9)Cui,L.F.;Yang,Y.;Hsu,C.M.;Cui,Y.Nano Lett.2009,9(9),

3370–3374.

(10)Esmanski,A.;Ozin,G.A.Adv.Funct.Mater.2009,19(12),1999–

2010.

(11)Park,M.-H.;Kim,M.G.;Joo,J.;Kim,K.;Kim,J.;Ahn,S.;Cui,Y.;

Cho,J.Nano Lett.2009,9(11),3844–3847.

(12)Sun,Y.K.;Myung,S.T.;Park,B.C.;Prakash,J.;Belharouak,I.;

Amine,K.Nat.Mater.2009,8(4),320–324.

(13)Joongpyo,S.;Striebel,K.A.;Cairns,E.J.J.Electrochem.Soc.2002,

149(10),A1321–5.

(14)Choi,Y.J.;Chung,Y.D.;Baek,C.Y.;Kim,K.W.;Ahn,H.J.;Ahn,

J.H.J.Power Sources2008,184(2),548–552.

(15)Lai,C.;Gao,X.P.;Zhang,B.;Yan,T.Y.;Zhou,Z.J.Phys.Chem.C

2009,113(11),4712–4716.

(16)Wang,J.L.;Yang,J.;Xie,J.Y.;Xu,N.X.Adv.Mater.2002,14

(13-14),963+.

(17)Yuan,L.X.;Yuan,H.P.;Qiu,X.P.;Chen,L.Q.;Zhu,W.T.J.Power

Sources2009,189(2),1141–1146.

(18)Shin,J.H.;Cairns,E.J.J.Power Sources2008177(2),537

545.

(19)Yuan,L.X.;Feng,J.K.;Ai,X.P.;Cao,Y.L.;Chen,S.L.;Yang,

https://www.wendangku.net/doc/8a6793789.html,mun.2006,8(4),610–614.

(20)Nishikawa,K.;Fukunaka,Y.;Sakka,T.;Ogata,Y.H.;Selman,J.R.

J.Electrochem.Soc.2007,154(10),A943–A948.

(21)Hayashi,A.;Ohtsubo,R.;Ohtomo,T.;Mizuno,F.;Tatsumisago,

M.J.Power Sources2008,183(1),422–426.(22)Zhou,Y.N.;Wu,C.L.;Zhang,H.;Wu,X.J.;Fu,Z.W.Electrochim.

Acta2007,52(9),3130–3136.

(23)Obrovac,M.N.;Dahn,J.R.Electrochem.Solid State Lett.2002,5

(4),A70–A73.

(24)Jun,S.;Joo,S.H.;Ryoo,R.;Kruk,M.;Jaroniec,M.;Liu,Z.;Ohsuna,

T.;Terasaki,O.J.Am.Chem.Soc.2000,122(43),10712–10713.

(25)Miessler,G.L.;Tarr,D.A.Inorganic Chemistry;Prentice Hall:New

Jersey,1998.

(26)Cui,Y.;Lieber,C.M.Science2001,291(5505),851–853.

(27)Marmorstein,D.;Yu,T.H.;Striebel,K.A.;McLarnon,F.R.;Hou,

J.;Cairns,E.J.J.Power Sources2000,89(2),219–226.

(28)Han,S.C.;Song,M.S.;Lee,H.;Kim,H.S.;Ahn,H.J.;Lee,J.Y.J.

Electrochem.Soc.2003,150(7),A889–A893.

(29)Yamin,H.;Gorenshtein,A.;Penciner,J.;Sternberg,Y.;Peled,E.

J.Electrochem.Soc.1988,135(5),1045–1048.

(30)Jeon,B.H.;Yeon,J.H.;Kim,K.M.;Chung,I.J.J.Power Sources

2002,109(1),89–97.

(31)Jeong,S.S.;Lim,Y.;Choi,Y.J.;Cho,G.B.;Kim,K.W.;Ahn,H.J.;

Cho,K.K.J.Power Sources2007,174(2),745–750.

(32)Lee,Y.M.;Choi,N.S.;Park,J.H.;Park,J.K.J.Power Sources

2003,119,964–972.

(33)Sun,M.M.;Zhang,S.C.;Jiang,T.;Zhang,L.;Yu,J.H.Electrochem.

Commun.2008,10(12),1819–1822.

(34)Linden,D.;Reddy,T.B.Handbook of Batteries.In Handbook of

Batteries,3rd ed.;McGraw-Hill:New York,2002;pp35.1-

35.94.

摄像机监控距离对照表

一、高速球综述 高速球是一种智能化摄像机前端,全名叫高速智能化球型摄像机,或者一体化高速球智能球,或者简称快球,简称高速球。高速球是监控系统最复杂和综合表现效果最好的摄像机前端,制造复杂、价格昂贵,能够适应高密度、最复杂的监控场合。 二、高速球的结构及原理 高速球是一种集成度相当高的产品,集成了云台系统、通讯系统、和摄像机系统,云台系统是指电机带动的旋转部分,通讯系统是指对电机的控制以及对图象和信号的处理部分,摄像机系统是指采用的一体机机心。而几大系统之间,起着横向的连接的是一块主控核心cpu和电源部分。电源部分通过与各大系统之间供电,很多地方是采用的二极管、三极管等微电流供电,而核心cpu是实现所有功能正常运行的基础。 高速球的原理实际上大致就是以上所说的,而具体来说,高速球采用“精密微分步进电机”实现高速球的快速、准确的定位、旋转。所有这一切都是通过cpu发给的指令来实现的。然后将摄像机的图象、摄像机的功能写进高速球的cpu,实现在控制云台的时候,将图象传输出来,并且能将摄像机的很多功能,例如白平衡、快门、光圈、变焦、对焦等功能同时实 现控制。 一般高速球都分为球心部分、外壳部分及配件部分。任何厂家的高速球,都有一个用机架把包一体机机心、控制解码主板和电机云台系统的统一起来的球心部分,然后球心部分跟外壳用螺丝或者别的方式连接起来,球心是核心部分,外壳一般有多种外观,比如派尔高外观、松下外观、和自己设计的外观。外壳一般都是采用铝合金,也有塑料的,铝合金的一般又分为铸造和冲压的两种外壳。铝合金的比塑料的好,冲压的比铸造的好。下外壳是透明罩部分,透明罩必须采用光学透明罩,才能保证通光率和图象无变形,同时还要考虑防老化、防破坏、防尘等问题。配件部分一般包括支架部分,加热器部分,扇热部分。支架包括壁装

压力单位及换算表

压力单位及换算 注:毫米水柱是指4摄氏度状态的水柱高度,毫米汞柱是指0摄氏度状态的水柱高度。 1mmAg = 9.80665Pa = 0.0980665hPa 1atm = 760 mmHg = 1013hPa 1mmAg = 0.0735793mmHg 一、压力(pressure)为单位面积所承受的力 压力:绝对压力、表压力、大气压力。相互关系:绝对压力=表压力+大气压力 * 绝对压力(Absolute Pressure):当压力表示与完全真空的差。测量处的实际压力。 * 表压力(Gage Pressure):当表示其气体数值与该地域大气压力的差值。 * 大气压力:(Pressure Atmospheres)由大气重量所产生之压力,标准大气压力为29.92″

寸汞柱压力. 风压:包括全压(P.T)=静压(Ps)+动压(Pv)即速度压(V.P)。 Total Pressure=Static Pressure+Dynamic(Velocity)Pressure。 风机所产生之压力,均以水柱来测量,因风机使用之压力均很小;而水银之密度很大(1m mHg=13.6mmAq)使用水银柱(mmHg)来测量时,读数不太明显,故多采用水柱(mmAq 或mmH2O)来测量或计算。 如:采用水银柱表示时,760mm水银柱=760 mmHg 。 选用水柱表示时,100mm水柱=100 mmAq 。=(4″w g) Aq为拉丁文Aqua之简称。1mmAq之压力约=1kg/m2 。 1标准气压=1.0332kgf/cm2=10.34mAg=760mmHg=29.92inHg寸汞柱 (Kg为质量单位,Kgf为重量单位。) 二、压力常用单位(CNS 7778)(注2) 大气压Atm.(Pressure Atmospheres)=760mmHg 。 压力之表示,以大气压为准,高于此压力者为正压,低于此压力者为负压;速度压必为正压。 吋水银(汞)柱:(″Hg) 3.377=KPa 。 吋水柱:(″Wg or H2O) 0.249=KPa 。 呎水柱:(′Wg) 2.989=Kpa 公斤/平方公尺:kg/m2 ;kg/cm2 98=KPa (1mmAq=9.797Pa<9.8Pa=9.8Pa) 摩擦阻力 ″wg/100′ 8.2=Pa/m ″wg/100′ 98.1=Pa/m mAq 9.8=KPa ;mmAq 0.0098=KPa ;mmAq/m 9.8=Pa/m 重量:磅/平方英吋(lbs/in2或Psi 6.895KPa)。(1Kg=2.205lbs) 三、术语之意义(CNS 7778B4046)(注2) 1.全压…*送风机全压,是由于送风机所得之全压增加量,以送风机进口及出口之全压差表示 。 * 于导管内之任意断面处,气流均具有静压与速度压,二者之代数和称为全压。 2.静压…*送风机静压是指由送风机全压,减去送风机排出口动压而言。即全压减动压后之压力,称为静压。

摄像机录制方式详解

摄像机录制方式详解 磁带类 VSH 格式:现在不用很少见的:(这种格式是JVC公司1976年推出的,我国家庭中使用的 像机绝大多数是这种格式。 S-VHS 格式:这是VHS格式的高带方式,亮度信号信噪比提高4dB 以上,使S-VHS 格式的图像清晰度达到水平400线,也能应用于广播业务领域。 Betamax 格式:这是索尼公司研制的,对抗VSH的。 VHS-C 格式:磁带盒几乎是VHS 型磁带盒大小的一半。8mm 型/Hi8 型等。 1.U型机:3/4英寸专业录像机(有高/低带)。磁鼓上装有两个相隔180度的(Y/C)视频录放磁头,每旋转一周两个磁头各记录一场信号,磁头鼓的旋转频率为25Hz。磁鼓直径比较大,记录速度较高视频磁迹较宽,相邻迹间有空白保护区。音频磁迹共有两条,控制磁迹为一条,记录控制脉冲(CTL)信号。 2.Betacam SP型录像机:使用1/2英寸金属磁带。它采用分量记录两对磁头同时而又独立地在磁带上分别记录亮度和色度信号。色度信号采用时间轴压缩(CTDM)技术,克服了清晰度降低,彩色失真,信杂比降低的缺点。 3.MⅡ格式分量录像机:了解资料不多。 4.DV 数码格式:DV(Digital Video Cassette)。DV 系统的亮度信号的取样频率高达13.5MHz,而色信号的取样频率也可达3.375MHz,清晰度理论上可达500线,视频信噪比可达54dB。在音响方面也很考究,有16比特/48千赫 44.1千赫 32千赫两声道及12比特/32千赫四声道几种规格。 5.DVCPRO 格式:DVCPRO是1996年松下公司在DV格式基础上推出的一种新的数字格式。它采用 4:1:1取样,5:1压缩,18微米的磁迹宽度。1998年又在 DVCPRO的基础上推出了DVCPRO50,它采用4:2:2取样,3.3:1压缩。1999年开始推出更高级的产品DVCPRO100,又称DVCPRO HD,向数字电视的更高水准--高清晰度电视领域发展。DVCPRO 家族可满足现场演播室以及更多广播级和专业级应用的需要。 6.Digital-S 格式:是日本JVC公司于1995年4月推出的一种新型的广播专业级数字分量录像机(也称D-9格式)。它是以S-VHS技术为基础开发的具有高效编码数字技术S格式的录像标准,它可以重放S-VHS的图像信号,录像带宽度为12.7毫米(1/2英寸),采用4:2:2取样,8BIT量化,采用帧内3.3:1压缩,视频数据率为50MBPS。可记录4路音频,每路48KHZ取样,16BIT量化。 7. DVCAM 格式:1996年推出了 DVCAM 格式的数字设备.采用5:1的压缩比,4:2:0 (PAL) 取样方式,8比特数字分量记录,保证了画面的高质量,并可兼容重放家用数字 DV 录像带,具有优越的性价比。 8.Betacam-SX 格式:它采用了MPEG-2 MP@ML 的扩展4:2:2P@ML 标准。在保证高图像质量的同时有较高的压缩比(10:1). 9.Digital-Betacam 格式:SONY公司于1993年推出 Betacam数字分量录像机。采用1/2英寸金属带。视频信号采用4:2:2取样,数字输入10BIT量化,模拟输入8BIT量化,帧内2:1数据压缩.

常用压力单位换算表

压力单位换算表

高度。 1mmAg = 9.80665Pa = 0.0980665hPa 1atm = 760 mmHg = 1013hPa 1mmAg = 0.0735793mmHg 一、压力(pressure)为单位面积所承受的力 压力:绝对压力、表压力、大气压力。相互关系:绝对压力=表压力+大气压力 * 绝对压力(Absolute Pressure):当压力表示与完全真空的差。测量处的实际压力。 * 表压力(Gage Pressure):当表示其气体数值与该地域大气压力的差值。 * 大气压力:(Pressure Atmospheres)由大气重量所产生之压力,标准大气压力为29.92″寸汞柱压力. 风压:包括全压(P.T)=静压(Ps)+动压(Pv)即速度压(V.P)。 Total Pressure=Static Pressure+Dynamic(Velocity)Pressure。 风机所产生之压力,均以水柱来测量,因风机使用之压力均很小;而水银之密度很大(1mmHg=13.6mmAq)使用水银柱(mmHg)来测量时,读数不太明显,故多采用水柱(mmAq或mmH2O)来测量或计算。 如:采用水银柱表示时,760mm水银柱=760 mmHg 。 选用水柱表示时,100mm水柱=100 mmAq 。=(4″wg) Aq为拉丁文Aqua之简称。1mmAq之压力约=1kg/m2 。 1标准气压=1.0332kgf/cm2=10.34mAg=760mmHg=29.92inHg寸汞柱 (Kg为质量单位,Kgf为重量单位。) 二、压力常用单位(CNS 7778)(注2)

三种2D-3D定位算法(摄像机定标)

《2D-3D 定位算法》笔记 中英对照: 世界坐标系或实体坐标系(3D):object coordinate system 。 摄像机坐标系(3D): camera coordinate system 。 图像坐标系(2D): image coordinate system ,在摄像机坐标系下取x 和y 坐标即为图像坐标系。 2D-3D 点对:2D-3D correspondences ,根据投影变换将3D 点投影为2D 点。 平移变换:translation projection 旋转变换:rotation projection 比例变换:scale projection 透视投影变换:perspective projection 正交投影变换:orthographic projection 2D-3D 定位算法:根据 已给出的若干对 3D 点p i (在世界坐标系或实体坐标系下)和 相对应的 2D 点p i '(在图像坐标系下或在摄像机坐标系下取x 和y 坐标),求出之间的投影变换矩阵(旋转变换和平移变换)。 文献1: 《A Comparison of 2D-3D Pose Estimation Methods 》 文献2: 《A Comparison of Iterative 2D-3D Pose Estimation Methods for Real-Time Applications 》 文献3: 《计算机视觉》-马颂德 一、CamPoseCalib(CPC) 1、基本思想:根据非线性最小二乘法,最小化重投影误差求出投影参数 ),,,,,(γβαθθθθθθθz y x =。 2、算法过程: (1)已给出若干点对)'~ ,(i i p p ,其中i p 是实体坐标系下的3D 点,' ~i p 我理解为事 先给出的图像坐标系下的2D 点,应该是给出的测量值 。 (2)将i p 先经过旋转变换 i z y x p R R R ???)()()(γβαθθθ 和平移变换 T z y x ),,(θθθ ,得 到 摄 像 机坐标系下的点 i z y x T z y x i p R R R p m ???+=)()()(),,(),(γβαθθθθθθθ 。 (3)再将像机坐标系下的点),(i p m θ进行透视投影变换得到图像坐标系下的2D 点:

常用压力压强单位换算表

常用压力压强单位换算表 为方便记忆,可以简化为如下规律: 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2. 1KPa=0.01公斤 =0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH 2O=4inH 2 O 3. 1MPa=1N/mm2 常用压力压强单位换算(atm mmHg mH2O Pa bar)(2008-05-22 16:43:11) 标签: 1个标准大气压=76厘米水银柱高=1.01×105帕=1010mbar=10.336米水柱高测定大气压的仪器:气压计(水银气压计、盒式气压计)。

大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。 毫巴(mbar或mb) 概述 用单位面积上所受水银柱压力大小来表示气压高低的单位。物理学上,压强的单位是用“巴”表示的:每一平方厘米面积上受到一达因的力,称为一巴。在气象上,嫌这个单位太小,取1,000,000达因/平方厘米为1巴,以巴的千分之一作为气压的单位,称为1毫巴。一毫巴为一巴的千分之一,等于0.75毫米水银柱高的压力。现改称“百帕”。1毫巴等于100 帕(hPa)。 发明 毫巴的概念由Napier Shaw先生于1909年发明, 于1929年为国际所接受。Unicode符号为“mb”(㏔)。 分析 1毫巴表示在1平方厘米面积上受到1000达因的力。例如,气压为1000mb,表示当时大气柱在每平方厘米面积上的力有1,000,000达因。 达因是力的单位,在厘米-克-秒制中,它代表作用于一克质量的物体上,使物体以1cm/秒2的速度发生运动的力。达因是很小的一个力。夏天我们看到的蚂蚁叼着小小的草梗所付出的力,就有100达因。可见,一达因的力之小了。 毫米与毫巴可以相互换算。根据压强与水银柱高度的关系式:P(压强)=h(水银柱高度) ×d(水银在0℃时的密度) 气压为水银柱高度1毫米=0.1厘米×13.596克重/厘米3=1.3596克重/厘米2 在纬度45°的海平面上,1克重=980.6达因 故:1毫米=1.3596×980.6=1333.22达因/厘米2=1.33322毫巴=3/4毫巴 根据这个关系,气压为760毫米时相当于1013.25毫巴,这个气压值称为一个标准大气压。 平均海平面压力是1013.25 hPa (mbar)。这个值随着高度的上升而下降。 应用 毫巴是一个用于测量压力的物理单位。毫巴不是SI单位. SI单位为帕斯卡 (帕), 1mbar = 100 Pa = 1 hPa = 0.1 kPa. 虽然如此, 但毫巴在很多场合仍然是一个常用单位。

PTZ摄像机的技术优势和发展趋势

PTZ摄像机的技术优势和发展趋势 ——深圳市保千里电子有限公司安防渠道部总监吴雪芳传感器和计算机计算的发展影响了新型计算机网络和处理框架的发展。其中,中小型视频监控网络已经被广泛应用。 在现代监控系统中,多摄像机追踪问题中的一个主要挑战是如何在不同的FOV下保持目标标识的连续性。尽管静态摄像机网络可以为监控任务覆盖一个广阔的区域,但为了增加摄像机监控区域增加摄像机可视角度时,图片分辨率会因此降低;当不存在重叠的FOV时,信号处理必须仍然在单个数据源上执行。因此,PTZ摄像机的引入,为摄像机网络的发展带来了全新的应用优势。 球型摄像机(PTZ Dome)是一种一体化球型摄像机,具有运转速度快、光学变焦、定位精确、控制方式灵活等特点,随着整个监控行业数字化、网络化、高清化发展的进程,网络PTZ摄像机在产品的开发上也迈入了一个新的阶段,高清PTZ摄像机成为监控行业新的热点。其主要具有以下四大应用优势。 以太网供电 ALL IN ONE,即一个网线实现所有数据的传输,这是网络监控的一个重要优势。以太网供电IEEE 802.3af(在POE交换机端的电压是48V DC,最大功率15.4W),只适合给固定网络摄像机和固定半球摄像机进行供电。 High PoE ,802.3at在电压范围支持50-57V DC,标程为53VDC,最大功率支持30W,完全可给快球摄像机及其护罩供电。通过High PoE,网络快球不需要任何视频线、音频线、控制线、电源线等,只需连接一根网线,即可实现所有线缆的连接。 为了缩短网络高清PTZ摄像机的安装时间,及更好地保证快球的安装质量,

更多网络高清PTZ摄像机尤其是室外型高清PTZ摄像机在出厂时,就已经配置好了IP66护罩及预装好的支架,开箱即用,可实现网络快球的快速安装,且可充分保证安装质量。 自动翻转结构设计 PTZ球型摄像机根据其机械构造的不同,可分为高速球机和PTZ摄像机两种类型,两种类型统称为PTZ球型摄像机。 高速球采用轴传动,结构结实,可实现360度的连续旋转,但成本较高。而PTZ摄像机采用齿轮传动,由于存在限位,无法实现360度旋转,但成本低廉。因此,既可实现360度旋转又保证较低制造成本的360度自动翻转PTZ摄像机技术也被应用于高清PTZ摄像机中。 这种球形摄像机同PTZ摄像机一样,采用齿轮传动,也有限位。当对摄像机进行360度水平旋转控制,在到达限位时,摄像将在0.1秒内水平反向旋转180度,垂直反向旋转180度,在跳过限位后,继续按照人员控制的方向旋转,从而实现了360度的连续旋转。 在不要求摄像机长时间连续旋转的情况下,既希望实现360度的监控,又希望快球价格较低时,这种结构的摄像机是非常不错的选择。一般情况下,这种自动翻转结构的快球摄像机,其水平旋转速度和垂直选择速度均可达到300度/秒的速度,并可根据变焦情况,自动调整旋转速度,从而保证长焦的精确限速。 更灵活的控制方式 高清PTZ摄像机的技术发展,使得监控的应用需求进一步提高。尤其是基于网络化的摄像机控制和操作,要求高清PTZ网络摄像机能够迅速响应控制命令,并实现摄像机的转动和变焦。

压力换算

常见压力单位及其换算psi,bar,Pa,MPa,公斤力 PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi , 1psi=0.6895MPa=0.06895bar 欧美等国家习惯使用psi作单位。在中国,我们一般把气体的压力用“公斤”描述(而不是“斤”),其单位是“kgf/cm2”,一公斤压力就是一公斤的力作用在一个平方厘上。而在国外常用的单位是“Psi”,具体单位是“lb/in2”, 就是“磅/平方英寸”,这个单位就像华氏温标(F )。 此外,还有Pa(帕斯卡,一牛顿作用在一平方米上),KPa,Mpa,Bar,毫米水柱,毫米汞柱等压力单位。 1巴(bar)=0.1兆帕(MPa)=100千帕(KPa)=1.0197 公斤/平方厘米 1标准大气压(atm)=0.101325兆帕(MPa)=1.0333巴(bar) 因为单位相差都很小,你又不是工程人员。所以,可以这样记: 1巴(bar)=1标准大气压(atm)=1公斤/平方厘米 =100千帕(KPa)=0.1兆帕(MPa) psi的换算如下: 1标准大气压(atm)=14.696磅/英寸2(psi) 压力换算关系: 压力1巴(bar)=105帕(Pa)1达因/厘米2 (dyn/cm2)=0.1帕(Pa) 1托(Torr)=133.322帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa) 1毫米水柱(mmH2O)=9.80665帕(Pa) 1工程大气压=98.0665千帕(kPa) 1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm) 1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2) =0.0689巴(bar)=0.068大气压(atm) 1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar

电视台摄像机使用教程

摄像机使用教程十二章 第一章摄像机拍摄技巧入门 拿稳摄影机 最好是用两只手来把持摄影机,这绝对比单手要稳,或利用身边可支撑的物品或准备摄影机脚架,无论如何就是尽量减 轻画面的晃动,最忌讳边走边拍的方式,这也是最多人犯的毛病。这种拍摄方式是针对特殊情况下才运用的,千万记住画面 的稳定是动态摄影的第一要件。 固定镜头 简单的说就是镜头对准目标后,做固定点的拍摄,而不做镜头的推近拉远动作或上下左右的扫摄,设定好画面的大小后 开机录像。平常拍摄时以固定镜头为主,不需要做太多变焦动作,以免影响画面稳定性,画面的变化,也就是利用取景大小 的不同或角度及位置的不同,对景物的大小及景深做变化,简单的说,就是拍摄全景时摄影机靠后一点,想拍其中某一部份时,摄影机就往前靠一点,位置的变换如侧面,高处,低处等不同的位置,其呈现的效果也就不同,画面也会更丰富,如果 因为场地的因素无法靠近,当然也可以用变焦镜头将画面调整到你想要的大小。但是切记不要固定站在一个定点上,利用变 焦镜头推近拉远的不停拍摄,这是许多V8 族常犯的毛病。拍摄时多用固定镜头,可增加画面的稳定性,一个画面一个画面 的拍摄,以大小不同的画面衔接,少用让画面忽大忽小的变焦拍

摄,除非你用三角架固定,否则长距离的推近拉远,一定会 造成画面的抖动。如果能掌握以上几个原则,保证你的作品会更具可看性。那么变焦镜头在拍摄时不就是英雄无用武之地了吗?这倒也不是,只是运用的技巧及时机是否恰当。 手动功能的运用 由于各机种设计不同,因此可手动的项目及方式也有所不同,在此仅就常用的亮度及焦距使用的技巧说明一下。 手动亮度调整功能 首先就手动亮度调整功能说明,拍摄逆光及夜景时,如果以全自动模式拍摄,前者必定是主体或人物全黑则背景光亮, 后者却是黑暗中灯光一片模糊,在此不探讨原理,针对以上的问题,最好的方式就是逆光时按下逆光补正功能键,如果没有 这个功能,那就将全自动模式切换到手动模式,找到亮度调整键进行画面亮度的调整,逆光时将亮度调亮,夜景时则调暗, 一般都会将数据以数字或图型显示在观景器上或是液晶萤幕上,当然最好的方式还是直接看着观景器或是液晶屏幕上的画面 调整到适当的亮度。所以当你在购买摄录像机时,一定要请店家指导你如何使用这项功能。 手动焦距调整功能 平常一般的拍摄情况,大都是采用自动对焦,但是在特殊情况下如隔着铁丝网,玻璃,与目标之间有人物移动等。往往 会让画面焦距一下清楚一下模糊,因为自动对焦的情形下摄影机

压力换算表

“真空度”顾名思义就是真空的程度。是真空泵、微型真空泵、微型气泵、微型抽气泵、微型抽气打气泵等抽真空设备的一个主要参数。 所谓“真空“,是指在给定的空间内,压强低于101325帕斯卡(也即一个标准大气压强约101KPa)的气体状态。 在真空状态下,气体的稀薄程度通常用气体的压力值来表示,显然,该压力值越小则表示气体越稀薄。 对于真空度的标识通常有两种方法: 一是用“绝对压力”、“绝对真空度”(即比“理论真空”高多少压力)标识; 在实际情况中,真空泵的绝对压力值介于0~之间。绝对压力值需要用绝对压力仪表测量,在20℃、海拔高度=0的地方,用于测量真空度的仪表(绝对真空表)的初始值为。(即一个标准大气压) 二是用“相对压力”、“相对真空度”(即比“大气压”低多少压力)来标识。 "相对真空度"是指被测对象的压力与测量地点大气压的差值。用普通真空表测量。在没有真空的状态下(即常压时),表的初始值为0。当测量真空时,它的值介于0到-(一般用负数表示)之间。 比如,我们的微型真空泵PH2506B(测量值为-75KPa,则表示泵可以抽到比测量地点的大气压低75KPa的真空状态。 国际真空行业通用的“真空度”,也是最科学的是用绝对压力标识;指得是“极限真空、绝对真空度、绝对压力”,但“相对真空度”(相对压力、真空表表压、负压)由于测量的方法简便、测量仪器非常普遍、容易买到且价格便宜,因此也有广泛应用。理论上二者是可以相互换算的,两者换算方法如下: 相对真空度=绝对真空度(绝对压力)-测量地点的气压 例如:我们的微型真空泵VM8001(的绝对压力为80KPa,则它的相对真空度约为80-100=-20Kpa,(测量地点的气压假设为100KPa)在普通真空表上就该显示为。 常用的真空度单位有Pa、Kpa、Mpa、大气压、公斤(Kgf/cm2)、mmHg、mbar、bar、PSI等。近似换算关系如下: 1MPa=1000KPa 1KPa=1000Pa 1大气压=100KPa= 1大气压=1公斤(Kgf/cm2)=760mmHg 1大气压= 1KPa=10mbar 1bar=1000mbar

监控摄像头基本知识

CCD彩色摄象机的主要技术指标 https://www.wendangku.net/doc/8a6793789.html,D尺寸,亦即摄象机靶面。原多为英寸,现在英寸的已普及化,英寸和英寸也已商品化。 2. CCD像素,是CCD的主要性能指标,它决定了显示图像的清晰程度,分辨率越高,图像细节的表现越好。CCD是由面阵感光元素组成,每一个元素称为像素,像素越多,图像越清晰。现在市场上大多以25万和38万像素为划界,38万像素以上者为高清晰度摄象机。 3.水平分辨率。彩色摄象机的典型分辨率是在320到500电视线之间,主要有330线、380线、420线、460线、500线等不同档次。分辨率是用电视线(简称线TV LINES)来表示的,彩色摄像头的分辨率在330~500线之间。分辨率与CCD和镜头有关,还与摄像头电路通道的频带宽度直接相关,通常规律是1MHz的频带宽度相当于清晰度为80线。频带越宽,图像越清晰,线数值相对越大。 4.最小照度,也称为灵敏度。是CCD对环境光线的敏感程度,或者说是CCD正常成像时所需要的最暗光线。照度的单位是勒克斯(LUX),数值越小,表示需要的光线越少,摄像头也越灵敏。月光级和星光级等高增感度摄象机可工作在很暗条件, 1~3lux属一般照度 月光型: 正常工作所需照度 0.1LUX左右 星光型: 正常工作所需照度 0.01LUX以下 红外型采用红外灯照明,在没有光线的情况下也可以成像(黑白)

5.扫描制式。有PAL制和NTSC制之分。中国采用隔行扫描(PAL)制式(黑白为CCIR),标准为625行,50场,只有医疗或其它专业领域才用到一些非标准制式。另外,日本为NTSC制式,525行,60场(黑白为EIA)。 8.视频输出。多为1Vp-p、75Ω,均采用BNC接头。 9.镜头安装方式。有C和CS方式,二者间不同之处在于感光距离不同。 镜头的选择和主要参数: 摄像机镜头是视频监视系统的最关键设备,它的质量(指标)优劣直接影响摄像机的整机指标,因此,摄像机镜头的选择是否恰当既关系到系统质量,又关系到工程造价。 镜头相当于人眼的晶状体,如果没有晶状体,人眼看不到任何物体;如果没有镜头,那么摄像头所输出的图像就是白茫茫的一片,没有清晰的图像输出,这与我们家用摄像机和照相机的原理是一致的。当人眼的肌肉无法将晶状体拉伸至正常位置时,也就是人们常说的近视眼,眼前的景物就变得模糊不清;摄像头与镜头的配合也有类似现象,当图像变得不清楚时,可以调整摄像头的后焦点,改变CCD芯片与镜头基准面的距离(相当于调整人眼晶状体的位置),可以将模糊的图像变得清晰。由此可见,镜头在闭路监控系统中的作用是非常重要的。工程设计人员和施工人员都要经常与镜头打交道: 设计人员要根据物距、成像大小计算镜头焦距,施工人员经常进行现场调试,其中一部分就是把镜头调整到最佳状态。 1、镜头的分类 按外形功能分按尺寸大小分按光圈分按变焦类型分按焦距长矩分球面镜头1” 25mm自动光圈电动变焦长焦距镜头 非球面镜头” 3mm手动光圈手动变焦标准镜头 针孔镜头” 8.5mm固定光圈固定焦距xx

压力单位转换

14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力 , 单位为牛顿(N) A: 面积 , 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。 1Kg/c㎡=98.067KPa =0.9806bar 1bar=1.02Kg/ c㎡ 压力单位: 英制(IP) psi ,psf ,in.Hg ,inH2O 公制(metric) Kg/㎡, Kg/ c㎡ ,mH2O ISO公制(ISO metric) Pa , bar ,N 压力 1巴(bar)=100000帕(Pa) 1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa) 1毫米汞柱(mmHg)=133.322帕(Pa) 1毫米水柱(mmH2O)=9.80665帕(Pa) 1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm) 1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi) =1.0333巴(bar)

摄像机跟踪规则

摄像机跟踪规则: 计划你的镜头。在你尝试电影序列之前,要能够理解最基本的哪些能够跟踪和哪些不能跟踪。在周围360度的圈里盲目挥舞着相机,并期待SynthEyes能够解决是行不通的。有些事你必须要提前考虑到: 首先,场景内必须要有足够的参照物或容貌特征。所以拍摄一个白色的房间就是不明智的(除非你做了全部标记并打算在后期移除)。需要有深度与角度变化的重要特点才足以产生良好的摄像机解决方案。要有足够的容貌特征在整个镜头当中,不仅仅是这些;它们还需要被尽可能好地展开在画面内以产生最准确的跟踪。 3D物体如何放置?如果你有良好容貌特征对与SynthEyes围绕此点进行跟踪是极有帮助的。通常在做特效镜头期间,你会遵循在场景中放置一个3D角色,或聚焦在插入的这个物体上。这些区域都需要很好的跟踪以便来获取“locked”跟踪点。所以当你要拍摄你的镜头素材时,要提前构思这个特定镜头里的3D元素是什么。这一点很容易被人们忽视,但三维空间由3轴(X ,Y, Z)构成,所以一定要确保你有很好的参考点展开在地平面及垂直的画面上。 Features 特征 什么是特征?一个特征是一个存在您的图像序列中相当长一段时间且始终可以被跟踪的点。你可以选择杆子的顶端,地面上的一片树叶,一辆汽车上的标志,建筑物的角,墙壁上的标记。由你来计划,尽量挑选小的、可确定的区域,并且与其周围环境具有较高对比度,记住你正在试图通过这个单点标记建造一个能够融入现实场景的3D物体。所以你不应该选择随着摄像机角度变化其自身会有所改变的特征。例如,视觉上的一个物体与另一个物体的交叉点,玻璃上的高光反射,或者画面中移动的物体(比如摇摆的树枝)。所有这些实际上并不代表场景中的任何静态锁定属性的特征都会产生标记。对于没有很多明显特征的场境,通常会添加跟踪标记或网球来帮助完成跟踪过程,当然这些添加物会在后期被roto掉。 Tracking with SynthEyes 利用SynthEyes进行跟踪 打开SynthEyes后,选择导入我在树林中手持拍摄的10秒钟序列帧。它已做出了正确的推测设置(PAL DV, 25fps, progressive, 250 frames)。

压力等级换算

美标压力换算(做阀门的不懂的看了你就懂了哦)Class/LB PN/Mpa 压力对照表 公称压力 PN/Mpa 磅级(xx) Class/LB K级(xx) 压力单位换算表 单位名称标准大气压 atm 1 9.8592× 10-6 0.96787 0.98692 6.8016× 10-2 1.3158× 10-3 9.6787×

一.PN(最大工作压力/公称压力)是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。帕斯卡 Pa (N/cm2) 9.8068 1×10-5 6994.76 133.32 9.8068工程大气压 Kgf/cm2 1.03325 1.0197× 10-51 1.0197 0.070308 1.3595× 10-3 1×10-4xx

1.01325 1×10-5 0.980681 6.8974× 10-2 1.3332× 10-3 9.08068磅/英寸2 PSI 14.6960 4.5083× 10-3 14.2231 14.50391 1.93368× 10-2 14.223× 10-4毫米汞柱0°mmHg 760

7.5006×10-3 735.57 750.06 51.714917.3557×10-2毫米水柱 4°mmH 2O 10332 0.10197 1× 703.08 13.595 1.6- 2.02.5-5.06.310.01 3.015.025.042.00 6.00 1.6- 2.02.5-5.010.01 3.015.025.042.0国际代号1atm 1Pa (N/cm2) 1Kgf/cm2 1bar 1PSI 1mmHg 1mmH

压力换算公式

压力换算 压力1巴(bar)=100千帕(KPa)1达因/厘米2(dyn/cm2)=帕(Pa)1托(Torr)=帕(Pa)1毫米汞柱(mmHg)=帕(Pa) 1毫米水柱(mmH2O)=帕(Pa)1工程大气压=千帕(kPa) 1千帕(kPa)=磅力/英寸2(psi)=千克力/厘米2(kgf/cm2) =大气压(atm) 1磅力/英寸2(psi)=千帕(kPa)=千克力/厘米2(kg/cm2) =巴(bar)=大气压(atm) 1物理大气压(atm)=千帕(kPa)=磅/英寸2(psi) =巴(bar) mmaq 是mm 水柱的意思mmaq 是mm 水柱的意思,1mmaq = 1mmAg= PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈ 1psi== 欧美等国家习惯使用psi作单位 在中国,我们一般把气体的压力用“公斤”描述(而不是“斤”),体单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘上。 而在国外常用的单位是“Psi”,具体单位是“lb/in2”, 就是“磅/平方英寸”,这个单位就像华氏温标(F )。 此外,还有Pa(帕斯卡,一牛顿作用在一平方米上),KPa,Mpa,Bar,毫米水柱,毫米汞柱等压力单位。 1巴(bar)=兆帕(MPa)=100千帕(KPa)= 公斤/平方厘米 1标准大气压(ATM)=兆帕(MPa)=巴(bar) 因为单位相差都很小,你又不是工程人员。所以,可以这样记: 1巴(bar)=1标准大气压(ATM)=1公斤/平方厘米=100千帕(KPa)=兆帕(MPa) psi的换算如下: 1标准大气压(atm)=磅/英寸2(psi) 如果你有闲心,又肯钻研,看看这个换算关系表吧! 压力换算关系:

压力单位的换算关系

压力单位的换算关系 压力是单位面积上所承受的垂直作用力(物理上称为压强)。其物理本质可据气体分子运动理论理解:装在容器中的大量分子,总是处于永远不停的热运动之中,它们除了相互碰撞之外,还不断地和容器壁碰撞。大量分子碰撞容器壁的总结果,形成了气体对容器壁的压力。 压力的单位为帕(斯卡),单位符号为Pa,1 Pa=1 N/m2,工程上因Pa作为单位太小,常用kPa(千帕)、 MPa(兆帕),1kPa=1000Pa、1MPa=1×106 Pa。 以前在工程上使用的压力单位还有(巴)和(标准大气压)等。它们与Pa(帕)的换算关系见表(1-1)。 表1-1各种压力单位与帕的换算关系 单位名称单位代号与帕的换算关系 巴1bar=105 Pa 或 0.1MPa 标准大气压1atm=101325Pa=1.01325bar 毫米水柱1=9.80665Pa 毫米汞柱1=133.3224Pa 工程大气压 1 =98066.5Pa 绝对压力、表压力和真空度 工程上测量压力一般常采用弹簧管式压力表,当压力不高时也可用U型管压力计来测定。目前愈来愈多的采用 电子技术的测压设备已进入工程领域。无论什么压力计,因为测压组件本身都处在当地大气压力的作用下,因 此测得的压力值都是工质的真实压力与当地大气压力间的差。 工质的真实压力称为“绝对压力”,以表示。当地大气压力以表示,绝对压力大于当地大气压力时, 压力表指示的压力值称为表压力,用表示: (1-5) 当绝对压力低于当地大气压力时,用真空表测得的数值,即绝对压力低于当地大气压力的数值,称“真空度”, 用表示: (1-6) 当地大气压力的值可用气压计测定,其数值随所在地的纬度、高度和气候等条件而有所不同。 psi 有听过吧,psig 就叫做(英制)蒸气压力,锅炉内[蒸气]的压力.蒸气归蒸气,空气归空气,空气中含有水气时,水分的重量是可以分离计算成(psig)的,但是我以为[psig]单独表示时,应该是指[锅炉内饱和水蒸汽的压力]. psi是磅/平方英吋 (念做每平方英吋xx磅) 如果是 Kg/cm2 换算成 psi, 1Kg/cm2 = 14.21psi 1psi = 0.454Kg/(2.54cm)2 = 0.07037kg/cm2 则倒数就是 14.21

压力,压强,压力压强换算

压强单位换算公式: 1Psi=6.89*10^3Pa=68.9*10^-3bar 1bar=10^5Pa=14.5Psi 1Pa=10^-5bar=145*10^-6Psi 压力换算 压力1巴(bar)=105帕(Pa)1达因/厘米2(dyn/cm2)=0.1帕(Pa) 1托(Torr)=133.322帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa) 1毫米水柱(mmH2O)=9.80665帕(Pa)1工程大气压=98.0665千帕(kPa) 1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2) =0.0098大气压(atm) 1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2) =0.0689巴(bar)=0.068大气压(atm) 1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi) =1.0333巴(bar) bar>psi>torr>pa mm毫米,microns微米 在物理学中,“达因”是一个力的单位,特别用于“厘米/克/(秒的平方)”单位系统, 符号是“dyne”。1达因(dyne)等于10的负5次方牛顿。 更进一步,达因可以定义为“使1克质量加速到1厘米/(秒的平方)所需要的力”。 “米/千克/(秒的平方)”体系中每秒钟使1千克的物体加速到1米/(秒的平方)所需力 的单位,等于十万达因。 所以,1dyne=0.00001牛顿=0.000001daN “daN”的英文就是“DecaNewton”。“deca”表示“十, 十倍”之意;“Newton”就是牛顿。 工程中压力的转换(压强、公斤、压力),很实用的压力转换公式推导 压强(P):物体单位面积上受到的压力叫做压强 压力(F、G):垂直作用在物体表面上的力。力是物体对物体的作用;力的大小、方向、作用点 叫做力的三要素 1个大气压=101325Pa=0.1MPa=1.01325×105Pa=1.03kg/m2=76cm水银柱=10m水柱。 以下是推导过程 1、F=mg=1kg×9.8N/kg=9.8N=1kgf,P=F/S=9.8N/1m2=9.8Pa(N/m2)=1kgf/m2=1×10-4kgf/cm2, 得出:1kgf/cm2=9.8Pa/1×10-4=9.8×104Pa,1Pa==1×10-4(kgf/cm2)/9.8=1.02×10-5kgf/cm2 2、1大气压=0.101325MPa,1MPa=1.01325×106Pa=1.01325×106×1.02×10-5=10.335kgf/cm2 3、cm水柱:水密度=1000kg/m3,h水=1cm=0.01m,g=9.8N/kg;P1cm水柱=駁h=10009.80.01=98Pa; 1大气压=101325Pa=(1cm水柱/98Pa)×101325=1033.9cm水柱,1MP=10339cm水柱=103.39m水柱 4、总结(简化):1atm=0.1MPa=100KPa=1公斤=10m水柱 (上标复制时都下来了,注意不要混淆了) kgf-公斤力 工程中经常见到1.6MPa=16Kg压力,这就是推导过程。应该没错把

压力单位换算表

压力单位换算表 毫米水柱是指4摄氏度状态的水柱高度,毫米汞柱是指0摄氏度状态的水柱高度。 ◆ 压力单位换算表

压力单位换算方法 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2. 1KPa=0.01公斤 =0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O 3. 1MPa=1N/mm2 14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力, 单位为牛顿(N) A: 面积 , 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。 1Kg/c㎡=98.067KPa =0.9806bar 1bar=1.02Kg/ c㎡ 压力单位: 英制(IP) psi ,psf ,in.Hg ,inH2O 公制(metric) Kg/㎡, Kg/ c㎡,mH2O ISO公制(ISO metric) Pa , bar ,N

绝对压力 包围在地球表面一层很厚的大气层对地球表面或表面物体所造成的压力称为“大气压”,符号为B;直接作用于容器或物体表面的压力,称为“绝对压力”,绝对压力值以绝对真空作为起点,符号为PABS(ABS为下标)。 用压力表、真空表、U形管等仪器测出来的压力叫“表压力”(又叫相对压力),“表压力”以大气压力为起点,符号为Pg。 三者之间的关系是:PABS = B + Pg(ABS为下标) 压力的法定单位是帕(Pa),大一些单位是兆帕(MPa)=106Pa 1标准大气压= 0.1013MPa 在旧的单位制中,压力用kgf/cm2(公斤/平方厘米)作单位,1 kgf/cm2=0.098MPa 表压(相对压力)单位:MPa(G) 绝对压力单位:MPa(A) 1兆帕= 1 MPa (MPa = Megapascal) 1兆帕(MPa)=1000000帕(Pa) 1巴(bar)=1000毫巴(mbar) 1毫巴(mbar)=1000微巴(μbar)=1000达因/厘米2(dyn/cm2) 1托(Torr)=1毫米汞柱(mmHg)=133.329帕(Pa) 1工程大气压=1千克力/厘米2(kgf/cm2) 1物理大气压=1标准大气压(atm)

相关文档