文档库 最新最全的文档下载
当前位置:文档库 › 土壤化探规范

土壤化探规范

土壤化探规范
土壤化探规范

中华人民共和国地质矿产行业标准

土壤地球化学测量规范

DZ/T 0145-94

1 主题内容与适用范围

1.1本标准规定了土壤地球化学测量工作中主要方法、技术要求和规则。

1.2本标准适用于金属矿产地质勘查。铀矿、地热、非金属矿产地质勘查的土壤测量工作也可参照执行。

2 引用标准

GB/T 14496 地质矿产地球化学勘查名词术语

DZ/T 0011 地球化学普查规范(比例尺1:50 000)

DZ/T 0075 地球化学勘查图图式,图例及用色标准

3 总则

3.1 土壤地球化学测量(简称土壤测量),是以上壤为采佯对象所进行的地球化学勘查工作。3.2 土壤地球化学测量主要用于矿产地质勘查的详查阶段,也可用于在区域调查、普查阶段中水系沉积物测量无法进行的地区。

3.3 土壤地球化学测量可用于找矿以及各类异常和矿化点的查证、评价,也可为地质填图提供信息。

3.4 区域调查和普查的土壤测量方法,其主要技术要求,按化探区域调查和化探普查的规范执行。

3.5 用于金属矿产地质勘查的土壤测量应选择在残坡积层发育地区进行。

4 工作设计

4.1 资料收集

编写土壤测量的工作设计前,—般应收集和分析以下资料:

a.测区的地理和交通、生活情况以及测地资料;

b.测区及外围地质特征,矿产、矿床类型和成矿规律,矿床氧化淋失程度等特点; c.测区及外围以往地质、物探、化探、遥感等的工作程度和工作成果;

d.测区的地形、地貌、水文、气象,第四纪覆盖物(尤其是土壤)的类型,植被特征,人工污染情况等有关资料;

e.表生作用对指示元素的影响及表生赋存状态。

4.2 方法有效性与技术试验

4.2.1 野外踏勘

编写设计前应对测区进行必要的现场踏勘工作、取得第一手资料,以了解所收集资料方法技术的有效性,其内容包括:

a.检查核对所搜集资料的可靠程度;

b.确定试验地点和测区的有效范围;

c.实地考察工区的交通、生活及工作条件。

4.2.2 设计前的技术试验

4.2.2.1 有前人工作过的测区或邻区,设计时其主要技术指标和方案可参照前人的工作成果。如果认为资料不足,可补作部分技术试验。

4.2.2.2 前人未工作过的地区、特殊景观、为寻找特殊矿种、特殊矿产类型为目的的地区,必须开展技术试验。试验内容包括:采样层位(深度),采样介质,样品加工方案,指示元素及指标,采样布局,采样网度和方法等。

4.2.2.3 技术试验的一般要求

a.试验剖面应布置在主要的、有代表性的矿床和覆盖物地段。每条剖面的两端必须各有3-5个点落在背景地段上。

b.采样层位(深度)和加工方案试验,一般选择在揭露过矿体的探槽或浅井上(见附录A)。如果地表工程不理想或没有工程,可以用一般剖面方法,按不同深度采样。指示元素和测网试验一般与层位和粒度试验在同一剖面进行。剖面数量不得少于三条。

c.土壤测量的指示元素及指标,可根据矿床的元素共生组合关系(见附录B、附录C 和附录D),通过试验择优选择。

4.3 根据任务书的要求及技术试验结果编制设计书。设计书内容应包括:

a.工作的目的及任务要求;

b.地质、地形、地貌、第四纪覆盖物类型以及地表地球化学环境和可能干扰的因素; c.样品的自然富集层位和颗粒度。工作比例尺和采样网度、深度及重量,

d.取样介质及样品加工方案;

e.指示元素和指标,分析方法及方法检出限的要求,质量监控方案;

f.方法技术要求、技术经济指标和生产管理要求;

g.设计附图;

L 予期提交的成果和资料。

4.4 测区与测网

4.4.1 测区范围

a.测区范围应以任务书的要求确定,并通过设计前的踏勘,选择覆盖物类型和地质条件最有利的地段。

b.根据普查后的异常确定详查工作范围时,应考虑覆盖物类型对异常规模、形态的影响,测区范围应大于异常或异常群(带)的面积。

4.4.2 测区的部署原则

4.4.2.1 测线方向应尽量垂直被探查地质体的走向,并尽可能与已知地质剖面或物探测线一致。

4.4.2.2 测网可根据被探测物的规模、产状和工作性质,分规则测网与不规则测网(非网格化测网)。

a.规则测网有矩形与正方形网格。矩形网格适用于探测长、短轴相差较大的目标物;正方形网格适用于探测长、短轴相差不大、或形态复杂的目标物;

b.非网格采样适用于中、小比例尺或地形恶劣、施工条件差,正规网格布设难度大的地区。

4.4.2.3 不同勘查阶段有不同的工作比例尺和测网密度,工作比例尺与测网的关系见表l。详查工作中若以土壤测量资料确定的测区,线距与点距可根据资料中的异常大小而定,选择表1中合适的比例尺和网度。一般情况下,线距应小于有意义异常长度的1/2,点距应小于异常宽度的1/3。由其他资料确定的详查区可参照表1执行,应保证最少有3条测线控制探测物。

表1 工作比例尺与测网密度

5.1 测地及采样点的定位工作按ZBD/0002<<物化探测地规范》要求执行。而面积性工作采用随机采样方法的,野外定点时必须用相同或大于其工作比例尺的地形图。点位误差要求:普查、详查工作≤2mm。

5.2 采样工作及编录

5.2.1 采样工作

5.2.1.1 详查在测定的采样点周围点线距的1/10范围内采样,样品可由一处组成或由数处组成,区调或普查,由3~5点采样组合成一样。采样应避免各种污染,遇有岩石露头、废石堆、沼泽、崩积物、河床堆积、水田等不能取样时可弃点,但在记录中应注明。

5.2.1.2 一个地区的工作应尽量采自同一介质、同一层位物质,样品一般采集在距地表20一50cm深处土壤的B层(淋积层)或C层(母质层)中的细粒级物质。取样重量根据测试项目多少而确定,以保证过筛后送测试的单个样品重量满足分析要求为准。过筛后送化验室单个样品不少于80g,进行痕金测定的单个样品,过筛后的重量应不少于100g。

5.2.7.3 在特殊地貌区应根据不同自然地理条件选用不同的采样方法。

a.在土壤成层不完善的山区。应采集植物根以下的残、坡积土,尽量不要带入腐植质和碎石;

b.在我国南方湿热气候地貌区,发育有较厚层残积土壤。当金属硫化物在地表可能遭到强烈淋失时。应在距地表50cm以下深处土壤中取样;

c.在我国北方干旱或半干旱风成砂堆积地貌区,应透过风成砂土层,采集基岩上的残积物质并筛取+0.45~-5mm粗粒级部分;

d.在一些冲积物、风成土、冰积物、融岩堆积物、钙质土、耕植土或其他外来搬运物所覆盖的地区,通常应穿过这些覆盖物,在原地的残、坡积层中采样。

5.2.2 采样编录

5.2.2.1 采样编号必须统一要求,逐点认真作好编录。

5.2.2.2 编录的内容应包括;工区名称、编号(图幅号)、点线号(横、纵坐标)、样品号、取样层位、采样位置、覆盖层、样品颜色、土壤层性质、弃点原因、采样日期、采样员姓名等(附录E)。大于1:10 000以上的比例尺找矿详查工作还应描述矿体、矿化、蚀变、污染等有关地质、地球化学现象。

5.2.2.3 编录格式可以使用标准的野外记录卡或记录本。用中硬强度的铅笔填写,字迹要工整清晰,不准重抄和涂改。

5.3 野外样品加工及管理

5.3.1 野外样品加工及管理

5.3.1.1 野外采样人员每日采样结束,整理填写好送样单将样品送交加工人员验收登记。

加工人员检查发现错号、漏采和不符合要求的样品应及时纠正或重采。

5.3.1.2 采集的样品要防止沾污。装样品的布袋无论是新的或是已使用过的旧样品袋都要经过洗涤后才能使用。

5.3.1.3 装在布袋中的样品应在日光下晒干,有条件的也可在带自动温度测试控制的电烘箱内烘干,但箱内温度不能超过60℃。不论采用哪种干燥方法,在干燥过程中要不时揉搓样品,以免土质结块,干燥后的样品要用木槌轻轻敲打以使粘土胶结物中的颗粒解体。 5.3.7.4 样品干燥后,按设计规定的加工方案用不锈钢筛进行过筛。过筛后的样品应采用对角线折迭法混匀,然后放入塑料瓶或纸袋中,其重量按设计书要求确定。在野外加工处理样品时应防止样品间相互污染。因此,每处理完一个样品后,凡是和上一个样品接触过的筛子,台称等物都要清理干净,然后再进行下一个样品的加工处理。

5.3.1.5 装入塑料瓶或纸袋的每个样品应标明工区(图幅号),样品号、日期、加工员。填写送样单及编制样品加工号码表后妥善保管。每天加工完毕后要进行质量检查确保加工处理准确无误。

5.4 野外工作质量检查

5.4.1 土壤地球化学测量的野外质量检查制度:

a . 采样小组和样品加工人员应保证工作质量,作好日常自检工作。小组长应对当天所采样品、编录、点位等进行检查,发现问题及时纠正。当工作进行到一定阶段时,全面检查本阶段工作是否符合质量要求;

b . 大组技术负责人(或项目负责人)应分阶段到各采样组和样品加工组进行方法技术和工作质量检查。

方法技术检查:技术负责人(或项目负责人)应随同采样小组深入工作现场进行抽查,全面观察野外采样工作过程,样品加工是否严格按规定及工作设计执行。

工作质量检查,包括室内与野外检查两项。室内抽查主要校对采样点位图,编录和样品成份,检查总工作量的10%。野外检查包括抽取一些采样点实地核对采样部位,定点误差,采样标记、记录内容以及重采样检查等。检查量为总量的5%。不允许用同时在同一点采双样来代替重采样。重复采样应布设在可能出现地球化学异常地段及可疑地段,已发现的矿化及找矿标志部位,也可考虑不同地质构造单元均匀布设。

5.4.2 各类检查结果要用文字和表格的形式记载下来,供工作质量评定时参考。

5.4.3 采样质量评估。重采样品与基本样一同加工,统一编号送实验室分析。待获得分析数据后对比第一次取样的基本分析值(C 1)与重复采样的分析值C 2),计算两次分析值之间的相对偏差(RE %)值。 其计算式为:

1002

/)(|

|%2121?+-=

C C C C RE

相对偏差(RE%)符合表2要求者为合格。

合格样品应占全部被检样品数的70%以上,合格率小于70%应查明原因进行处理或返工。 5.4.4 野外质量验收标准可照化探普查规范附录C 要求进行。

6 样品测试工作

6.1 实验室样品加工及管理

6.1.1 承担样品测试任务的实验室应负责样品的验收,检查,发送和保管。野外采样的工作单位将样品送交给承担样品分析任务的实验室时,均需办理样品交接手续。在双方交接样品过程中,发现送来的样品有下述情况之一者,实验室有权拒收样品,并应及时通知送样单位处理。

a.无送样单,或送样单填写不清,不全、无责任者签名;

b.样品无编号或编号混乱有重号;

c.样品在运输过程中受到破损,丢失或污染;

d.样品重量不符合规定或设计书要求。

6.1.2 样品加工前应在小于60℃恒温箱内进行充分烘干。由于样品在野外已进行过筛处理,一般在实验室不需粗碎和中碎加工,可直接进行细碎加工。土壤样品的加工应和实验室内的矿石样品加工场所分开。

6.1.3 按分析要求的粒度进行样品细碎加工。符合粒度要求的样品重量应不少于加工前重量的95%。凭手感检查样品是否达到所规定的粒度,不需过筛。但为保证加工粒度要求,实验室应每天在已加工好的样品中随机抽出一定比例的样品过筛,应有97%样品的重量通过规定网目。

6.2 测试项目

6.2.1 土壤样品测试项目应根据勘查工作阶段和勘查目标的情况而定。

6.2.2 区域调查和普查阶段的测试项目按化探区域调查和化探普查规范的有关规定执行。详查工作 (包括非正规测网的详查,下同)的测试项目应根据测区的具体情况而定。

a.根据普查资料选出的化探异常进行详查,所选择的测试项目一般与该异常的有效指示元素相同。

b. 根据其他资料确定的详查区工作,测试项目可根据矿床的元素共生组合选择几种或通过实验

6.3 测试技术要求

6.3.1 对化探区域调查及化探普查的土壤样品,元素测定技术要求按化探区域调查和化探普查规范的有关要求执行。

6.3.2 详查工作的样品分析技术要求如下。

6.3.2.1 分析检出限要求

a.从化探普查资料选定的详查区,指示元素与该异常的有效指示元素相同,分析检出限应低于测区指示元素的背景平均值(x)(剔除异常点的算术平均值);

b.用其他资料确定的详查区,样品分析方法的检出限参照表3要求执行。

6.3.2.2 分析的报出率必须≥80%,否则其分析数据只能作为参考值。

6.3.2.3 准确度和精密度要求

a.从化探普查资料选定的详查区,如分析方法与化探普查所用方法相同时,则不需要对方法再进行准确度与精密度考核。

b.采用新的分析方法或用其他资料确定的详查工作,其分析方法必须用二级标样进行考核。准确度和精密度需达到表4要求方能投产,允许8个标样中有1个样超差,但超差值不能大于监控值的20%。

表4

表中:C测为GBW标样n次实测值的平均值;

C S为GBW标样的可用值;

C i为GBW标样第i次测定的实测值;

测定数n应不低于10次。

6.3.3质量监控方法

6.3.3.1 化探区域调查和化探普查分析质量监控方法按化探区域调查及化探普查规范的有关部分执行。

6.3.3.2 详查工作的监控方法,也应以标样和重份分析检查。每次每批均应插入。重分分析样每小批(50件)不得小于4件,二级标样不得少于2件。每分析500件后进行分析误差统计,监控限要求见表5。超差数≤15%方能报出。

L

n

C X L

∑?=

lg 式中:ΔlgC=lgC 1-lgC 2;

n--每小批中插入二级标样的总数; C 1--二级标样推荐值

C 2--二级标样的实测值。 λ为对数标准离差,计算式为:

1

)lg (1

)lg (2

22

--?=

--?=

∑∑n X n C n X C L

L λ

式中:n —参加统计的二级标样总数。

RE%--重份分析相对偏差。计算式为:

1002

/)(|

|%2121?+-=

C C C C RE

式中:C l ——基本分析值; C 2——抽样分析值。

6.3.3.3 密码抽查是否进行及抽查方式由送样单位确定。抽查方式可与原样分析同步进行,抽查样在测区中的分布必须均匀;也可在分析成果报出后进行。后者应根据异常含量高低和背景样品的分布情况,选择有代表性的样品抽查。抽查量不少于总样数的5%,抽查样品必须在收到分析成果后一个月内送出。

密码抽查的误差计算与重份分析相同,用相对偏差(RE %)公式计算,监控限要求与表5重份分析监控限一样,超差数不大于抽查总数的20%(总样数至少100个)为合格。6.3.4 金的重份分析和密码抽查的监控限要求见表6。

表6

7 资料整理工作

7.1 土壤地球化学测量的资料包括原始资料和成果报告。

7.1.1 原始资料包括

a.各种原始记录(采样记录本(卡)、分析数据、测地工作的各种记录),原始草图和质量检查、验收的记录与文据。

b.资料整理和解释推断中形成的各种数据记录、图件和异常登记表(卡)。

c.成果报告的底稿、底图、透明图。

d.原始记录和资料整理形成的软盘。

7.1.2 成果报告包括报告书及其附图、附件。

7.2 资料的检查与验收

7.2.1 资料的质量检查工作贯穿于整个工作的始末,每个工作步骤都应该按质量监控方法进行质量检查。

7.2.2 检查后的资料必须符合质量监控方法的要求才能验收。只有验收后的资料才能进行下步工作或正式复制。

7.3 资料整理的基本步骤和内容

a.对各种原始资料进行整理、复核和编录。编制各种基础图件;

b.确定指示元素的背景值与异常下限;

c.编制各种异常图和其他解释推断图,

d.对异常进行分类、筛选、评价、登记等解释推断工作;

e.编制报告和绘制各种图件、附件。

7.4 异常的解释推断

7.4.1 背景值与异常下限值的确定方法

根据元素数值及直方图的分布型式,选择适当的方法确定背景值及异常下限值,例如统计法、累积频率曲线图解法、概率纸图法、逐步剔除法等。

7.4.2 异常的筛选与分类

a.异常的筛选、分类应在充分地掌握已知矿的地质地球化学特征的基础上结合测区的地质、物探、地貌各种有关资料进行。应特别注意覆盖物的类型和覆盖层的厚度对异常特征(异常规模、强度等)的影响。

.b.异常的筛选可采用各种有效的数据处理方法,亦可用经验的筛选方法。

c.筛选后的异常可按找矿意义进行分类并登记造册(见附录F)。

7.4.3 异常的检查和推断解释

a.有进一步工作价值的异常都应进行野外检查。检查工作除确定异常的形成原因外,亦要观察异常所处位置的地质特征和地貌特征,并补作必要的采样工作。

b.要注意地形及矿体倾斜引起的位移以及地表氧化引起的元素贫化。

c.异常的推断解释应在充分了解掌握的分析所有资料基础上,结合野外实地踏勘结果,对异常引起的地质原因作出确切的解释,并对异常的进一步工作提出具体意见。

d.异常检查应采取现场分析技术,如冷提取及各种偏提取技术。

7.5 图件编制

7.5.1 土壤地球化学测量图件分两部分:基础图与推断解释图。

7.5.2 区域调查和普查工作的图件编制,按化探区域调查和化探普查的有关规定执行。7.5.3 详查工作的图件要求

7.5.3.1 图件编制必须符合地球化学勘查图式图例及用色标准规定。

7.5.3.2 各种图件制成后,必须进行l00%的检查后方可正式复制。

7.5.3.3 成果报告需作交通测区位置图,实际材料图,原始数据图,等值线图、综合异常图及其他推断解释图。

7.5.3.4 原始数据图与等值线图,图面上的元素最多三个。

7.5.3.5综合剖面图下部必须附地形变化的地质断面。

8 成果报告

8.1 化探区域调查和普查的成果报告内容、附图、附件要求按化探区域调查和普查规范执行。

8.2 详查工作成果报告一般应包括下列内容

a.序言;

b.地质、景观地球化学特征,

c.工作方法及质量评述;

d.解释推断及重点异常的查证结果,

e.结论与建议。

8.3 详查工作成果报告的附图

提交交通、测区位置图,剖面图,综合异常图和解释推断图。

8.4 详查工作成果报告的附件

异常登记表(卡)、异常剖析图册。

附录 A

采样层位(深度)和加工粒度试验方法

(参考件)

A1 采样层位(深度)试验

确定采样最佳层位(深度)、首先应区分疏松覆盖物性质<原地风化或外来的),利用已知矿体或矿化地段的探槽或浅井,进行槽(井)壁取样试验:当为原地风化形成的残坡积物时,从地表至深部依次取A层(腐殖层)、B层(淋积层)、C层(母质层)若干个剖面,若A、B、C 层不清晰时,可按不同深度取若干个剖面。当为外来物(如冲洪积物、水积物、风积物、耕地或其它外来搬运物)时,通常应穿过这些覆盖物,在原地的残坡积层中取样,只有当经过试验,确认采集外来覆盖物可取得同样地质效果时,才可在外来覆盖物的合适深度采样。具体做法是:

a.在工程的一壁上根据具体情况选择几条垂向采样线(探槽壁需选择三条以上,可视探槽大小而增减)。

b.在取样线上自地表向下分层(或按不同深度)确定取样点,点距应视各层位的厚度而定。如疏松层较厚、点距可大些。

c.逐点取样、样品重量应大于200g。如同时做粒度试验或测定金等样品时,应酌情增加重量。

d.将所采样品均通过某种有效孔径筛(或与确定有效过筛孔同时进行),选择异常清晰明显,既能保证地质效果、又经济,取样方便的层位及深度作为较佳层位及深度。

A2 加工粒度试验

用一套20目至160目的样筛由上而下依次叠放,将所研究样品放入最上一层样筛(20目)内,然后将叠筛放入水中,充分摇荡,使样品中的粘土团粒化开洗去,使各种小于一定粒度的样品全部(占样品中该粒度成分总量的95%以上)通过相应筛孔,干燥后用相同方法分析各粒级样品,根据分析结果,指示元素含量高,异常清晰的粒级区间即是该元素的富集粒级。在实际工作中常不用水洗,是直接将干燥的样品揉碎后按上述办法过筛分析,以所得指示元素含量高,异常明显的粒级区间作为样品中该元素的富集粒级。

附录 B

常见的元素地球化学共生关系

(参考件)

附录 B

某些类型矿床中元素组合的一般规律

(参考件)

注:参考地矿部1978年地球化学探矿工作手册。

附录 F

地球化学异常登记卡

(参考件)

制表: 审核

农田土壤环境质量监测技术规范

农田土壤环境质量监测技术规范 范围 本标准规定了农田土壤环境监测的布点采样、分析方法、质控措施、数理统计、成果表达与资料整编等技术内容。 本标准适用于农田土壤环境监测。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 8170—1987 数值修约规则 GB/T 14550—1993 土壤质量六六六和滴滴涕的测定气相色谱法 GB 15618—1995 土壤环境质量标准 GB/T17134,—1997 土壤质量总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB/T 17135—1997 土壤质量总砷的测定硼氢化钾—硝酸银分光光度法 GB/T 17136—1997 土壤质量总汞的测定冷原子吸收分光光度法 GB/T 17137—1997 土壤质量总铬的测定火焰原子吸收分光光度法 GB/T 17138—1997 土壤质量铜、锌的测定火焰原子吸收分光光度法 GB/T 17139—1997 土壤质量镍的测定火焰原子吸收分光光度法 GB/T 17140—1997 土壤质量铅、镉的测定 KI—MIBK萃取火焰原子吸收分光光度法 GB/T 17141—1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 NY/T 52—1987 土壤水分测定法(原GB 7172—1987) NY/T 53—1987 土壤全氮测定法(半微量开氏法) (原GB 7173—1987) NY/T 85—1988 土壤有机质测定法(原GB 9834—1988) NY/T 88—1988 土壤全磷测定法(原GB 9837—1988) NY/T 148—1990 土壤有效硼测定方法(原GB 12298—1990) NY/T 149,一1990 石灰性土壤有效磷测定方法(原GB 12297一1990) 3 定义 本标准采用下列定义。 3.1 农田土壤 用于种植各种粮食作物、蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 3.2 区域土壤背景点 在调查区域内或附近,相对未受污染,而母质、土壤类型及农作历史与调查区域土壤相似的±壤样点。 3,3 农田土壤监测点 人类活动产生的污染物进入土壤并累积到一定程度引起或怀疑引起土壤环境质量恶化的±壤样点。 3.4 农田土壤剖面样品 按土壤发生学的主要特征,担整个剖面划分成不同的层次,在各层中部位多点取样,等量混均后的A、B、C层或A、C等层的土壤样品。 3.5 农田土壤混合样 在耕作层采样点的周围采集若干点的耕层土壤、经均匀混合后的土壤样品,组成混合样的分点数要在5~20个。 4 农田土壤环境质量监测采样技术 4.1 采样前现场调查与资料收集 4.1.1 区域自然环境特征:水文、气象、地形地貌、植被、自然灾害等。 4.1.2 农业生产土地利用状况:农作物种类、布局、面积、产量、耕作制度等。 4.1.3 区域土壤地力状况:成土母质、土壤类型、层次特点、质地、pH、Eh、代换量、盐基饱和度、±壤肥力等。 4.1.4 土壤环境污染状况:工业污染源种类及分布、污染物种类及排放途径和排放量、农灌水污染状况、大气污染状况、农业固体废弃物投入、农业化学物质投入情况、自然污染源情况等。 4.1.5 土壤生态环境状况:水土流失现状、土壤侵蚀类型、分布面积、侵蚀模数、沼泽化、潜育化、盐渍化、酸化等。 4.1.6 土壤环境背景资料:区域土壤元素背景值、农业土壤元素背景值。 4.1.7 其他相关资料和图件:土地利用总体规划、农业资源调查规划、行政区划图、土壤类型图、土壤环境质量图等。 4.2 监测单元的划分 农田土壤监测单元按土壤接纳污染物的途径划分为基本单元,结合参考土壤举型、农作物种类、耕作制度、商品生产基地、保护区类别、行政区划等要素,由当地农业环境监测部门根据实际情况进行划定。同一单元的差别应尽可能缩小。 4.2.1 大气污染型土壤监测单元

土壤墒情监测系统的操作方法及注意事项

土壤墒情监测系统的操作方法及注意事项 农业发展一直是我国的重点之一,如今农业发展的方向是现代化农业,现代化农业的主要特点是农业信息化,而农业信息化主要体现在农业物联网。 托普云农物联网推出的物联网技术全面打造土壤墒情监测系统,将最前沿的信息技术武装到了延续几千年的劳动生产上。 在系统应用过程中,大量的传感器节点构成了一张张功能各异的监控网络,通过各种传感器采集信息,可以帮助农民及时发现问题,并且准确地捕捉发生问题的位置。如此一来,农业逐渐地从以人力为中心、依赖于孤立机械的生产模式转向以信息和软件为中心的生产模式,从而大量使用各种自动化、智能化、远程控制的生产设备,促进了农业发展方式的转变。 相关数据显示,农业灌溉是我国的用水大户,长期以来,由于技术、管理水平落后,导致灌溉用水浪费十分严重,农业灌溉用水的利用率仅40%。如果根据监测土壤墒情信息,实时控制灌溉时机和水量,可以有效提高用水效率。而人工定时测量墒情,不但耗费大量人力,而且做不到实时监控。 托普云农物联网结合土壤墒情监测平台和物联网控制技术的应用,使农业种植中的监控管理不再受到时空局限,根据大棚或其他种植区微传感器采集的详实数据,点击手机屏幕便可以有针对性的遥控节水灌溉、施肥、二氧化碳、水泵、风机等田间设施。 总而言之,实现土壤墒情的连续在线监测,农田节水灌溉的自动化控制,既

提高灌溉用水利用率,缓解我国水资源日趋紧张的矛盾,也能为作物生长提供良好的生长环境。 根据规划,托普云农物联网应用中的管理平台分为墒情信息监测、苗情信息监测、气象数据分析、短信发布、灾情信息发布、图形预警几个部分。未来,围绕系统建立起来的"绿色产业链"将让现代农业朝着绿色可持续的方向迈进。 土壤墒情监测是实施农田有效管理措施的基础,为此,托普云农结合国内外同类产品的优势研发了一种土壤墒情监测系统,它可以实现农田土壤墒情的准确测定和管理,对农业展开合理的生产措施有重要的意义。 TZS-GPRS-I土壤墒情监测系统又可称为墒情与旱情信息管理系统,土壤墒情与旱情管理系统,无线墒情与旱情管理系统,土壤墒情实时监测系统。该系统拥有自己的数据平台(数据无须上传至国家系统)及监测网络,数据可直接发送到管理者的服务器,下级所有被管理站点均可查看。该土壤墒情与旱情监测系统用户可以根据需要选择网络GPRS模式或短信GSM模式两种通讯方式传输。 TZS-GPRS-I与TZS-GPRS的区别在于: TZS-GPRS-I是自有网络平台,即不上传到国家墒情监测网,自己有一套墒情监测网络,数据直接发送到管理者的服务器,下级所有被管理站点均可查看。 托普云农土壤墒情监测系统其他选配的气象要素: 空气温度、空气相对湿度、太阳辐射、风向、风速、降水量、大气压力、光照度、露点、直接辐射、日照、光合有效辐射、紫外辐射、蒸发、二氧化碳等传感器。

土壤环境监测技术规范方案

土壤环境监测技术规范 土壤环境监测技术规范包括土壤环境监测的布点采样、样品制备、分析方法、结果表征、资料统计和质量评价等技术内容。 一、准备工作 主要准备工具,器材,用具等。 二、布点采样 样品由随机采集的一些个体所组成,个体之间存在差异。为了达到采集的监测样品具有好的代表性,必须避免一切主观因素,使组成总体的个体有同样的机会被选入样品,即组成样品的个体应当是随机地取自总体。另一方面,在一组需要相互之间进行比较的样品应当有同样的个体组成,否则样本大的个体所组成的样品,其代表性会大于样本少的个体组成的样品。所以“随机”和“等量”是决定样品具有同等代表性的重要条件。 1.布点方法 1)简单随机 将监测单元分成网格,每个网格编上号码,决定采样点样品数后,随机抽取规定的样品数的样品,其样本号码对应的网格号,即为采样点。随机数 的获得可以利用掷骰子、抽签、查随机数表的方法。关于随机数骰子的使用 方法可见GB10111《利用随机数骰子进行随机抽样的办法》。简单随机布点 是一种完全不带主观限制条件的布点方法。 2)分块随机 根据收集的资料,如果监测区域内的土壤有明显的几种类型,则可将区域分成几块,每块内污染物较均匀,块间的差异较明显。将每块作为一个监 测单元,在每个监测单元内再随机布点。在正确分块的前提下,分块布点的 代表性比简单随机布点好,如果分块不正确,分块布点的效果可能会适得其 反。 3)系统随机 将监测区域分成面积相等的几部分(网格划分),每网格内布设一采样点,这种布点称为系统随机布点。如果区域内土壤污染物含量变化较大,系

统随机布点比简单随机布点所采样品的代表性要好。 2.基础样品数量 1)由均方差和绝对偏差计算样品数 用下列公式可计算所需的样品数: N=t2s2/D2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); s2 为均方差,可从先前的其它研究或者从极差R(s2=(R/4)2)估计; D 为可接受的绝对偏差。 2)由变异系数和相对偏差计算样品数 N=t2s2/D2 可变为:N=t2CV2/m2 式中:N 为样品数; t 为选定置信水平(土壤环境监测一般选定为95%)一定自由度下的t 值(附录A); CV 为变异系数(%),可从先前的其它研究资料中估计; m 为可接受的相对偏差(%),土壤环境监测一般限定为20%~30% 。 没有历史资料的地区、土壤变异程度不太大的地区,一般CV 可用10%~30%粗略估计,有效磷和有效钾变异系数CV 可取50%。 3.布点数量 土壤监测的布点数量要满足样本容量的基本要求,即上述由均方差和绝对偏差、变异系数和相对偏差计算样品数是样品数的下限数值,实际工作中土壤布点数量还要根据调查目的、调查精度和调查区域环境状况等因素确定。 一般要求每个监测单元最少设3 个点。 区域土壤环境调查按调查的精度不同可从2.5km、5km、10km、20km、40km 中选择网距网格布点,区域内的网格结点数即为土壤采样点数量。

全国土壤墒情监测工作方案解析

全国土壤墒情监测工作方案 随着全球气候变化加剧,我国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。通过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表达的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。 (二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、 按时上报。

(三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20 、20~40 、40~60 、60~100 四个层次监测土壤含水量,其中,0~20 、20~40 为必测层。播种出苗期时,加测0~10 土层。特殊作物根据其需水特性和根系分布深度确定监测层次和深度。同时调查观测气象、作物表象、干土层厚度、田面开裂、灌溉、农事操作等相关数据。水田淹水时监测淹水深度、排水状况等。 2、采集方法。固定监测:埋设固定式自动监测设备,传感器分别埋入土层 深度10 、30 、50 、80 处进行监测,采用无线通讯方式将监测数据实时上传到“全国土壤墒情监测系统”,并做好定期校正和维护保养。流动监测:配备便携式监测仪器和交通工具,在监测点地块,以仪定位点为中心,长方形地块采用“S ”

土壤墒情

土壤墒情 目录 1 概念 墒,指土壤的湿度。墒情,指土壤湿度的情况。土壤湿度是土壤的干湿程度,即土壤的实际含水量,可用土壤含水量占烘干土重的百分数表示:土壤含水量=水分重/烘干土重×100%。也可以土壤含水量相当于田间持水量的百分比,或相对于饱和水量的百分比等相对含水量表示。 土壤水是植物吸收水分的主要来源(水培植物除外),另外植物也可以直接吸收少量落在叶片上的水分。土壤水的主要来源是降水和灌溉水,参与岩石圈-生物圈-大气圈-圈-水圈的水分大循环。 2 存在形态 土壤水存在于土壤孔隙中,尤其是中小孔隙中,大孔隙常被空气所占据。穿插于土壤孔隙中的植物根系从含水土壤孔隙中吸取水分,用于蒸腾。土壤中的水气界面存在湿度梯度,温度升高,梯度加大,因此水会变成水蒸汽蒸发逸出土表。蒸腾和蒸发的水加起来叫做蒸散,是土壤水进入大气的两条途径。 表层的土壤水受到重力会向下渗漏,在地表有足够水量补充的情况下,土壤水可以一直入渗到地下水位,继而可能进入江、河、湖、海等地表水。 3 表示方法 [1]土壤中水分的多少有两种表示方法:一种是以土壤含水量表示,分重量含水量和容积含水量两种,二者之间的关系由土壤容重来换算。另一种是以土壤水势表示,土壤水势的负值是土壤水吸力。 4重要指标 土壤含水量有三个重要指标。一个是土壤饱和含水量,表明该土壤最多能含多少水,此时土壤水势为0。

第二是田间持水量,是土壤饱和含水量减去重力水后土壤所能保持的水分。重力水基本上不能被植物吸收利用,此时土壤水势为-0.3巴。 第三是萎蔫系数,是植物萎蔫时土壤仍能保持的水分。这部分水也不能被植物吸收利用,此时土壤水势为-15巴。 田间持水量与萎蔫系数之间的水称为土壤有效水是植物可以吸收利用的部分。当然,一般在田间持水量的60%时,即土壤水势-1巴左右就采取措施进行灌溉。 土壤水势可细分为重力势、基模势和溶质势。 土壤水分重力势以土壤水面与土表面相平时为0。水面高于土表面时为正值(此时也称为压力势)。水面低于土表面时为负值(土壤水吸力为正值)。 土壤基模势指土壤中矿质颗粒表面和有机质颗粒表面对水所产生的张力。它的值永远是负值,即总是将土壤表面的水分向土体内吸进来。 土壤水分溶质势与土壤溶液中所含溶质数量有关,溶质越多,溶质势越小(即越负)。点水源入渗时,水沿湿度梯度从高水势处向低水势处流动,逐渐形成一个干湿交界分明的椭球体形状,称为湿润球,球面各处土壤水势相等。该球面称为入渗锋,在水头固定不变时,入渗锋的前进速度随着时间的延长而减慢。 大部分植物养分都是溶于水后随水移动运输到植物根系被吸收的。无论根系以质流、扩散、截获哪种方式吸收植物养分都在土壤溶液中进行。 4土壤墒情监测站WXH-DTWS 一、产品特色:[1] 该仪器是符合《土壤墒情监测规范SL000-2005中华人民共和国水利行业标准》,根据土壤墒情监测规范要求设计,不仅可实时监测墒情的最主要参数——土壤水分,还可根据用户需求监测土壤温度等,配套的软件可根据用户需要灵活设定墒情参数的采样周期和存储周期、巡测和召测数据及分析数据等功能。系统进行不间断监测,对土壤墒情的发生、发展及变化进行实时的监视和分析,为开展排涝抗旱工作提供信息依据。 土壤水分传感器采用国际上最流行的现场测试土壤水分原理:频域反射原理(FDR),该技术最早应用于美国,即传感器发射一定频率的电磁波,电磁波沿探针传输,到达底部后返回,检测探头输出的电压,由于土壤介电常数的变化通常取决于土壤的含水量,由输出电压和水分的关系则可计算出土壤的含水量。水分是决定土壤介电常数的主要因素。测量土壤的介电常数,能直接稳定地反应各种土壤的真实水分含量。FDR土壤水分传感器可测量土壤水分的体积百分比,与土壤本身的机理无关,此原理是目前国际上最流行的土壤水分传感器测量方法。 二、应用范围: 广泛应用于农业、林业、地质等方面土壤温度测量及研究。 三、产品特点: 01、本机体积小,软件操作简单,性能可靠,记录间隔可根据要求从1分至24小时任意设置。 02、全程跟踪记录被测土壤中的温度数据,记录时间长,具有断电数据自动存储保护功能。 03、整机功耗小,整机功耗不大于2W。

土壤墒情在线监测系统概述

土壤墒情在线监测系统概述 灌溉在农业生产中是非常重要的一项农事工作,而节水灌溉则是近年来国家所倡导的一种灌溉方式。经实践证明,在田间作物增产灌溉和适时适量节水技术应用与研究中,都离不开田间墒情的监测和预报。通过应用土壤墒情在线监测系统对田间墒情的监测和预报,种植者可以根据土壤墒情在线监测系统提供的数据发现某块田地缺水了,然后及时进行灌溉,而当土壤水分达到过多时,就能提醒种植者进行排水,严格的按照墒情浇关键水,使得灌溉水得到有效利用,从而达到节水高产的目的。 那么,土壤墒情在线监测系统是什么?该系统怎样呢? 土壤墒情在线监测系统就是专业用来监测田间土壤墒情的设备,它可以利用其数据采集、传输和存储技术来实时获取田间的墒情旱情等信息,而工作人员通过这些数据信息,就可以分析出当前田间土壤的墒情情况。土壤墒情在线监测系统和传统土壤监测仪器相比具有很大优势,它可以实现全天24小时对土壤墒情的实时监测,做到每分每秒关注土壤墒情的变化情况,而且不需要工作人员看守,同时还能够将数据传输至平台,实现多点墒情监测,而这些都是过去的土壤墒情监测仪器所不具备的。 不仅如此,土壤墒情在线监测系统的好处远远不止只有这一点,农业种植人人都想作物增产,而作物要想增产,合理的灌溉措施是少不了的,而合理的灌溉离不开田间墒情的监测和预报,即离不开土壤墒情在线监测系统的应用,还有在农业种植过程中,农户也经常会遇到灌溉的问题,比如什么时候灌溉合适,灌溉多少合适,如果灌溉把控不好时间或者灌溉不及时,很容易影响农作物的正常生长,影响农作物的产量。所以如何使农作物得到适时、适量的灌溉,提高灌水效率,是非常重要的事情。而托普云农TZS-GPRS-I土壤墒情在线监测系统是专业用于监测与管理土壤墒情的专业系统。该系统可以通过实时监测,为作物灌溉提供可靠的数据支撑,提高水资源的利用率,提高种植效率。

全国土壤墒情监测工作方案

全国土壤墒情监测 工作方案

全国土壤墒情监测工作方案 随着全球气候变化加剧,中国旱灾频发重发,干旱缺水问题日益突出。为做好土壤墒情监测工作,应对旱灾威胁,促进农业发展方式转变和农业可持续发展,特制定本方案。 一、总体要求 各级农业部门要进一步强化土壤墒情监测,大力推进监测站(点)建设,建立健全国家、省、县三级墒情监测网络体系,扩大覆盖土壤墒情监测规模和范围。要充分利用现代监测和信息设备,全面提升监测效率和服务能力。逐步完善主要农作物墒情评价指标体系,实现墒情评价规范化和科学化。强化现代高新技术应用,提高墒情监测的时效性、针对性和科学性,为指导农业生产、防灾减灾、领导决策提供依据。 土壤墒情监测要以服务农业生产为宗旨,以土壤和作物为对象,统筹规划、合理布局,覆盖全国粮食主产区和干旱易发区。经过采用自动化、信息化、网络化等现代高新技术手段,突出土壤墒情监测关键技术环节,实现定点、定期监测。分析汇总土壤墒情数据,评价作物需水情况,及时提出应对措施建议。建立墒情定期会商和报告制度,提高时效性和结果表示的可视化程度。 二、基本原则 (一)代表性。土壤墒情监测站(点)要充分考虑区域内主导作物、气候条件、灌排条件、土壤类型等因素合理布局,确保监测数据具有代表性。

(二)及时性。土壤墒情监测要做到及时、快速、准确,出现旱涝灾情,应加大监测频率,旱涝灾情不迟报、不漏报;关键农时季节,应及时汇总相关信息,重大农事活动前有信息;日常监测工作,坚持定期采样,快速分析、及时汇总、按时上报。 (三)规范性。建立土壤墒情监测工作制度和责任制度,做到工作人员相对固定,设施设备配置齐全,监测工作制度化和规范化,确保监测数据可靠、调查内容详实、评价结论科学。 三、重点工作 (一)监测点布设 选择区域范围内代表性强,当地政府重视,土肥水工作基础好,技术力量强,能够长期坚持的县承担土壤墒情监测工作。 以县为基本单元,根据气候类型、地形地貌、作物布局、灌排条件、土壤类型、生产水平等因素,选择有代表性的农田,平均每10万亩耕地设立1个农田监测点(每个县不少于5个)。 农田监测点应设立在作物集中连片、种植模式相对一致的地块。采用统一编号,设立标志牌。开展基本情况调查,内容主要包括地理位置、气候条件、土壤类型、种植制度、灌排条件、地力等级、产量水平等;测定不同层次土壤质地、容重、田间持水量等指标;拍摄景观照片,建立监测点档案。 (二)数据采集 1、监测指标。一般按0~20cm、20~40cm、40~60cm、60~100cm四个层次监测土壤含水量,其中,0~20cm、20~

土壤监测技术考试试题(附答案)

土壤监测技术理论考核试题 一、填空 1、土壤样品采集的布点方法有对角线布点法、梅花形布点法、棋盘式布点法、蛇形布点法四种。 2、植物样品采集时,常采用的布点方法有梅花形布点法和交叉间隔布点法。 3、对于制备好的一般固体废物样品,其有效保存期为3个月。 4、有害物质的易燃性的定义,通常是闪点低于60°C。 5、土壤采样点可采表层或_ 土壤剖面。 6、一般监测采集表层土采样深度为_ 0-20cm_、剖面深度为 1.2m 7、粗粉碎用木棒、木锤、有机玻璃棒或有机玻璃板。 8、过筛用尼龙筛规格用2-100目。 9、对于易分解或易挥发性等不稳定组分的样品采取低温保存的运输方法。 10、对难挥发性有机物用_棕色玻璃瓶保存。 二、判断题 1、土壤样品按样品名称、编号、粒径分类保存。( √ ) 2分析挥发性、半挥发性有机物制样,可用新鲜样按特定的方法进行样品前处理。( √ ) 3、采样后用密封的聚乙烯或玻璃容器在4°C以下避光保存。( √ ) 4、如果是固体污染物抛洒污染性,等打扫后采集表层5cm土样,采样点数不少2个。( × )

三、选择题 1.采样区差异愈小,样品的代表性( B ) A不一定 B愈好 C无所谓 D愈差 2.区域环境背景土壤采样,采样点离铁路、公路至少以上( A ) A 300m B 3km C 30m D 100m 3.区域环境背景土壤采样,-般监测采集( D )祥品。 A底层土 B视情况 C心土 D表层土 4.土壤剖面样品的采集应( D )进行。 A自上而下 B从中间位置 C随机 D自下而上 5.测量重金属的样品尽量用( B )除与金属采样器接触的部分土壤,再用其取样。 A不锈钢刀 B竹刀 C手 D铁锹 6.剖面每层样品采集( B )左右。 A 0.5kg B 1kg C 1.5kg D 2kg 7. -般农田土壤环境监测采集( B )土样。 A表土层B耕作层 C心土层 D任意土层 8.样品采回后,为便于分析和保存,需干燥、处理,样品干燥方法是( A ) A风干 B晒干 C烘干 D焐干 9.城市土壤采样,每样点,一般( B )采取。 A分三层 B分两层 C 分四层 D分5层 10.城市土壤监测点以网距( C )的网格布设为主,每个网格设一个采样点。A100m B500m C 2000 m D 5000m

土壤墒情监测调研报告

土壤墒情监测调研报告 一、降水情况 我市入冬以来,气温偏高,较历史同期偏高2℃左右,为近10年来最高温,降水量也较往年同期偏少2成以上,虽然近期有三次降水,但降水量都不大,对农田土壤增墒没有效果。 二、全市墒情分析 去年封冻前土壤墒情好于历年同期,但不及去年同期,封冻时全市一类、二类墒占总播面积的24%,三类墒占76%。入冬以来气温明显偏高,全市没有座冬雪,且降水明显偏少,土壤失墒严重,对春耕生产非常不利。 为了获得准确、可靠的墒情数据,为指导农业生产、抗旱减灾提供依据,市土肥站3月2日进行了墒情监测与调研,对全市50个墒情监测点中41个旱地进行了土壤含水量测定,每个监测点重复取样5个,分为两层,即0-20厘米、20-40厘米进行取土,共取样品410个,用目前最准确的烘干法获取土壤含水量,最终汇总结果如下:全市农田耕作层0-20厘米平均含水量为31%,较去年封冻前平均含水量%下降23个百分点,20-40厘米层平均含水量为%,较去年封冻前平均含水量54%下降11个百分点。目前全市墒情以三类墒为主,总体评价为重旱,前山地区稍好于后山,平均含水量43%,为中旱;后山平均含水量%,为重旱。全市农田干

土层厚度前山地区8厘米以上,后山地区12厘米以上。 三、预测 据气象部门提供的信息,2016年春季(3-5月),我市降水量较常年少2成以上,大部地区平均气温略高2℃左右。 根据农田土壤封冻前底墒、近期降水情况以及气象部门降水预测分析,我市春播期间可能会出现气温偏高且干旱的现象,随着气温回升、大风日逐渐增多,土壤失墒将会更加严重,对我市春耕生产造成很大影响。 四、建议 目前我市农田土壤墒情差,旱情凸显,对春耕备播非常不利,为了提前做好抗旱准备工作,针对目前情况,提出以下几点建议: 1、利用深松深耕技术,打破犁底层,增强储水、保水能力,减少蒸发。 2、调整种植结构,改变种植习惯,选用抗旱作物和品种,提高抗旱能力;马铃薯选择小整薯播种方式,可以最大限度地保证出苗率。大力推广坐水播种、全膜覆盖等技术,达到增墒、保墒的作用。 3、积极推广膜下滴灌、小型微灌等技术,以现有的水利设施为基础,提高水资源利用率,扩大灌溉面积。

土壤环境监测技术规范考试题共8页

《土壤环境监测技术规范》(HJ/T 166-2004) 考试题 一、填空题 1.《土壤环境监测技术规范》(HJ/T 166-2004)中——是指用于种植各种粮食作蔬菜、水果、纤维和糖料作物、油料作物及农区森林、花卉、药材、草料等作物的农业用地土壤。 2.《土壤环境监测技术规范》(HJ/T166-2004)中规定在农田耕作层采集若干点的等量耕作层土壤并经混合均匀后的土壤样品,组成混合样的分点数要在——个。 3.《土壤环境监测技术规范》(HJ/T 166-2004)中规定了土壤采样工具主要包、、、、 以及适合特殊采样要求的工具等。 4.《土壤环境监测技术规范》( HJ/T 166-2004)中规定了土壤样品运输过程中严防样品的、、 、对光敏感的样品应有避光外包装。 5.《土壤环境监测技术规范》( HJ/T 166-2004)中规定土壤样品风干时采用、放置。 6.《土壤环境监测技术规范》( HJ/T 166-2004)中规定已制备合格土壤样品主要有、或三种包装容器,规格视量而定。 7.《土壤环境监测技术规范》(HJ/T 166-2004)中规定测试项目需要新鲜样品的土样,采集后用可密封的聚乙烯或玻璃容器在℃以下避光保存,样品要充满容器。 第 1 页

8.《土壤环境监测技术规范》(HJ/T166-2004)中规定每批 土壤样品每个项目分析时均须做平行样品;当个样品以下时,平行样不少于1个。 9.《土壤环境监测技术规范》( HJ/T166-2004)中规定 是直接用土壤样品或模拟土壤样品制得的一种固体物质。 10.《土壤环境监测技术规范> (HJ/T 166-2004)中土壤环境监测的误差由、、三部分组成。 二、判断题 1.《土壤环境监测技术规范》( HJ/T166-2004)适用于全国区域土壤背景、农田土壤环境、建设项目土壤环境评价等类型的监测,但不适用于土壤污染事故监测。( ) 答案:( ) 2.《土壤环境监测技术规范》(HJ/T 166—2004)规定在风干室将土样放置于风干盘中,摊成2~3cm的薄层,适时地压碎、翻动,拣出碎石、砂砾、植物残体。( ) 答案:( ) 3.《土壤环境监测技术规范》(HJ/T 166-2004)规定土壤制样工具每处理一份样后抹(洗)干净,严防交叉污染。( ) 答案:( ) 4. 《土壤环境监测技术规范》(HJ/T 166-2004) 规定土壤环境质量评价一般以单项污染指数主,指数小污染轻,指数大污染则重。( ) 答案:( ) 第 2 页

土壤墒情监测系统的设计与实现_刘欣伟

2013年第7期 福建电脑支持基金:吉林省世行贷款农产品质量安全项目“基于物联网的设施蔬菜安全生产技术研究与应用”,编号:2011-Z 20 1、引言 我国是农业大国,在农业逐步迈入现代化生产的时期,利用计算机相关技术,对农业的生产进行预测与指导是十分必要的。近些年来旱情的发展严重地制约了我国的经济发展,这对农业灌溉产生了巨大的影响,我们需要长期考虑的课题就是如何提高灌溉水的利用效率。传统灌溉方式会大量的浪费水资源,并且不能针对不同地块和农作物实行不同的灌溉方案,不能使农作物达到最适宜的生长环境。这些问题可以通过发展土壤墒情监测技术,建立墒情监测数据数据库和土壤墒情监测系统,实现土壤的适时适量灌溉,达到节约水资源,提高作物产量和提高效益的目的。本文应用计算机技术,信息技术,人工智能,网络技术与地理信息系统等技术,建立土壤墒情监测系统,从而解决水资源配置与高效利用等常见问题。 2、土壤墒情 土壤墒情是农田耕作层土壤含水率的俗称,是影响农作物生长的重要因素。土壤墒情是不断变化的,所以需要对其进行实时监控,这样采集的信息才有利用价值。土壤水分的变化不仅与土壤特性有关,还受降水、灌溉、蒸发、根系层下边界水分能量等因素影响,而且其动态变化也是一个复杂的系统问题[1]。 3、GIS在土壤墒情中的应用 在全国第三次农业气候区划会议上,土壤水分委员会提出了GIS 技术应用于监测土壤水分的原因。地理信息系统在农业气候区划,主要经济作物适宜种植区划,天气和其他业务领域,提供了土壤水分研究的新工具[2]。 在布置数据采集点的同时布置GPS 装置,利用全 球卫星定位采集监测点的经度和纬度,再结合GIS 软件就可以实现大面积的土壤墒情实时监测。 4、系统总体设计 本系统共有四个模块组成,分别是数据采集模块,数据传输模块,人机交互模块和数据库模块。 数据采集模块利用传感器采集土壤温度、湿度等土壤墒情数据,GPS 装置采集监测点经度、纬度等数据,通过zigbee 网络实现单个监测区域内数据的相互传递。再利用GPRS 技术,实现zigbee 网络之间与zigbee 网络和智能终端之间数据的远距离传送。在智能终端,采用浏览器的形式结合GIS 技术,将数据以不同形式展示给用户,后台数据库则对数据进行加工、 存储和数据的分析,查询与统计。4.1土壤墒情数据采集模块: 土壤墒情数据采集模块是利用土壤温湿度传感器对土壤温度和湿度等数据进行采集。利用GPS 装置对监测点经度、纬度等地理信息数据进行采集。 监测区土壤墒情监测点设置的主要依据包括:地理位置;土壤质地类型及土壤物理特性;所属行政区划、 周边地形地貌;作物种植的种类及范围;水文地质条件:地下水埋深;灌溉条件。土壤含水量监测点布在地块中央平整的地方,避开低洼易积水的地点[3]。监测土壤墒情效果的好坏,取决于监测点的数量。监测点过多虽然会提高监测效果,但会使系统的投资过大。所以合理的选取监测点数量是十分必要的。在布设土壤墒情监测点时,每二十平方米放置一个节点,采样点之间保持一定的距离,采样点的位置一经确定,应保持其相对的稳定。传感器可以埋入土中的不同深度,结合GIS 软件, 就可以全方位立体的对土壤墒情土壤墒情监测系统的设计与实现 刘欣伟,司秀丽,蒋小琴 (吉林农业大学吉林长春130118) 【摘要】:本文阐述了信息技术在农业方面应用的必要性,介绍了土壤墒情概念和G I S 技术,对土壤墒情监测系统进行了综合分析与设计。本文结合了G I S 技术来构建土壤墒情监测系统,其中包括几大主要模块:土壤墒情数据采集模块,数据传输模块,人机交互模块和数据库模块。 【关键词】:土壤墒情;监测;系统设计33··

重金属污染场地土壤修复标准(DB43T1165-2016)

ICS 13.020.01Z 05 湖 南 省 地 方 标 准 DB43 DB43/T1165-2016

目次 前言..........................................................................................................................................................II 1主要内容和适用范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4土地利用类型 (2) 5标准分级 (2) 6目标污染物种类 (2) 7标准值 (2) 8监测要求 (3) 9标准实施 (4)

前言 为贯彻《中华人民共和国环境保护法》,防治土壤污染,保护土壤资源和土壤环境,保障人体健康,加强重金属污染场地土壤环境保护监督管理,指导重金属污染场地土壤修复工作,制定本标准。 本标准由湖南省环境保护厅提出并归口。 本标准起草单位:湖南省环境保护科学研究院。 本标准主要起草人:陈灿、文涛、万勇、钟振宇、付广义。 本标准于2016年3月29日首次发布。

重金属污染场地土壤修复标准 1主要内容和适用范围 本标准规定了湖南省重金属污染场地土壤修复指标、限值和监测方法。 本标准适用于湖南省重金属污染场地土壤修复工程效果评价、验收。 对于有特殊要求的重金属污染场地,经省级以上人民政府环境保护行政主管部门批准,土壤修复工程效果评价、验收可参照《污染场地风险评估技术导则》。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB3838地表水环境质量标准 GB15618土壤环境质量标准 HJ25.1场地环境调查技术导则 HJ25.2场地环境监测技术导则 HJ25.3污染场地风险评估技术导则 HJ/T166土壤环境监测技术规范 HJ557固体废物浸出毒性浸出方法水平振荡法 3术语和定义 下列术语和定义适用于本标准。 3.1 污染场地contaminated site 对潜在污染场地进行调查和风险评估后,确认污染危害超过人体健康或生态环境可接受风险水平的场地,又称污染地块。 3.2 土壤修复soil remediation 采用物理、化学或生物的方法固定、转移、吸收、降解或转化场地土壤中的污染物,使其含量或浓度降低到可接受水平,或将有毒有害的污染物转化为无害物质的过程。 3.3 目标污染物target contaminant 在场地环境中其数量或浓度已达到对生态系统和人体健康具有实际或潜在不利影响的,需要进行修复的关注污染物。 3.4 修复目标值remediation target 污染场地经修复后,目标污染物应达到的规定指标限值。

土壤温湿度测试仪使用方法

土壤温湿度测试仪使用方法 适宜的土壤温湿度是农作物生长的重要环境条件,它不仅直接影响农作物根系的生长发育以及土壤微生物的活动,同时影响土壤中水分的运动。因此为保证土壤温湿度可以促进农作物的生长,人们需对土壤温湿度进行采集处理,使之保持在一定范围之内。土壤温湿度测试仪是根据《土壤墒情监测规范SL000-2005 中华人民共和国水利行业标准》等文件为依据推出的一款新型环境检测仪器,该仪器外接相应传感器即可实时采集数据,并可用计算机管理软件输出数据,生成报表。仪器也可以通过GPS接收机采集各个指定点的具体经度、纬度位置。自记仪可自动储存所测各个指定点的土壤水分值,温度值,经度纬度位置值。 土壤温湿度测试仪应用领域: 土壤温湿度测试仪又名土壤墒情监测站是一款集土壤温度、土壤水分采集、存储、传输和管理于一体的土壤墒情自动监测系统。整机由多通道数据采集仪、土壤水分传感器、土壤温度传感器、计算机软件组成。 可应用于土壤墒情监测、节水灌溉、温室控制、精细农业等领域。,农业、林业、地质等方面土壤温度、湿度测量及研究。 土壤温湿度测试仪使用方法: 1、测土壤PH值和湿度时,先将探头尽量深地插到土里,探头上面部分留大约1厘米。 2、拨动笔上的按键到MOIST, MOIST是水份键,对应表上的是MOIST, DRY

是干, WET是湿,数值1-3(红色部分)说明需要浇水, 4-7(绿色部分)是合适的,请根据植物的品种调整浇水时间, 8-10(蓝色部分)说明太湿了。 3、拨动笔上的按键到PH, PH是酸碱度键,对应表上的是8-3.5数值, ALKALINE是碱, ACDIC是酸,数值7基本是中性,数越小说明酸度越大,请根据植物的品种调整土壤酸碱度。 4、LIGHT键是光照度,测量范围0-2000流明,数值越大,说明光照越强,请根据植物的品种来决定是否需要遮阴。 5、使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净。 土壤温湿度测试仪功能特点: 1、小巧美观便于携带,轻触式按键,大屏幕点阵式液晶显示,全中文菜单操作。 2、采集设置:在无人看守的情况下使用,可设置定时采集,也可手动采集。自动记录数据并存储。 3、交直流两用,内置锂电池供电:3.7v4Ah锂电池,具有充电保护、电压过低提示功能。也可长时间放置记录地点。 4.带GPS定位功能,可实时显示采集点经纬度并保存。(选配) 5.带语音播报功能,可对超限值进行语音报警设置,对超标的参数实时普通话语音播报,亦可直接播报出实时的环境参数值 6.数据保存功能强大,设备内部Flash可存储最近3万条数据,标配4G内存卡可无限存储,亦可与Flash中数据同时存储 7.既可在主机上查看数据,也可导入计算机进行查看 8.意外断电后,已保存在主机里的数据不丢失。 9.探头具有一致性,主机可通过集线器接入不同类型的传感器,互不影响精度。

《土壤环境监测技术规范和标准》(HJT 166-2004)练习题

《土壤环境监测技术规范和标准》(HJ/T 166-2004) 一填空题 1.一般了解土壤污染情况时,采集表层土的采样深度为。如要了解土壤污染深度,则应按分层取样。 答案:0~20cm 土壤剖面层次 2.土壤的梅花形采样法适用于。 答案:面积较小,地势平坦,土壤组成和污染程度相对较均匀的地块 3.土壤的对角线采样法适用于。 答案:用污水灌溉的农田土壤 4.在土壤背景值研究中,采用了土壤试样的全分解方法。所谓“全分解”就是把土壤的彻底破坏,使土壤中的全部进入试样溶液中。 答案:矿物晶格待测元素 5.土壤样品的采样方法有、、、四种方法。 答案:对角线采样法梅花形采样法棋盘式采样法蛇形采样法 6.无论采用新鲜土壤样品或风干土壤样品,都需测定土壤以便计算土壤中各成分按烘干土为基准时的。一般土壤分析结果单位以表示。 答案:含水量(率)校正值mg/kg(烘干土) 7.土壤样品的粗磨方法:风干后的土样,用有机玻璃棒或木棒碾碎后,用法取压碎样过筛。粗磨样可直接用于土壤pH 阳离子交换量元素有效态含量等项目的分析。 答案:四分0.85mm(20目)尼龙 8.常用的土壤样品布点方法有网格法又称,一般适用于的地区。 答案:简单随机抽样法地形平缓、土地情况简单、工作面积较小 9.野外采集回来的土样,一般要经过以下处理程序:、、、,分装制成待分析样品,满足各种分析要求。 答案:风干磨细过筛混合 10.对土壤环境质量评价,通常采用的模式有、、、等。 答案:污染指数、超标率(倍数)评价内梅罗污染指数评价背景值及标准偏差评价综合污染指数法 11.土壤样品的酸分解方法,必须使用酸,因为它是唯一能分解和的酸类。 答案:氢氟SiO2硅酸盐

《土壤水分监测仪器通用技术条件》

附件2: 《土壤水分监测仪器通用技术条件》 (征求意见稿) 编制说明 主编单位(签章):水利部水文局 2012年6月6日

一、制修订背景 土壤墒情是反映农作物受旱状况的一项直接的重要指标,也是分析旱情演变规律和开展抗旱灌溉的重要依据。目前,北京、天津、山东、重庆、河北、山西等25个省(直辖市、自治区)水利部门现有土壤墒情站约1768个,其中人工监测站831个,自动监测站937个。这些墒情监测站点提供的墒情信息在近年来的防汛抗旱工作中发挥了重要作用,但也存在一些突出问题,特别是一些墒情自动监测设备产品质量参差不齐,缺乏统一的产品质量控制技术标准,缺乏规范的市场准入机制,带来自动墒情监测数据的稳定性和准确性不高,在一定程度上影响了墒情自动监测系统功能和作用的发挥。在当前我国干旱灾害呈现频发和重发的态势,抗旱工作任务十分艰巨的情况下,急需加强有关产品开发、质量标准研究、市场准入机制建立等基础技术工作,从而提高土壤水分监测数据的准确性和稳定性,为防汛抗旱和水资源管理提供技术支撑。因此,制定水利行业标准《土壤水分监测仪器通用技术条件》是十分必要的。 《土壤水分监测仪器通用技术条件》的主要技术内容包括:分类及组成、基本参数、通用技术条件、试验方法、安装要求等。该标准由国家防办作为主持机构,水利部水文局为主编单位。鉴于国家防汛抗旱指挥系统二期工程即将在全国范围内开展墒情自动监测系统建设,按部领导要求,主编单位组织有关专家进行《土壤水分监测仪器通用技术条件》标准编制,统一土壤水分监测仪器产品技术要求,作为二期工程墒情自动监测系统建设的项

目标准先期投入生产应用。 二、制修订过程 1、2012年1-2月,项目前期准备,收集有关基础资料。 2、2012年3月8日:项目启动会议,部署标准编制工作及完成标准编制技术大纲,进行大纲审查。 3、2012年3月10日~5月31日:收集国内外土壤墒情监测仪器及已开展的土壤墒情监测系统应用情况,分别到重庆、江西、辽宁、吉林等省市进行专题调研,编制完成标准初稿和征求意见稿。 4、2012年6月1日~7月20日:征求意见,修订形成《标准》送审稿。 5、2012年7月21日~8月31日:修改完善,完成《标准》送审稿,专家审查,形成报批稿及各类技术文档。作为国家防汛抗旱指挥系统项目标准先期报批使用,此后按水利行业标准颁布。 三、对主要条文的背景、指标来源与可靠性等进行说明 本标准按GB/T 1.1—2009《标准化工作导则第1部分:标准的结构和编写》的规则编制格式要求,主要技术指标依据水利部水文局2009-2011年组织开展的两期“国内外主要土壤水分传感器对比测试研究”成果,并参考引用了国家和有关部门的相关

土壤墒情监测系统(全国)

土壤墒情监测系统(全国) 土壤墒情监是农业生产中不可缺少的基础性、公益性、长期性工作,所以土壤墒情实时监测系统的应用就显得非常有必要。 托普云农TZS-GPRS-I土壤墒情监测系统是带有云平台、APP,无论身在何处均可上网通过网页或手机查看实时数据。 功能特点: 1、主机实时显示采集数据,可通过网页端远程设置数据采集时间、存储和发送时间间隔及IP地址; 2、模块化设计,传感器可通过主机菜单进行任意配置,总共可接16种类型传感器,每种传感器可接16路,超过16路的可通过菜单设置进行增加; 3、用户可以根据需要选择网络GPRS模式传输; 4、带GPS功能:通过GPS可知道设备及数据采集点具体的地理位置,防盗防位移; 5、数据查看模式多样化:数据可通过网页、手机电话、短信、管理云平台、手机APP 等模式提取查看; 6、数据可通过GPRS方式上传至管理云平台。平台内数据可下载,分析,打印; 7、用户可为设备配置传感器报警条件,预置若干常用的农作物的报警配置; 8、数据展示多样化:平台为设备数据提供曲线图、对比图与表格等形式,历史数据可查看,且数据可导出与导入; 9、超限预警:采集的数据可设置最低最高超限值,可自动进行数据预警分析。 管理云平台功能 1、自带仪器云管理平台包含B/S架构,可将所有便携式设备及在线设备数据进行汇总分析,数据备份不丢失,查看操作方式包括网页端及手机端(安卓及苹果系统均可用); 2、显示每种参数过程曲线趋势,最大值、最小值、平均值显示查看,放大、缩小功能; 3、数据可上传至管理云平台。平台内数据可下载,数据对比分析,打印; 4、用户可为设备配置传感器报警条件,预置若干常用的农作物的报警配置; 5、平台支持设备数据云端存储,提供足够容量可不限量保存; 6、平台为设备数据提供曲线与表格等报表形式,且数据可导出与导入; 7、数据评价:可以设置最低最高超限值,可自动进行数据预警分析; 8、软件可在线升级。

相关文档
相关文档 最新文档