文档库 最新最全的文档下载
当前位置:文档库 › 智能变电站二次设备的状态监测技术研究

智能变电站二次设备的状态监测技术研究

智能变电站二次设备的状态监测技术研究
智能变电站二次设备的状态监测技术研究

2011年第4期 41

智能变电站二次设备的状态监测技术研究

张晓华1 刘跃新1 刘永欣2 孙 嘉2 邱俊宏2

(1.河南省电力公司,郑州 450000;2.许继电气股份有限公司,河南 许昌 461000)

摘要 变电站的二次设备状态监测是实时监测继电保护等二次设备运行状况的重要手段,是变电站安全、稳定、可靠运行的重要保障。随着电网规模的发展,输电线路日趋复杂,继电保护装置也随之增多,需要监测的数据量、节点数量、通信通道量等大大增加,检修人员的工作量不断加大。智能变电站技术的发展,特别是二次状态监测技术和集中式保护装置的应用,有效的解决了这一问题。本文就智能变电站的二次设备状态监测技术进行研究,并提出解决方案。

关键词:智能变电站;状态监测;集中式数字化保护

The Technical Research of Secondary Equipments’

Condition-monitoring in Smart Substation

Zhang Xiaohua 1 Liu Yuexin 1 Liu Yongxin 2 Sun Jia 2 Qiu Junhong 2

(1.Henan Power Company, Zhengzhou 450000; 2 XJ Electric Co., Ltd, Xuchang, Henan 461000)

Abstract Secondary equipments’ condition-monitoring of substation is the important method to real-time monitor secondary equipments’ running state e.g. relay protection, and is important indemnify of safety, steady, dependable of substation. Along with the development of power system’s scale, transmission lines are gradually complicated, relay protection equipments are increasing with it, data volume, node, communication channels we need are greatly increased, overhauling people’s work load constantly increasing. The development of smart substation, especially the application of condition-monitoring technology and centralized protection device can solve this problem effectively. This article carries on research secondary equipments’ condition-monitoring technology in smart substation, and puts solution forward.

Key words :smart substation ;condition-monitoring ;centralized digital protection

1 引言

近年来随着电网规模的快速发展,变电站和输电线路的数量越来越多,继电保护设备的校验工作量急剧增加,而各电力公司由于编制所限人员的增加很少,同时继电保护工作是一项技术性很强的工作,人才培养周期长,工作压力大,目前很多供电公司都存在继电保护人员超负荷工作的情况。如何使继电保护设备少检修、免维护,从而降低继电保护检验的工作量和维修成本。这就需要在变电站配置技术先进的状态监测设备。 微机保护应用技术的迅速发展,使保护装置本身具备了很强的自检功能,但作为电网安全屏障的继电保护系统除装置本身,还包含交流输入、直流回路、操作控制回路等,状态检修范畴如果仅局限

在保护装置本身将很难有实施推广的价值,对于保

护的状态检修必须作为一个系统性的问题来考虑,或者说状态检修如果能够包含交流输入、直流回路、操作回路等构成保护系统的各个环节,这样,才可能避免状态监测出现“盲点”,使保护状态检修技术有可能在实际应用中得到推广。 常规的微机保护设备理论上可以实现对逆变电源、电流、电压输入回路、采样数据合理性、保护定值完整性、保护的输入输出接点、保护数据通信环节、执行回路可靠性等的监视。但是这种方式存在着监测的数据量

大、节点数目多、通信通道量大的问题。随着智能变电站技术的发展,数字化保护装置,特别是集中式数字化保护装置的应用,状态监测技术被大大简化了。

2011年第4期

42

本文就智能变电站中二次设备的状态监测技术进行分析研究,并提出解决方案,希望对智能变电站技术的发展有所帮助。

2 智能变电站的系统构成

智能变电站技术导则[1]给出了智能变电站的如下定义:采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能的变电站。

智能变电站系统可分为站控层、 间隔层和过程层,由站级总线和过程总线完成各层的信息交互,各层之间的联系均可采用光缆,或过程层采用光缆,站级总线采用电缆。导则强调对智能变电站高级应用功能的研究,强调互动,双网双保护的智能变电站分层结构如图1所示。

图1 智能变电站分层结构图

2.1 站控层

站控层包括自动化系统、站域系统、通信系统和对时系统等设备。站控层实现面向全站或一个以上的一次设备的测量和控制功能,完成数据采集和监视控制、操作闭锁以及同步相量采集、电能量采集、保护信息管理等相关功能。 2.2 间隔层

间隔层设备一般指继电保护装置、测控装置和故障录波等二次设备,实现使用一个间隔的数据并且作用于该间隔一次设备的功能。间隔层通过光纤与过程层通信。 2.3 过程层

过程层包含由一次设备和智能组件构成的智能设备、合并单元和智能终端,完成变电站电能分配、

变换、传输及其测量、控制、保护、计量、状态监测等相关功能。一次设备智能化的发展和非常规互感器的应用满足间隔层与过程层之间信息通信光纤化、信息共享标准化的要求。就非常规电流互感器来讲,基于Faraday 电磁感应原理的罗科夫斯(Rogowski )电子互感器和基于Faraday 磁旋光效应的磁光玻璃电子互感器或全光纤电子式互感器在电力系统中的应用带来变电站技术形态的变革。电子互感器测量范围宽,精度高,因没铁心,无磁饱和现象,二次电流不会发生畸变;由于光纤数字信号输出和信息共享技术,不再有常规CT 二次负载的担忧;电子互感器也不像常规CT 那样需要多个次级线圈,体积小,重量轻,绝缘可靠。

3 集中式数字化保护

3.1 整体构架

智能变电站的集中式数字化保护装置遵循IEC 61850标准,基于过程总线和强大的软硬件平台,将目前变电站内多台间隔层IED 的功能集中在一台IED 上完成[3,4],采用一台IED 来实现原来需要按间隔配置的多台IED 实现的功能。原来每个IED 被抽象成为一个逻辑上实现保护、测控功能的单元,简

称逻辑设备(LD ),每个LD 保持功能上的相对独立性并通过统一的通信接口与其他设备进行交互。整体系统构架如图2所示。集成一体化保护一般按双套冗余配置。

图2 新型集成一体化IED 架构及应用

3.2 高压线路集成一体化保护的示例

以线路间隔为例说明集中式数字化保护装置[5]

的模型。由一台集成一体化保护测控装置实现若干条线路的保护测控功能,其中每个CPU 实现一个间隔的保护测控功能,各个间隔之间没有数据通信,互相不影响。采用集成一体化保护测控装置方案,可以大量节省装置、屏体数量,并可节约占地面积。集中式保护如图3所示。

2011年第4期 4

3

图3 高压线路集成一体化保护

4 智能变电站的二次设备状态监测

智能变电站中基于微电子、计算机技术、网络技术的继电保护设备其强大的“自检”能力为状态检修技术的实现提供了良好的基础。智能变电站的继电保护装置二次电流、二次电压输入的方式不同于常规变电站,取而代之的是光纤以太网传输的数字采样值报文的输入;保护动作出口不再是跳闸、重合闸接点,而是光纤以太网传输的GOOSE 开关量信息。因此,二次设备的状态监测不同于一次设备,一次设备状态监测一般都需要安装另外的监测设备,对主设备进行监测;而二次设备由于继电保护及安全自动装置一般都具有在线自检功能及通讯功能,再加上考虑到二次回路的负载及安全性等因素,一般不另外附加监测设备,属于嵌入式状态监测。利用装置本身自检及装置之间的互相监测来实现在线监测。因此,建立变电站二次设备在线监测系统,必须着手开发具备全面监测状态信息的全新的保护、自动装置及其他智能设备。

目前智能变电站继电保护装置需要监测的主要对象[6-7]如图4所示,包括:

(1)装置的电流、电压等SV 通道的状态。 (2)装置的遥信、遥控等GOOSE 通道的状态。 (3)装置直流逆变电源的状态。

(4)装置本身自检如:FLASH 擦写次数统计、扇区健康状况监测、RAM 是否出错、看门狗是否动作、装置的重启次数等。

图4 二次设备监测对象

智能变电站采用的数字化保护测控装置使二次设备的状态监测更为全面、可靠。由表1可见,与常规变电站相比,智能变电站的二次设备状态监测有着明显的优势。

表1 智能变电站的状态监测技术

定期检修 数字化站状态检修

检验内容 方法 方法

绝缘测量 绝缘电阻表 操作回路智能化,二次回路由智能开关状态监测实现

固化的程 掉电试验

程序CRC 在线调取,异常告警

数据采集 加载试验电流、电压 SMV 接收以太网口监视、采样异常检测 开关量 通过试验检查开入、开出 GOOSE 收发以太网口监视、GOOSE 开入异常检测 定值 核对保护运行时定值单

在线调取,实时评估

采样值

输入保护电流、电压大小,相位及极性检验

光纤接线,配置文件修改可监控,装置本身SMV 采样点序号检查

4.1 分布式数字化保护装置的状态监测

在智能变电站,IEC 61850标准为我们提供了数字化变电站的通信框架,由于采用电子式互感器ECT 、EVT ,一次的模拟信号转换为数字信号,传送到保护装置的是经过合并器加工的符合IEC 61850标准的以光纤为媒介的数字信号;保护动作后输出的不再是跳合闸接点,而是光纤以太网传输的GOOSE 信息,基于此标准实现继电保护状态监测则变得较为容易实现。

分布式保护装置实现单台IED 的功能,以间隔为单位,不同的间隔配置独立的继电保护装置和过程层接口,重要间隔按双重化配置,如主变间隔、220kV 级以上线路、母线间隔等。

之所以说数字化保护装置的状态监测更为容易实现,是因为电子式互感器的应用,进入保护装置的是光数字信号,二次电流、电压输入、AD 采样不复存在,对数字采样部分实现状态监测更加容易。装置本身可以对接收的SMV 采样值报文进行监视,

2011年第4期

44

如有接收中断、丢数据帧、接收数据帧CRC 不正确等现象,立即告警SMV 采样异常即可。

数字化智能开关的使用,使二次控制系统的操作回路通过软件编程的方式实现智能化,本身具备在线监测功能,继电保护状态监测不存在常规变电站操作回路无法在线监测的瓶颈问题。

保护的投退用软压板控制,不存在常规变电站连接片(压板)状态监测的困难。

大量光纤取代铜缆,也不再需要回路绝缘状况监测(直流回路除外)。

强大的以太网通信技术的应用,使数字化变电站继电保护设备的状态检修网络灵活、强壮、可靠性高。

4.2 集中式数字化保护装置的状态监测

集中式数字化保护装置可实现多台IED 的功能,如图3所示的线路集中式保护装置,包括了若干条线路的保护测控功能,为了增加可靠性和维护方便性,即使低电压等级,集中式保护一般按双套保护配置。相对分布式保护装置状态监测的技术实现,集中式数字化保护装置的应用,使得整个变电站的监测对象大大减少,而且状态监测实现也相对简单。

以图3为例,例如对线路保护装置的线路3的SV 、GOOSE 通道的监测,由于集中式保护按双套保护配置,则可采用简单的比较法:比较双套保护装置的相同间隔(如线路插件3)的采样值,当比值超过设定门槛时发出报警信号,据此认为其中一条甚至两条SV 通道有异常;比较两台保护装置同一LD 的GOOSE 信息,因为GOOSE 反应的是断路器和刀闸的位置等信息,而同一时刻的断路器的位置是一定的,因此比较法同样适用于GOOSE 通道的监视。

不但双套保护配置为实现了装置自身的自检和装置之间的互检提供便利,而且集中式保护把原来分布式装置抽象为一个个LD ,因此原来每台分布式装置所包含的电源监测功能、装置自检功能、软压板监测功能都集中到了一台IED 中,这样不但减少了监测对象,也方便了检修人员的检修维护工作,大大减少了工作量。例如,相对于按间隔配置的保

护,基于结构优化的集中式保护装置结构更为紧凑,电源数量极大减少,这使得二次设备监测的重点之电源监测的实现更为方便。

5 结论

二次设备的状态检修是变电站综合自动化技术发展的必然结果,二次装置的状态监测将有助于对设备的运行情况、缺陷故障情况、历次检修试验记录等实现有效的管理和信息共享,并为设备运行状况的分析提供了可靠的信息基础,将有助于合理地制定设备的检修策略,提高保护装置的用率,为电网的安全运行提供坚实的基础。

智能变电站的全站信息数字化、通信平台网络化、信息共享标准化为二次设备状态监测技术的发展和应用提供了有力条件,特别是集中式数字化保护装置的应用,减少了继电保护二次设备的数量,优化了二次设备的结构,对继电保护二次设备监测实现更为有利。

参考文献

[1] 智能变电站技术导则[S].2009.12.25.

[2] 邱红辉.电子式互感器的关键技术及其相关理论研究

[D].大连理工大学,2008.7.

[3] 易永辉.基于IEC61850标准的变电站自动化若干关

键技术研究[D].浙江大学,2008.4.

[4] 徐广辉,李友军,王文龙等.数字化变电站IED 采样数

据同步插值的设计[J].电力系统自动化,2009,33(4). [5] 基于数字化采样的集中式保护装置[J].电力系统自

动化,2010,34(22):101.

[6] 吴杰余,张哲,尹项根等.电气二次设备状态检修研究

[J].继电器,2002,30(2).

[7] 雷兆江,赵凯,康成华.关于输变电设备状态检修周一

期的探讨[J].中国科技信息,2008(4).

作者简介

张晓华(1963-),男,高级工程师,电力系统及其自动化专业,常年从事电力系统规划、调度运行、生产管理工作。

刘跃新(1966-),男,教授级高级工程师,常年从事电力系统规划、计划、生产管理工作。

220kV智能变电站二次系统结构与设备配置6页

220kV智能变电站二次系统结构与设备配置智能变电站的二次系统结构与设备较常规变电站发生了重大的变化。本文分析了220kV智能?电站“三层两网”的系统结构,阐述了二次系统设备配置基本原则,结合目前二次设计实施中遇到的问题,提出了改进意见。 1 概述 随着社会经济的快速增长,人们对供电可靠性和安全性有了更高的要求。而风力、太阳能等新能源电源的并网运行对电网系统稳定性造成了一定的影响。智能电网能有效利用电力资源,提高供电可靠性,实现电网的可靠、安全、经济、高效、环境友好和使用安全的目标。 2011年起,作为智能电网的关键节点,智能变电站在全国范围内进入全面推广建设阶段,新建220kV变电站按《国家电网公司输变电工程通用设计―110(66)~750kV智能变电站部分》(2011年版)中“第五篇 220kV 变电站通用设计技术导则”的技术方案。与传统变电站相比,智能变电站最大特征体现在一次设备智能化、设备检修状态化和二次设备网络化,其中二次设备在采样方式和组网形式上都发生了重大的变化,随着电力技术的进步,越来越多的新技术应用到二次系统中,因此研究智能变电站的二次系统设计和设备配置有着重要的意义。 2 220kV智能变电站系统结构 以上海地区某220kV变电站为例,智能变电站系统采用三层两网结构,三层即站控层、间隔层、过程层,两网即站控层网络和过程层网络。 2.1 站控层

负责变电站的数据处理、集中监控和数据通信,由主机、操作员站、远动通信装置、保护故障信息子站和其他各种功能站构成,是全站监控、管理中心,并与远方监控/调度中心通信。站控层网络采用百兆星形双网结构,冗余网络采用双网双工方式运行。站控层网络MMS、GOOSE(逻辑闭锁)、SNTP三网(功能)合一,共网运行,全站数据传输数字化、网络化、共享化。 2.2 间隔层 间隔层包括保护、测控、计量、录波、相量测量等,不依赖于站控层和通信网络,可以对间隔层设备进行就地独立监控功能。保护测控装置配置如下: (1)主变保护双套配置,高、中、低压侧及本体测控装置单套独立配置。 (2)220kV线路、母线、母联(分段)保护双套配置; (3)110kV线路、母线、分段保护单套配置,采用保护测控一体化装置,母线测控单独配置; (4)35kV 线路、电容器、站用变保护集成测控、计量功能,母差保护单套配置; (5)110kV、35kV母线配置低压减载装置。 (6)过程层:过程层由互感器、合并单元、智能终端等构成,是一次设备与间隔层设备的转换接口,完成电流电压量的采样、设备运行状态信号的监测和分合闸命令的执行等。 3 智能变电站与常规变电站的二次设备比较

智能变电站二次设备调试浅析

智能变电站二次设备调试浅析 发表时间:2019-03-26T11:31:10.777Z 来源:《电力设备》2018年第29期作者:周立超张玮琦吕鹏飞[导读] 摘要:随着科学的发展,人类对电能的需求有了更高的标准,变电站为满足这种要求逐渐走向信息化,这种通过数字信息传递变电站电气量的变电站称为智能变电站。 (国网内蒙古东部电力有限公司电力科学研究院 010020) 摘要:随着科学的发展,人类对电能的需求有了更高的标准,变电站为满足这种要求逐渐走向信息化,这种通过数字信息传递变电站电气量的变电站称为智能变电站。智能变电站二次设备投运前的调试工作对智能变电站的稳定运行有着至关重要的意义。本文对智能变电站二次设备的调试工作进行详尽介绍,同时对现场合并单元、智能终端、数字式继电保护装置等智能设备测试方法经行分析,对智能变电站二次设备调试工作未来的发展方向进行了总结。 关键词:智能变电站;调试;智能设备;测试方法;发展 引言:智能变电站采用现代计算机信息技术、通信技术和控制技术,实现高度自动化管理,通过智能设备的信息可控性对一次系统及二次系统进行自动化控制,实现了科学规范的网络通信,实现无人值守、少守卫的模式,提高了变电站的运行安全性,节约了成本,提高了经济效益。因此,智能变电站中二次智能设备的调试工作关系到整个变电站的正常稳定运行,且与传统的变电站二次设备调试工作有着本质的区别。传统变电站二次系统里的电气量是通过实际的电缆传输的而智能变电站二次系统里的每一个设备之间电气量的传输都是通过光纤传输的,所以智能变电站二次设备调试工作极其繁琐。 1智能变电站二次设备调试工作简介 智能变电站二次设备的现场测试工作首先要熟知现场一次设备及一次系统接线方式,对应好一次设备及系统完成对二次智能设备SCD 模型的校验,根据SCD模型完成对合并单元、智能终端、数字式继电保护装置之间的通信验证,保证各个设备相互间的配合、网络的协议、虚端子设计图的正确性。之后运用智能变电站二次智能设备所对应的智能设备测试仪进行每个设备的技术性能测试,再次确保合并单元、智能终端、数字式继电保护装置运行的正确性、可靠性、稳定性。最后运用传统测试方法,模拟变电站真实运行时发生故障的情况完成对智能变电站所有间隔的整组测试,保证智能变电站在投运后在遇到电气故障时能够正确可靠切除故障。调试过程中需特别注意开关刀闸动作是否与后台及相应间隔智能终端对应、每个间隔各项信号的正确性、智能设备之间的检修机制正确性等特殊问题。 2智能变电站二次设备测试方法分析 2.1合并单元简介及测试方法 合并单元,英文名称Merging Unit或MU。在智能变电站中,将一次互感器传输出来反映一次电气量的二次模拟电气量进行模数转换、合并和同步处理后,按照特定格式转发给间隔层需要使用的设备。合并单元是电流、电压互感器的接口装置,通过模数转换及规约格式整合将过程层数据的共享和数字化,他作为遵循IEC61850标准的数字化变电站间隔层、站控层设备的数据来源,作用十分重要故其安装完成后的各项指标测试尤为重要。运用合并单元测试仪对合并单元输入合并单元测试仪内部时钟下的交流模拟量同时运用内部时钟输出对合并单元进行同一时钟下的对时,通过采集合并单元光纤输出的数字量进行对比分析来对合并单元的离散型、通道延时、守时误差、对时误差、通道精度等技术性能进行测试。 2.2智能终端简介及测试方法 现在智能变电站中使用的主变、断路器等依旧是常规的一次设备,为实现对这些设备的数字化改造,则需要智能终端来完成信号输出和控制输入的光电转换、模数转换。智能终端与保护、测控等二次设备采用光缆连接,与一次设备采用电缆连接实现一次设备的遥信、遥控、保护跳闸等功能,并通过基于 IEC61850 标准的通信接口实现与过程层、间隔层的通信功能,最终实现断路器跳合闸、隔离开关分合闸、信号传输,主变调压、温度监控和非电量保护等功能。运用数字式继电保护测试仪即可对智终端的主要功能进行现场测试,通过光纤对智能终端传输数字开关量控制信号,再运用试验电缆将智能终端开出的开关量采集到数字式继电保护测试仪中,测试仪计算整个智能终端收到数字控制命令到做出开出的时间,整个过程时间不大于7ms即满足要求。 2.3数字式继电保护装置测试方法 智能变电站数字式继电保护装置测试方法不同于传统变电站,数字式继电保护装置所接收的一次设备电气信息来自于合并单元所采集转换来的数字量,其开出的跳闸量亦为数字量,故数字式继电保护装置单体调试仅需一台便携式数字继电保护测试仪即可完成,将便携式数字继电保护测试仪运用整站SCD文件配置相应间隔的合并单元及智能终端,后对数字式继电保护装置施加各种故障状态下的数字式模拟量,通过采集回来的数字式继电保护装置开出的数字式跳闸量来判断数字式继电保护装置保护逻辑的正确性。如需做整个间隔的整组传动实验,在相应间隔合并单元后运用传统继电保护测试仪施加故障模拟量,观察现场开关动作正确性,在做整组传动试验时一定要注意智能变电站检修机制,同时也可以验证整个检修机制的正确性。 3智能变电站调试工作未来的发展 伴随着科技进步智能变电站同样飞速发展着,智能变电站投运前的调试工作也越来越重要,智能变电站调试工作将会向着远程化、自动化、综合化发展。未来测试仪仅需接入智能变电站组网便可进入每台智能设备的调试模块,做到对智能变电站所有智能设备进行调试。当然,就现有情况看来,要实现上述方便快捷的调试方法,我国智能变电站运行维护中仍然的一些问题严重制约了其发展进程,这需要引起国家及同行业者的高度重视。只有积极解决智能一、二次设备运行维护中存在的相关问题,我国的智能变电站方可不断发展与壮大,为我国电力事业的发展提供更多的便利。 参考文献: [1]陈安伟,等.IEC61850在变电站中的工程应用[M].北京:中国电力出版社,2012. [2]李先妹,黄家栋,唐宝锋.数字化变电站继电保护测试技术的分析研究[J].电力系统保护与控制,2012,(03). [3]蔡晓越.智能变电站的调试特点与建议[J].电力与能源,2012,(04).

发电厂及变电站电气二次设备资料

第9章二次设备的选择及二次回路设计基础 第一节二次设备的选择 一、控制和信号回路的设备选择 1.控制开关的选择 控制开关应根据以下三个条件选择: (1)回路接线需要的触点数量及触点闭合图表。 (2)操作的频繁程度。 (3)回路的额定电压、额定电流和分断电流。 2.跳、合闸回路中的中间继电器的选择 (1)跳、合闸位置继电器的选择。音响或灯光监视的控制回路,跳、合闸回路中选择位置继电器的要求为: 1)在正常情况下,通过跳、合闸回路的电流应小于其最小动作电流及长期热稳定电流。 2)当直流母线电压为85%额定电压时,加于继电器的电压不小于其额定电压的70%。 (2)跳、合闸继电器的选择。跳闸或合闸继电器电流自保持线圈的额定电流,除因配电磁操作机构的断路器由于合闸电流大,合闸回路设有直流接触器,合闸继电器需按合闸接触器的额定电流选择外,其他跳、合闸继电器均按断路器的合闸或跳闸线圈的额定电流来选择,并保证动作的灵敏系数不小于1.5。 (3)自动重合闸继电器及其出口信号继电器的选择。自动重合闸继电器及其出口信号继电器额定电流的选择应与其起动元件动作电流相配合,保证动作的灵敏度不小于1.5。 自动重合闸出口继电器及信号继电器,当其出口直接接至合闸线圈回路时,继电器的额定电流应按合闸接触器或断路器合闸线圈的额定电流来选择。 3.防跳继电器的选择 (1)防跳继电器的选型。电流起动电压自保持的防跳继电器,其动作时间应不大于断路器的固有跳闸时间。DZK系列快速中间继电器的动作时间不大于15ms。 (2)防跳继电器的选择。 1)电流起动电压自保持的防跳继电器,其电流线圈的额定电流的选择应与断路器跳闸线圈的额定电流相配合,并保证动作的灵敏度不小于1.5。 自保持电压线圈按直流电源的额定电压选择。 2)电流起动线圈动作电流的整定可以根据1)所选用继电器线圈额定电流的80%整定。这样整定能保证当直流母线电压降低到85%时继电器仍能可靠动作。 3)电压自保持线圈按80%额定电压整定为宜。 在接线中应注意防跳继电器线圈的极性。 4.信号继电器和附加电阻的选择 (1)信号继电器和附加电阻选择的原则: l)在额定直流电压下,信号继电器动作灵敏度一般不小于1.4。 2)在0.8倍额定直流电压下,由于信号继电器的串接而引起回路的压降应不大于额定

智能变压器状态在线监测技术方案

智能变压器状态监测系统技术方案 一、智能变压器状态监测系统 智能变压器作为智能变电站的核心组成部分,其建设获得了越来越多的关注。根据现行的标准,智能变电站是指采用先进、可靠、集成、低碳、环保的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、协同互动等高级功能,实现与相邻变电站互动的变电站。智能变压器在线监测系统是保证变压器正常工作并预估设备的损耗以建立合理的检修计划,智能变压器在线监测系统是实现智能变电站的基础设备之一。 变压器是电力系统中重要的也是昂贵的关键设备,它承担着电压变换,电能分配和转移的重任,变压器的正常运行是电力系统安全、可靠地经济运行和供用电的重要保证,因此,必须最大限度地防止和减少变压嚣故障或事故的发生。但由于变压器在长期运行中,故障和事故是不可能完全避免的。引发变压器故障和事故的原因繁多,如外部的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中留下的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化等等,已成为故障发生的主要因素。同时,客观上存在的部分工作人员素质不高、技术水平不够或违章作业等,也会造成变压器损坏而造成事故或导致事故的扩大,从而危及电力系统的安全运行。 正因为变压器故障的不可完全避免,对故障的正确诊断和及早预测,就具有更迫切的实用性和重要性。但是,变压器的故障诊断是个非常复杂的问题,许多因素如变压器容量、电压等级、绝缘性能、工作环境、运行历史甚至不同厂家的产品等等均会对诊断结果产生影响。 智能变压器状态监测系统构架如图1-1所示:

变电站一、二次设备的工作原理

变电站一次设备的基本工作原理 一:高压断路器(开关) 高压断路器是电力系统中改变运行方式,开合和关闭正常运行的电路,能开断和关合负荷电流、空载长线路或电容器组等容性负荷电流,以及能开断空载变压器电感性负荷电流的重要电气主设备之一。与继电保护装置配合,在电网发生故障时,能快速将故障从电网上切除。与自动重合闸配合能多次关合和断开故障设备,以保证电网设备瞬时故障时,能及时切除故障和恢复供电,提电网供电的可靠性。 二、隔离开关(刀闸) 高压隔离开关在结构上没有专门的灭弧装置,不能用来接通和切断负荷电流或短路电流。回路断路器拉开停电后,可以拉开隔离开关使停电设备与高压电网有一个明显的断开点,保证检修设备与带电设备进行可靠隔离,可缩小停电范围并保证人身安全。带接地开关的隔离开关,与隔离开关在机械上互相闭锁,可有效地杜绝在检修工作中发生带电合接地开关的恶性事故。 三、电压互感器 电压互感器相当于开路运行的变压器,将高低压降为二次回路的标准电压,供继自装置、仪表、计量装置使用。有单相和三相两种。 四、电流互感器 电流互感器把大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 五、无功补偿

并联电容器、并联电抗器都是电网中的无功补偿装置,目的在于平衡系统无功,同时使电网电压保持在要求的范围内。其中电容器向系统提供容性无功,以补偿系统中电动机等的感性无功;电抗器向系统提供感性无功,以补偿系统中长距离输电线路等产生的容性无功。 六、消弧线圈的作用 小电流接地系统单相接地时,其接地电流为一电容电流,而消弧线圈为一电感线圈,其产生的电感电流可以补偿接地的电容电流,以减小故障点电流使电弧自行熄灭。 消弧线圈的三种补偿方式 (1)完全补偿:消弧线圈的电感电流完全补偿接地时的电容电流。由于此时感抗等于容抗,将可能激发起谐振。所以这种方式不可取。 (2)欠补偿:消弧线圈的电感电流不足以补偿接地时的电容电流。在这种运行方式下,如果有线路跳闸,可能会形成完全补偿,因而也是应该避免的。 (3)过补偿方式:即使有线路跳闸,也不会形成完全补偿。所以在实际运行中多采用这种运行方式。 六、交直流系统 变电站的站用电交流系统是保证变电站安全可靠地输送电能的一个必不可少的环节,站用电交流系统为主变压器提供冷却电源、消防水喷淋电源,为断路器提供储能电源,为隔离开关提供操作电源,为硅整流装置提供变换用电源,另外站用电还提供站内的照明、生活用电以及检修、施工等电源。如果站用电失却将严重影响变电站设备的正常运行,甚至引起系统停电和设备损坏事故。因此,运行人员必须十分重视站用电交流系统的安全运行,熟悉站用电系统及其运行操作。

关于智能变电站的二次设备调试与检修 牛振华

关于智能变电站的二次设备调试与检修牛振华 发表时间:2019-10-16T14:52:44.590Z 来源:《电力设备》2019年第11期作者:牛振华姚俊[导读] 摘要:现阶段,随着我国城市化建设步伐的加快,传统变电站已经不能满足当今社会的发展。(国网朔州供电公司山西省朔州市 036002)摘要:现阶段,随着我国城市化建设步伐的加快,传统变电站已经不能满足当今社会的发展。因此,电气设备进入了不断更新的重要阶段,逐渐向智能化、网络化、科技化方向发展。智能变电站具有自我监控、信息共享、传感监测的功能,可以使各种基础设施形成一个庞大的电网系统,时刻监测这些电气设备的运行情况,降低成本投入,减少检修养护工作,提高电气设备的运行效率。另外,智能变电站 具有继电保护作用,确保电气设备使用的安全性和可靠性,已经在我国大部分地区广泛应用,而且取得了良好的使用效益。关键词:智能变电站;二次设备;调试;检修引言电已经成为人们衣食住行的一部分,也是国民经济发展的基础产业。智能化变电站在硬件方面具有设备功能集成化、扩展方便、接口规范和安装模块化的特点,软件方面具有通信可靠、信息共享、控制灵活和网络一体化等特点。在智能化变电站电气设备安装中,要加强对主变压器、断路器、室外高压隔离开关以及无功补偿装置的安装。在电气设备调试环节中,要重视对保护装置、启动调试、断路器的调试。 1研究智能变电站二次设备调试与检修的现实意义智能变电站就就是通过继承、环保、稳定、可靠的各项智能设备的应用,她难过一次设备掺量数字化、规范化、标准化等各项信息平台,自主的完成对各项信息内容的筹集、测量、计算、调控等各项工作。从我国电力行业的整体发展情况来看,智能变电站近几年的应用越来越广泛,在该背景下,为了使智能变电站的作用能够得到合理发挥,应当做好二次设备的调试与检修作业。做好对二次设备的调试与检修,可以确保智能变电站中应用的各项二次设备的性能都可以满足应用标准,进而实现对一次设备的合理检查,测量,控制,保护,调节,从而保证智能变电站运行的稳定性,从而为人们提供稳定的电能,满足人们的生活和生产需求。 2智能变电站二次设备的调试对于智能变电站二次系统,其主要具有很强的系统集成化、信息交换标准化特色,智能变电站二次系统的结构十分紧凑,站内与控制中心可以进行无缝通信,在采集设备状态特征时,没有盲区,能保证系统维护、配置的简单。同时智能变电站二次系统还具有控制自动化与保护控制协同化的特点,其电流、电压的采集可以通过数字化完成,能对各种数据信息进行高度集成,整合优化了以往的分散二次系统,实现了通信、数据共享。在实际中,开展智能变电站二次设备调试时,应该重点从以下几个方面进行:(1)智能二次设备测试仪,在智能变电站二次设备中,保护测控装置的输入数据接口转变成新的数据化接口,所以,在进行调试时,要利用数字化光电测试仪进行。就目前而言,常用的数字式光电测试仪有omicron公司提供的数字信号新型测试设备、模拟信号测试设备、模拟信号联合数字信号转换的设备检测方式。(2)继电保护装置功能测试,其测试内容主要有采样功能、精度、各种保护逻辑、动作时间、定值、动作报告标准化、软硬压板、对时功能等。(3)测控装置功能测试,其测试的主要内容有收发GOOSE报文、采样功能及精度、同期合闸功能、间隔五防闭锁逻辑功能、记录程序版本等。(4)合并单元功能测试,其测试内容主要有采样精度、合并单元输出幅值及角度误差、同步精度、守时精度、采样值输出、报文实时、电压切换功能、电压并列功能、检修试验、合并单元自诊断功能等。(5)智能终端功能测试,其主要测试内容有动作时间、智能终端执行控制、智能终端发送开关量、智能终端上送遥测量测试、功率消耗、验证报警、GOOSE开关量延时等。 3智能化变电站电气设备的安装问题 3.1人为因素智能变电站电气设备的安装直接影响电力系统的使用寿命,所以相关工作人员安装前需要经过专业培训,提高专业知识和技能、丰富工作经验、提升综合素质,全面了解电气设备的安装事项,做好安全指导工作,保证智能化变电站电气设备安装的可靠性和稳定性。 3.2其他因素一是施工材料问题。材料在购买和入库时没有经过严格的监测和审核,导致一些使用性能不合格的材料运用到智能化变电站系统中。二是设计图纸和安装程序问些问题都会导致智能化变电站出现运行故障。 4智能变电站二次设备的检修在实际中,开展智能变电站二次设备检修活动时,应该严格的按照相关运行程序进行,避免因为程序出现漏洞从而造成了检测结果不准确,影响到检修工作质量的情况。一般情况下,进行智能变电站二次设备检修工作时,要结合设备的当前状态,实施故障分类,要针对存在故障、潜存故障、正常运行设备采用不同的检修方式,从而保证检修活动的顺利进行。此外,在进行智能变电站二次设备检修工作时,还需要结合设备的工作性质,分类进行设备故障修理工作,如将需要停电修理的故障划分成一类,将需要更换零件的设备划分成一类,实现高效率维修活动。在进行智能变电站二次设备故障处理时,对于保护装置故障,需要及时找出故障原因,并退出保护出口软压板,将检修压板装入装置中,重新启动,如果保护装置恢复正常,则保护装置是跳至跳闸状态,如果重新启动后,装置没有恢复,需要结合检修单位的指令进行保护装置运行方式调整、维护。在具体工作中,可以从以下两个角度分析智能变电站二次设备检修工作:(1)从有关MU合并器装置的检修角度看,变电站交流信号源输出的模拟电流、电压信号指标会表现出一致性相位状态,在此条件下,MU合并器可以接受电子互感器装置正常运行下的电流、电压信号,同时这些电流、电压信号会通过汇通GPS信号方式,进行信号同步传递。在实际中,可以立足于信号同步的角度,比较信号相位,从而判断出信号同步执行情况的可靠性。(2)从有关电子互感器采集器装置检修角度看,智能变电站在正常运行下,采样器获取的采样值数据很容易受到电子互感器装置差动保护性能的影响,由于一般情况下的电流互感器装置对应的变比指标、极性指标处于既定状态,对于其互感器装置的检修,可以利用专门的仪器进行测试。在智能变电站中,电子互感器装置的电力极性指标十分灵活,可以在MU合并器装置中进行灵活调整,需要注意的是,MU合并器装置对互感器电流极性调整必然会对后期的二次设备检修作业带来极大的影响,所以在事前必须事先制定相应的调整规范。同时在二次设备停电检修工作中,还可以利用一次加流的方法,对电子式互感器装置变比指标进行有效检查,当二次电流的方向和潮流方向表现出相互一致,那么就代表了极性端为线路侧位置。 结语

变电设备状态维护—局部放电紫外检测技术

变电设备状态维护—局部放电紫外检测技术 由于电力需求日益增加,使得电力设备所使用的绝缘材料所承受的电气压力与日俱增,设备使用的寿命往往取决于绝缘材料的绝缘强度。电力设备由于运转操作、使用年数、使用频度及使用环境等影响,会逐年发生裂化,进而发生故障或事故,世界各国都投入大量的人力从事设备维护及研究故障预测的诊断技术。 早期变电所设备维护采用事后维护,即发生故障后才进行修理。后来发展为预防维护,即事先安排一定时间进行大修或更换零件,以防止突发事故。近而采用预知维护,从设备外部发觉异常征兆,事先预知其严重性,在未发生故障前予以处理。 变电设备维护检测方法 一, 方法簡介 变电设备是由机械、电气、化学等系统组合而成,因此用多项试验来分析设备的异常情况。一般变电设备预知诊断维护技术都先利用不停电方式检测设备有无异常,如发现异常状况再进一步作停电检测。电力公司现行不停电检测方式(Non-outage Tests)包括: 1, 红外线测温(Infra-red Emissions); 2,部分放电检测(Partial Discharge); 3, 油中气体分析(Dissolved Gas Oil Analysis); 4, 震动分析(Vibration Analysis); 5, 有载分接头切换器检测(Tap Changer/ Selector Condition); 6, 箱体状态(Tank Condition); 7, 油中含水量分析(Water Content Analysis); 8, 紫外线电晕检测(Ultraviolet Emissions)。 总体而言,变电设备不停电预知诊断监测系统的技术障碍在过去几年来已经逐渐克服,而且价格也逐渐降低,然而准确性与成本效益仍然是各电力公司考虑的主要因素。 变电设备维护方式也可分为两种,一种为定期维护(Time Based Maintenance, TBM),也是传统维护作业方式,依据设备制造商或电力公司规定的维护周期,定期实施维护作业,人力花费较多且要安排停电作业;另一种方式为状态维护(Condition Based Maintenance, CBM),可在不停电情况监测设备运转状态,如果发现异常,及时实施维护工作,可减少工作停电及维护人力,有效防范事故发生。 二、不停电预知维护目的: 1,评估设备使用状况 2,减少维护费用 3,预估设备使用寿命 4,提升工作人员安全 5,收集第一手资料,积累数据 三、不停电预知维护技术: 1,应用多重技术(Multi-Technology ) 2,资讯整合技术(Information Integration)

智能变电站一体化监控标准系统

智能变电站一体化监控系统integratedsupervision andcontrolsystem ofsmartsubstation 按照全站信息数字化、通信平台网络化、信息共享标准化的基本要求,通过系统集成优化,实现全站信息的统一接入、统一存储和统一展示,实现运行监视、操作与控制、综合信息分析与智能告警、运行管理和辅助应用等功能。 全景数据panoramicdata 反映变电站运行的稳态、暂态、动态数据、设备运行状态以及图像、模型等数据的集合。 3.3 数据通信网关机communication gateway 一种通信装置。实现智能变电站与调度、生产等主站系统之间的通信,为主站系统实现智能变电站监视控制、信息查询和远程浏览等功能提供数据、模型和图形的传输服务。 综合应用服务器comprehensiveapplicationserver 实现与状态监测、计量、电源、消防、安防和环境监测等设备(子系统)的信息通信,通过综合分析和统一展示,实现一次设备在线监测和辅助设备的运行监视、控制与管理。 数据服务器dataserver 实现智能变电站全景数据的集中存储,为各类应用提供统一的数据查询和访问服务。 智能变电站自动化体系架构 a )智能变电站自动化由一体化监控系统和输变电设备状态监测、辅助设备、时钟同步、计量等共同构成。一体化监控系统纵向贯通调度、生产等主站系统,横向联通变电站内各自动化设备,是智能变电站自动化的核心部分; b )智能变电站一体化监控系统直接采集站内电网运行信息和二次设备运行状态信息,通 过标准化接口与输变电设备状态监测、辅助应用、计量等进行信息交互,实现变电站全景数据采集、处理、监视、控制、运行管理等,其逻辑关系如图 1 所示。

智能变电站二次设备系统架构设计方案

智能变电站二次设备系统架构设计方案 发表时间:2019-04-18T11:48:02.513Z 来源:《电力设备》2018年第30期作者:都基思[导读] 摘要:针对目前智能变电站网络架构复杂、装置数量多、保护及测控等二次设备可靠性及速动性相对不高等问题,提出一种智能变电二次系统设计思路,通过采用多功能集成装置等方法,该方案可大幅减少装置数量和光纤数量,提高保护装置的可靠性和速动性,简化系统网络架构,减少虚端子配置和调试工作量,降低运行维护难度。 (国网黑龙江省牡丹江供电公司经济技术研究所黑龙江省牡丹江市 157000)摘要:针对目前智能变电站网络架构复杂、装置数量多、保护及测控等二次设备可靠性及速动性相对不高等问题,提出一种智能变电二次系统设计思路,通过采用多功能集成装置等方法,该方案可大幅减少装置数量和光纤数量,提高保护装置的可靠性和速动性,简化系统网络架构,减少虚端子配置和调试工作量,降低运行维护难度。 关键词:智能变电站;二次设备;架构设计 一、二次系统架构及存在的问题 以 220 kV 线路间隔为例。目前智能变电站每回线路配置双套包含有完整的主、后备保护功能的线路保护装置和双套合并单元、智能终端装置。线路保护装置与线路合并单元点对点通信获得线路电流、电压采样值信号。母线电压由母线合并单元以点对点通信方式发给间隔合并单元,再由间隔合并单元转发给各间隔保护装置。线路间隔保护装置与智能终端之间采用点对点通信发送跳闸命令。跨间隔信息(如启动母差失灵功能和母差保护动作远跳功能等)采用面向通用对象的变电站事件(generic object oriented substation event ,GOOSE)网络传输跳闸方式。测控装置、动态向量测量(phasor measurement unit,PMU)等功能采用网络采样和网络跳闸方式[1]。 以上方式存在以下不足:保护装置可靠性及动作快速性下降。智能变电站实现了数字化传输,为信息共享、信息的利用提供了基础。但同时也增加了保护功能的实现环节,速动性指标较常规变电站有所降低。在“直采直跳”方式下,智能变电站线路保护整组动作时间理论上较常规站慢 5 ms 左右。此外,保护装置的可靠性也有所降低。在“直采直跳”模式下,线路保护功能由合并单元、保护装置和智能终端三者共同完成,其中任何一个环节发生故障都会导致保护功能的缺失。而现场运行的合并单元和智能终端由于光口较多,发热量大,受现场环境温度和电磁干扰等影响,故障概率较高,影响保护的整体可靠性。对于跨间隔保护设备问题则更为严重;过程层设备实现了多业务的信息共享,但同时也给各业务系统的运维和扩建带来了影响。以线路合并单元为例,一台线路合并单元需要给线路保护装置、母线保护装置、安全稳定装置、短引线保护、采样值(sampled value,SV)网络上的多个设备提供采样值数据。当合并单元需要检修时,会影响多个业务的运行;虚端子配置工作量大,维护困难。智能变电站以虚回路连接代替传统变电站的二次电回路。虚回路的连接以配置文件的形式体现,如全站系统配置文件(system configuration description,SCD)、智能电子设备(intelligent electronic device,IED)能力描述文件(IED capability description,ICD)、智能电子设备实例配置文件(configured IED description,CID)。虚端子是明确装置之间信号连接关系的文本信息,一般用 Excel 文件描述,是智能变电站设计、调试环节的重要内容。而且,虚端子在运行和维护阶段是看不见摸不着的,所以给运维带来了一定的困难;数据同步复杂。智能变电站的合并单元、交换机、保护测控等设备必须基于统一的时间基准运行,方能满足事件顺序记录(sequence of event,SOE)、故障录波等功能时间一致性的要求。这些要求对智能变电站的时钟同步系统提出严格的要求。合并单元及智能终端由于传输采样值、跳闸信息,需要达到 μs 的同步精度。在合并单元内部时钟发生漂移或在外部时钟源缺失或抖动情况下会造成数据的不同步,需要有相应措施去应对。 二、220 kV 智能站二次系统架构设计 2.1线路间隔架构设计 220 kV 线路间隔架构。多功能线路保护装置集线路保护、智能终端、合并单元功能于一体,双套配置,保护电流、电压直接采样,通过继电器直接出口跳闸,并提供 SV、GOOSE 接口给母差保护和故障录波装置。多功能测控装置集测控装置、智能终端、合并单元功能于一体,单套配置,测量电流、电压直接采样,通过继电器直接出口跳闸,并提供 SV、GOOSE 接口给动态 PMU 等装置。关口计量仍采用电缆方式接入独立关口计量表。 2.2 主变间隔架构设计 主变保护由于跨多个间隔,若将主变保护、各侧智能终端、合并单元一体化设计,装置体积很大,而且架构不清晰,不利于运维。主变间隔的二次系统架构。主后一体化保护方式,主后一体化保护功能由主变保护、三侧智能终端合并单元一体化装置、本体智能终端装置来实现,均双套配置。主变保护通过与三侧智能终端合并单元一体化装置及本体智能终端装置的点对点通信进行采样和跳闸出口,采用 SV、GOOSE 共口方式。主变各侧的多功能测控装置集测控装置、智能终端、合并单元功能于一体,单套配置,测量电流、电压直接采样,通过继电器直接出口跳闸,并提供SV、GOOSE 接口给其他装置共享数据。主后保护分开模式,各侧的多功能保护装置将后备保护与该侧的合智一体化装置集成,与主变主保护、本体智能终端共同完成主变的保护功能;其他部分的设计同主后一体化保护方式[2]。 2.3 母线间隔架构设计 母线间隔二次系统架构设计。母线电压经并列箱后用电缆接至各间隔,各间隔做电压切换。母线测控装置采集 PT 刀闸位置、母线电压测量值,通过 MMS 网络传输遥测信息。母线保护与多功能线路(母联)保护装置之间以点对点通信方式获得采样值信号、位置信号,执行跳令。与主变间隔的合智一体化装置点对点通信获得采样值信号、位置信号,执行跳令。母线电压采样值信息从母线合并单元点对点获取。 三、方案效果分析 以 220 kV 变电站为例,变电站采用双母线接线,按 6 回出线、2 台主变、1 个母联规模计算,二次系统可节省装置 42 台,交换机所需端口数量减少 98 个,光线数量节省 134 根,如表 1 所示。装置数量、交换机端口数量和尾纤数量大副减少,网络架构进一步简化,大幅降低直接造价,虚端子和 SCD 配置工作量大幅降低,工程调试周期缩短,运行维护难度降低。更为重要的是,间隔内装置功能独立,无相互关联,无合并单元采样传输和智能终端响应环节,大大提高了间隔内保护装置的快速性和可靠性。跨间隔装置直采直跳,同时母差保护发热量大幅降低,进一步提高了保护功能的可靠性和系统的稳定性。本方案完全符合智能变电站“占地少、造价省、可靠性高”的建设目标[3]。

变电站二次设备简介

变电站二次设备简介 1P远动通信及GPS对时屏:内含远动通信装置、规约转换装置和GPS对时装置。远动通信装置负责将站内信息上传至调度监控系统,规约转换装置负责将不同厂家(规约不同)的设备信息转换成本站监控系统可读取的信息,并通过远动通信装置传输至跳读监控系统。GPS对时装置是依靠GPS系统对全站装置进行实时对时。 2P公用测控屏:内含公用测控装置。负责测量直流系统和母线电压(多未35kV变电站)等公用信息。 3P低频低压减载屏:内含低频低压减载装置。它是安自设备,负责在母线电压过低或者频率过低是减载负荷。 4P继电保护试验电源屏:内涵继电保护试验电源。负责在开展保护装置实验时,提供可控的直流电源。 5P 35kV#2主变保护测控屏:内涵主变非电量保护装置、主变差动保护装置、主变高后备保护装置、主变低后备保护装置和主变测控装置。通过采集主变区域的非电气量和电气量,对一侧设备进行实时监控和保护。 7P 35kV线路保护测控屏:内涵线路保护测控装置。通过采集线路区域的电气量,对一侧设备进行实时监控和保护,在线路发生故障致,及时切除故障,从而保护人身、设备和电网安全。

10P 10kV线路电度表屏:内涵电度表。负责实时监控各间隔的计量信息。 11P 直流系统充电屏:内涵直流充电模块和直流监控装置。充电模块负责将交流站用交流电转换为直流电供站内保护测控装置使用。直流监控装置负责监控各条直流馈线是否正常。 12P 直流系统馈线屏:内含直流馈线回路空开,负责向各条直流回路提供可靠直流电。 13P 蓄电池屏:内含蓄电池组。当站用变停电时,为各条直流回路提供可靠直流电,保持保护测控装置等能够正常运行。 15P UPS及通信电源馈线柜:内涵UPS装置。负责向后台监控系统、五方系统和视频监控系统等提供交流不间断电源。 17P 所用电进线柜:负责提供站内所需的交流电。 19P 通信机柜:负责站内与站外的通信互联。 20P视频监控屏:按规定在站内布置摄像头,对站内设备和环境进行实时监控。

变电站在线监测配置方案

变电站状态监测系统解决方案 许继昌南通信设备有限公司 2011.11

目录 1、配置表 (1) 2、系统整体方案 (1) 3、产品介绍 (2) 3.1GIS监测相关装置 (3) 3.2变压器监测相关装置 (6) 3.3开关柜监测装置 (10) 3.4避雷器在线监测系统 (14) 3.5站内状态监测主站系统 (14)

1、配置表 根据110kV及以上变电站设备配置监测设备如下: 2、系统整体方案 设备状态监测和诊断的关键是在线监测技术,在线监测技术是实现智能设备状态可视化的必要手段,是状态维修的实现基础,为其提供了实时连续的监测数据和分析依据。有效的在线监测系统可以随时掌握设备的技术状况和劣化程度,避免突发性事故和控制渐发故障的发生,从而提高高压电气设备的利用率,有助于从周期性、预防性维修向状态检修的转变,改善资产管理和设备寿命评估,加强故障原因分析。 在线监测、故障诊断、实施维修整个一系列过程构成了电气设备状态检修工作的内涵。因此,积极发展和应用变电站设备在线监测系统的最终目的就是为了以状态检修取代目前的定期维修,为其提供了分析诊断的依据,是状态维修策略不可或缺的组成部分。智能变电站监测总体方案如下图:

IEC61850-8-1 IEC61850-8-1 智能组件 柜 变电站状态监测典型方案架构 状态监测系统系统结构 1)状态监测系统结构应为网络拓扑的结构形式,变电站内状态监测系统向上作为远方主站的网络终端,同时又相对独立,站内自成系统,层与层之间应相对独立,采用分层、分布、开放式网络系统实现各设备间连接。 2)站控层由状态监测系统综合平台组成,提供站内运行的人机界面,实现监视查看间隔层和过程层设备等功能,形成全站状态监测中心,并与远方主站状态监测系统进行通信。 3)间隔层由计算机网络连接的若干个综合数据集成单元组成(针对专业性较强,数据分析较为复杂的监测项目)。过程层由若干个监测功能组IED及状态监测传感器组成。 站控层综合数据单元均与过程层监测功能组主IED整合为状态监测IED,以减少装置数量,节约场地布置空间。过程层传感器由一次厂家成套。 4)状态监测IED采用IEC61850协议与站控层综合平台通信,各监测IED的评价结果通过站控层网络传输至综合平台,综合平台汇总并综合分析,监测数据文件仅在召唤时传送。 5)站控层综合平台设备与状态监测IED连接采用以太网,通信速率满足技术要求。 6)状态监测IED与过程层传感器的连接采用现场总线,通信速率满足技术要求。

智能变电站状态监测系统的设计方案

智能变电站状态监测系统的设计方案 发表时间:2015-12-23T12:01:03.160Z 来源:《电力设备》2015年5期供稿作者:王建树1 康园园2 张贤3 周玲4 [导读] 国网河北省电力公司检修分公司在传统电网升级为智能电网的过程中,变电站状态监测系统也必须向着智能化改造和建设的方向发展。 王建树1 康园园2 张贤3 周玲4 (国网河北省电力公司检修分公司 050000)摘要:在传统电网升级为智能电网的过程中,变电站状态监测系统也必须向着智能化改造和建设的方向发展。本文首先分析了智能变电站状态监测系统结构,其次重点分析了智能变电站状态监测系统设计方案中的关键因素,最后提出了相应的设计方案,具有一定的参考价值。 关键词:智能变电站;状态监测系统;设计方案1 智能变电站状态监测系统结构分析 一般来讲,智能变电站状态监测系统的组成主要包括主站系统、站端检测单元、设备综合监测单元以及传统的监测装置—状态监测主智能电子设备(IED)这四大部分。其功能主要用于采集、传输、存储、转发数据,同时在后台对这些数据加以处理,并且对数据的高级应用进行分析。此外,智能变电站状态监测系统采用的架构形式为主站/子站,通常情况下,在状态监测中心或者网省公司的数据中心这两个地点设置主站,主站由后台数据库、变电设备状态信息接入网关机(CAG)这两部分组成;在各个变电站的站内设置子站,子站的结构为三层两网,其中,三层指站控层、间隔层以及过程层。此外,主站通信传输系统有后台高级诊断分析系统、通信集成平台系统,作为接口平台,能够与外部数据进行交换,同时具有智能诊断、设备及变电站的图形化展示等高级功能。通常情况,变电设备CAG都具有DL/T860标准客户端所要求的相应功能,比如对子站传来的DL/T860标准服务方面的有关数据进行接收,同时在各个站端将状态数据上传完毕后,对该类数据进行实时获取,从而实现主站控制以及DL/T860标准服务等功能。而位于站控层的状态接入控制器(CAC),[1]通常称之为站端检测单元,它的功能主要表现在信息处理以及DL/T860标准服务器端这两个方面,其中在信息处理方面,它能够对装置以及IED运行状态进行监视,同时对变电站运行情况的监测数据进行实时集中的展示,从而初步实现分析、计算、统计数据以及显示图表等功能,此外,通过CAG以及CAC,智能变电站状态监测系统能够在主站系统的历史数据库中接入各个子站的运行监测数据;在DL/T860标准服务器端这一方面,能够接收由智能监测单元IED提供并传输过来的监测数据,同时对各个监测单元所提供的变电站不同运行状态下的数据进行汇集,接着向监测单元的IED进行数据召唤以及采样周期等相关指令的下发,最后将监测参量以及数据分析结论上传至状态监测的主站。 综合监测单元的具体位置在间隔层中,用于转换通信协议,其主要功能是处理一些简单信息、对控制指令进行及时的下达以及上传数据等。而状态监测IED安装的具体位置在过程层中,与被监测设备的主体相邻近,相比传统的状态监测装置,它能够对DL/T860标准通信协议起到有效的支持作用,这是传统状态监测装置所不具备的,而且当现场的高压设备状态为在线运行时,状态监测IED能够对该状态下的参数进行快速采集。 2 智能变电站状态监测系统设计的关键因素2.1 各系统间数据的交互 一般来讲,在运行方面,变电站的状态监测系统与其自动化运行系统是相互独立的,而且状态监测系统主要在电力系统网的三区运行,在物理层面上,同变电站监视控制与数据采集系统(SCADA)、自动化系统之间是隔离开的。通常情况下,采用可扩展标记语言技术(XML)、Web Service以及数据中心这三种手段对主站系统与状态检修系统、资产全寿命周期管理系统、生产管理系统间的数据进行交互,从而实现DL/T860与IEC61970这两个模型之间的转换,因而,变电站其他系统就能够调用状态监测系统传输来的主站监控装置的告警信息、测量值数据以及设备运行状态信息。各个系统间数据交互的具体过程为:首先,对各个监测设备向CAC提供的符合DL/T860协议加工的那些熟数据,CAC要进行实时接收,然后,再将这些数据推送至位于网省监控中心的变电CAG。一般而言,跨区域发送、获取信息,需要符合信息安全管理制度的相关要求,[2]基于这一点,在CAC接收由变电站综合自动化系统传输过来的电流、电压、功率等数据这一过程中,可以采用一些隔离装置,如单向硬件的物理隔离。 2.2 纵、横向信息的共享 一般而言,传统的状态监测系统在进行系统划分时,通常以业务类型为依据。这种划分方式不利于信息的共享。而智能变电站状态监测系统则突破了这一禁锢,该系统有效利用了DL/T860的应用优势,融合离散信息,从而实现纵、横向信息的共享。信息融合得以实现的前提是子站采用的信息模型必须符合DL/T860的统一标准,而且保证应用规范化的基础在于标准化数据。对从子站CAC传输过来的DL/T860标准熟数据,主站CAG要进行接收,之后,根据相关数据接入规范,将这些数据插至位于历史数据库的数据表中。对于制造厂家而言,数据接入规范具有一定的开放性和共享性,因此,在具体实践中,厂家必须共同遵循该规范。此外,我国电网公司的管理需求是统一信息平台、两级数据中心,具体来讲,即信息管理的发展方向从目前采集单一信息参量演变为融合诊断分析、综合监测多特征量,而信息融合恰恰能够满足这一需求。统一分析模型能够实现参数、接口的统一,具有一定的可扩展性以及二次开发功能,统一分析模型能够良好的适应智能变电站状态监测系统运行管理方法以及监测技术的不断发展。 2.3系统组网方式 传统状态监测系统的主通信模式依赖于CAN总线,具有一定的可扩展性、较高的稳定性以及较快的速度,但是在电磁兼容以及互操作方面却存在一些问题。众所周知,光纤明显的两个优点就是能够免受电磁的干扰以及带宽高。首先,将通信网络光纤化,即在状态监测系统的站控层、间隔层、过程层这三者两两之间安装100M的光纤以太网,[3]以此作为主通信的基础,同时,站控层的上位机会通过光纤以太网同监测装置IED进行连接,而且不同间隔IED之间的通信也是利用光纤以太网来完成的。其次,对通信协议进行统一。智能变电站状态监测系统的通信方式取代了传统监测系统中所应用的通信方式,如现场总线RS485以及CAN等。该系统中,站控层、间隔层以及过程层都依靠TCP/IP以太网来实现相互间的通信,具有良好的通信效果。3现阶段智能变电站状态监测系统的设计3.1新建智能变电站状态监测系统的设计

相关文档
相关文档 最新文档