文档库 最新最全的文档下载
当前位置:文档库 › 逻辑无环流直流可逆调速系统设计

逻辑无环流直流可逆调速系统设计

逻辑无环流直流可逆调速系统设计
逻辑无环流直流可逆调速系统设计

课程设计任务书

学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院

题目: 逻辑无环流直流可逆调速系统设计

初始条件:

1.技术数据:

晶闸管整流装置:R rec=0.5Ω,K s=40。

负载电机额定数据:P N=8.5KW,U N=230V,I N=37A,n N=1450r/min,R a=1.0Ω,I fn=1.14A,GD2=2.96N.m2

系统主电路:T m=0.07s,T l=0.017s

2.技术指标

稳态指标:无静差(静差率s≤2, 调速范围D≥10)

动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算)

要求完成的主要任务:

1.技术要求:

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

(2) 系统静特性良好,无静差(静差率s≤2)

(3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s

(4) 系统在5%负载以上变化的运行范围内电流连续

(5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容:

(1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图

(2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等)

(3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求

(4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图)

(5) 整理设计数据资料,课程设计总结,撰写设计计算说明书

时间安排:

课程设计时间为一周半,共分为三个阶段:

(1)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20%

(2)根据技术指标及技术要求,完成设计计算。约占总时间的40%

(3)完成设计和文档整理。约占总时间的40%

指导教师签名:年月日

系主任(或责任教师)签名:年月日

目录

摘要 (4)

1设计任务及要求 (5)

1.1设计任务 (5)

1.2设计要求 (6)

2系统结构设计 (6)

2.1 方案论证 (6)

2.2系统设计 (6)

3调节器的设计 (7)

3.1电流调节器的设计 (7)

3.1.1确定电流调节器的时间常数 (7)

3.1.2设计电流调节器结构 (7)

3.1.3校验近似条件 (8)

3.1.4计算调节器电阻和电容 (9)

3.2速度调节器的设计 (9)

3.2.1电流环的等效闭环传递函数 (9)

3.2.2确定转速调节器的时间常数 (10)

3.2.3转速调节器结构设计 (10)

3.2.4校验近似条件 (11)

3.2.5计算调节器的电阻和电容值 (11)

4系统主电路设计 (12)

4.1主电路原理及说明 (12)

4.2主电路参数设计 (13)

4.3保护电路设计 (14)

5控制及驱动电路设计 (15)

5.1调节器结构组成及说明 (15)

5.2逻辑控制器的设计 (16)

5.3触发电路设计 (18)

6 电气原理总图 (20)

7总结与体会 (21)

参考文献 (22)

摘要

两组晶闸管装置反并联的电枢可逆线路是可逆调速系统的典型线路之一,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本文对逻辑无环流直流可逆调速系统进行了设计,并且计算了电流和转速调节器的参数。

关键词:逻辑无环流、可逆直流调速系统、逻辑控制器、ACR、ASR

1设计任务及要求

1.1设计任务

设计一个逻辑无环流直流可逆调速系统,基本技术数据如下:1.技术数据:

晶闸管整流装置:R

rec =0.5Ω,K

s

=40。

负载电机额定数据:P

N =8.5KW,U

N

=230V,I

N

=37A,n

N

=1450r/min,R

a

=1.0Ω,

I

fn

=1.14A,GD2=2.96N.m2

系统主电路:T

m =0.07s,T

l

=0.017s

2.技术指标

稳态指标:无静差(静差率s≤2, 调速范围D≥10)

动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算)

直流电动机:P

N =3KW , U

N

=220V , I

N

=17.5A , n

N

=1500r/min , R

a

=1.25Ω

堵转电流 I

dbl =2I

N

, 截止电流 I

dcr

=1.5I

N

,GD2=3.53N.m2

三相全控整流装置:K

s =40 , R

rec

=1. 3Ω

平波电抗器:R

L

=0. 3Ω

电枢回路总电阻 R=2.85Ω,总电感 L=200mH ,

电动势系数: (C

e

= 0.132V.min/r)

系统主电路:(T

m =0.16s ,T

l

=0.07s)

滤波时间常数:T

oi =0.002s , T

on

=0.01s,

其他参数:U

nm *=10V , U

im

*=10V , U

cm

=10V ,σ

i

≤5% , σ

n

≤10

分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图。确定调速系统主电路元部件及其参数。动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求。

绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图)。

1.2设计要求

(1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作

(2) 系统静特性良好,无静差(静差率s≤2)

(3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s

(4) 系统在5%负载以上变化的运行范围内电流连续

(5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2系统结构设计

2.1 方案论证

在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在生产中被广泛运用。

2.2系统设计

要实现逻辑无环流可逆调速,就要采用桥式全控整流逆变电路。要达到电流和转速的超调要求就要设计电流-转速双闭环调速器;逻辑无环流的重要部分就是要采用逻辑控制,保证只有一组桥路工作,另一组封锁。逻辑控制器可以采用组合逻辑元件和一些分立的电子器件组成,也可用单片机实现,本文使用PLC 来实现逻辑控制;触发电路要保证晶闸管在合适的时候导通或截止,并且要能方便的改变触发脉冲的相位,达到实时调整输出电压的目的,从而实现调速。保护电路有瞬时过压抑制,过电流保护和过电压保护,当过压或过流时封锁触发脉冲,从而实现保护功能。

3调节器的设计

3.1电流调节器的设计

3.1.1确定电流调节器的时间常数

(1)、整流装置滞后时间常数Ts : 三相桥式电路平均失控时间Ts = 0.0017s 。 (2)、电流滤波时间常数Toi :

三相桥式电路每个波头的时间是3.33ms ,为了基本滤平波头应有(1~2)Toi = 3.33s 。则Toi=0.002s

(3)、电流小时间常数i T ∑:

按小时间常数近似处理:s T T T oi s i 0037.0=+=∑

3.1.2设计电流调节器结构

采用含给定滤波和反馈滤波的模拟式PI 型电流调节器,其原理图如图1所示。图中*i U 为电流给定电压,d I β-为电流负反馈电压,调节器的输出就是电力电子变换器的控制电压c U 。

图1 PI 型电流调速器

根据设计要求%5≤i σ,并保证稳态电流无差,可按典型Ⅰ型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI 型电流调节器,其传递函数为:

s

s K s W i i i ACR ττ)

1()(+=

检查对电源电压的抗扰性能:

243.30037.0012.0==∑s

s T T i l 电流调节器超前时间常数:s T l i 012.0==τ

取电流反馈系数:A V I U dbl im 0232.02875.110

=?==*

β

电流环开环增益:取5.0=∑i I T K ,因此

114.1350037.05

.05.0-∑===

s s

T K i I 于是,ACR 的比例系数为:

3495.00232

.03015

.0012.014.135=???==

βτs i I i K R K K 3.1.3校验近似条件

电流环截止频率:114.135-==s K I ci ω 晶闸管整流装置传递函数的近似条件:

ci s s s

T ω>=?=-11.1960017.03131,满足近似条件。 忽略反电动势变化对电流环动态影响的条件:

ci l m s s

s T T ω<=?=-106.79012.012.01313

,满足近似条件。 电流环小时间常数近似处理条件:

ci oi s s s

s T T ω>=?=-18.180002.00017.01

31131,满足近似条件。

3.1.4计算调节器电阻和电容

按所用运算放大器取Ω=k R 400,各电阻和电容值为:

Ω=Ω?==k k R K R i i 98.13403495.00,取Ωk 14

F F F R C i

i

i μτ86.01086.01014012.06

3

=?=?=

=

-,取F μ86.0

F F F R T C oi oi μ2.0102.010

40002.0446

30=?=??==

-,取F μ2.0 3.2速度调节器的设计

3.2.1电流环的等效闭环传递函数

电流环经简化后可视作转速环的一个环节,为此其闭环传递函数为:

111

)1(1)1()()()(2++=+++==∑∑∑*s K s K s T s s T s K s U s I s W I

I i i I i I

i d cli β

忽略高次项,)(s W cli 可降阶近似为:

11

1)(+=

s K s W I

cli

接入转速环内,电流环等效环节的输入量应为)(s U i *,因此电流环在转速环中应等效为:

111

)()()(+≈=*s K s W s U s I I

cli i d β

β

3.2.2确定转速调节器的时间常数

电流环等效时间常数:

s s T K i I

0074.00037.0221

=?==∑ 转速滤波时间常数:s T on 012.0=

转速环小时间常数:按小时间常数近似处理,取

s s s T K T on I

n 0194.0012.00074.01

=+=+=

∑ 电压反馈系数:r V r V

n U N nm min 0067.0min

150010?===*α

3.2.3转速调节器结构设计

采用含给定滤波和反馈滤波的模拟式PI 型转速调节器,其原理图如图2所

示。图中*

n U 为转速给定电压,n α-为转速负反馈电压,调节器的输出是电流调

节器的给定电压*i U 。

图2 PI 型转速调节器

按设计要求,选用PI 调节器,其传递函数为:

s

s K s W n n n ASR ττ)

1()(+=

按跟随和抗扰性能都较好的原则,取h=5,则ASR 的超前时间常数为:

s hT n n 087.00174.05=?==∑τ

转速开环增益为:

22

2224.3960174

.0526

21-∑=??=+=

s T h h K n N 于是,ASR 的比例系数为:

924.100194

.015.00067.05212

.01275.00232.062)1(=???????=+=

∑n m e n RT h T C h K αβ

3.2.4校验近似条件

转速环截止频率为:

11

5.34087.04.396-=?===

s K K n N N

cn τωω

电流环传递函数简化条件为:

cn i I s s T K ω>==--∑117.630037

.014.1353131,满足近似条件。 转速环小时间常数近似处理条件为:

cn on I s s T K ω>==--11

37.35012

.014.1353131,满足近似条件。

3.2.5计算调节器的电阻和电容值

按所用运算放大器取Ω=k R 400,则

Ω=Ω?==k k R K R n n 4384095.100,取440k Ω

F F R C n

n

n μτ1977.010

440097

.03

=?=

=

,取F μ2.0 F F F R T C on on μ1102.110

4001

.044630=?=??==

-,取F μ1 按退饱和超调量的计算方法计算调速系统空载启动到额定转速时的转速超

调量:

%9.816

.00174

.01500132.085

.25.172812.02))((

2*max =?????=?-?=∑m

n

N b n T T

n n z C C λσ

4系统主电路设计

4.1主电路原理及说明

逻辑无环流可逆直流调速系统的主电路如下图所示:

图3 逻辑无环流可逆直流调速系统主电路

两组桥在任何时刻只有一组投入工作(另一组关断),所以在两组桥之间就不会存在环流。但当两组桥之间需要切换时,不能简单的把原来工作着的一组桥的触发脉冲立即封锁,而同时把原来封锁着的一组桥立即开通,因为已经导通的晶闸管并不能在触发脉冲取消的一瞬间立即被关断,必须待晶闸管承受反压时才能关断。如果对两组桥的触发脉冲的封锁和开放同时进行,原先导通的那组桥不能立即关断,而原先封锁着的那组桥已经开通,出现两组桥同时导通的情况,因没有环流电抗器,将会产生很大的短路电流,把晶闸管烧毁。为此首先应是已导通的的晶闸管断流,要妥当处理主回路中的电感储存的一部分能量回馈给电网,其余部分消耗在电机上,直到储存的能量释放完,主回路电流变为零,使原晶闸管恢复阻断能力,随后再开通原来封锁着的那组桥的晶闸管,使其触发导通。

4.2主电路参数设计

U d =2.34U 2cos α

U d =U N =220V, 取α=0° U 2=V U d 0171.9434

.2220

0cos 34.2==

I dmin =(5%-10%)I N ,这里取10% 则 L=0.693mH I U d 2308.375

.171.00171

.94693.0min 2=??=?

0067.0150010*

===N nm n U α A V I U dbl im 0232.0287

5.110=?==*β

晶闸管参数计算:

对于三相桥式整流电路,晶闸管电流的有效值为:

d d VT I I I I 577.03

1

2==

= 则晶闸管的额定电流为:

A A I I

I d VT AV VT 616.105287368.0368.057.1)(=?===

取1.5~2倍的安全裕量,A I AV VT 200)(=

由于电流连续,因此晶闸管最大正反向峰值电压均为变压器二次线电压峰值,即:

V U U U RM FM 26656.10845.245.22=?===

取2~3倍的安全裕量,V U VT 600=

4.3保护电路设计

在主电路变压器二次侧并联电阻和电容构成交流侧瞬态过电压保护及滤波,晶闸管并联电阻和电容构成关断缓冲。

过电流保护可以通过电流互感器检测输入电流的变化,与给定值进行比较,当达到设定值时发出过流信号到逻辑控制器,再由逻辑控制器来封锁触发脉冲,实现过流保护。过流保护电路如下图所示。

图4 过流保护电路

过压保护是在直流电动机的电枢两端并上电压取样电阻,当电压值超过设定值时,发出过电压信号,经过电平转换后送到逻辑控制器,由逻辑控制器封锁触发脉冲。

5控制及驱动电路设计

5.1调节器结构组成及说明

逻辑无环流可逆直流调速系统的原理框图如下图所示。

图5 逻辑无环流可逆直流调速系统原理框图

主电路采用两组晶闸管装置反并联线路,由于没有环流,不用再设置环流电抗器,但是为了保证运行时电流波形的连续性,应保留平波电抗器。控制线路采用典型的转速、电流双闭环控制系统,电流环分设两个电流调节器ACR1和ACR2,ACR1用来控制正组触发装置,ACR2 控制反组触发装置,ACR1的给定信号Ui*经反向器AR同时作为ACR2的给定信号Ui*,这样就可以使电流反馈信号Ui*的极性在正转和反转时都不用改变,从而可采用不反应电流极性的电流检测器,即交流互感器和整流器。由于在主电路中不设均衡电抗器,一旦出现环流将造成严重的短路事故,所以对工作时的可靠性要求特别高,为此在系统中加入了无环流控制器DLC,以保证系统的可靠运行,所以DLC是系统中的关键部件。

5.2逻辑控制器的设计

无环流逻辑控制器的任务是在正组晶闸管工作时,则封锁反组晶闸管,在反组晶闸管工作时,则封锁正组晶闸管。采用数字逻辑电路,使其输出信号以0 和1 的数字信号形式来执行封锁与开放的作用,为了确保正反组不会同时开放,应使两者不能同时为1。系统在反转和正转制动时应该开放反组晶闸管,封锁正组晶闸管,在这两种情况下都要开放反组,封锁正组。从电动机来看反转和正转制动的共同特征是使电动机产生负的转矩。上述特征可以由ASR 输出的电流给定信号来体现。DLC 应该先鉴别电流给定信号的极性,将其作为逻辑控制环节的一个给定信号。

仅用电流给定信号去控制DLC 还是不够,因为其极性的变化只是逻辑切换的必要条件。只有在实际电流降到零时,才能发出正反组切换的指令。因此,只有电流转矩极性和零电流检测信号这两个前提同时具备时,并经过必要的逻辑判断,才可以让DLC 发出切换指令。

逻辑切换指令发出后还不能马上执行,需经过封锁时时间Tdb1才能封锁原导通组脉冲;再经过开放延时时间Tdt后才能开放另一组脉冲。通常Tdb1=3ms,Tdt=7ms。

在逻辑控制环节的两个输出信号之间必须有互相连锁的保护,决不允许出现两组脉冲同时开放的状态。

逻辑控制器装置由PLC来实现,转矩极性鉴别信号UI*和零电流检测信号Ui0作为PLC的输入信号X0和X1,再由PLC的软件来实现逻辑运算和控制。

在逻辑运算判断发出切换指令UF、UR后,必须经过封锁延时Udb1和开放延时Udt才能执行切换命令。用FX2系列PLC实现时,只要用其内部的1ms定时器即可达到延时目的。一般封锁延时取Udb1=3ms,此时封锁原导通组脉冲;再经过开放延时Udt=7ms开放另一组。若封锁延时与开放延时同时开始计时,则开放延时时间为3+7=10ms,设延时后的UF'、UR'状态分别用辅助继电器M4、M5表示。

DLC装置的最后部分为逻辑保护环节。正常时,UF'与UR'状态总是相反的;一旦DLC发生故障,使UF'和UR'同时为“1”,将造成两组晶闸管同时开放,必须避免此情况。满足保护要求的逻辑真值表如下表。设DLC的输出信号由PLC

输出端子Y0、Y1输出。

表1 逻辑真值表

其中Y0控制GTF,Y1控制GTR。为了实现逻辑保护,一方面可以用Y0、Y1实现联锁,另一方面还可以用M4、M5接通特殊辅助继电器M8034禁止全部输出,进行双重保护。X2和X3是过压和过流检测信号。逻辑控制器的梯形图如图6所示。

图6 逻辑控制器梯形图

5.3触发电路设计

触发电路采用集成移相触发芯片TC787,与TCA785及KJ(或KC)系列移相触发集成电路相比,具有功耗小、功能强、输入阻抗高、抗干扰性能好、移相范围宽、外接元件少等优点。只需要一块这样的集成电路,就可以完成三块TCA785与一块KJ041、一块KJ042器件组合才能具有的三相移相功能。

TC787的原理框图如图7所示

图7 TC787原理框图

由图可见:在它的内部集成了三个过零和极性检测单元、三个锯齿波形成单元、三个比较器、一个脉冲发生器、一个抗干扰锁定电路、一个脉冲形成电路、一个脉冲分配及驱动电路。

引脚18、l、2分别为三相同步电压Va、Vb、Vc输人端。

引脚16、15和14分别为产生相对于A、B和C三相同步电压的锯齿波充电电容连接端。电容值大小决定了移相锯齿波的斜率和幅值。

引脚13为触发脉冲宽度调节电容Cx,该电容的容量决定着TC787输出脉冲的宽度,电容的容量越大,输出脉冲宽度越宽。

引脚5为输出脉冲禁止端,该端用来在故障状态下封锁TC787的输出,高电平有效。

引脚4为移相控制电压输入端。该端输入电压的高低,直接决定着TC787

输出脉冲的移相范围。

引脚12、10、8、9、7和11是脉冲输出端。其中引脚12、10和8分别控制上半桥臂的A、B、C相晶闸管;

引脚9、7和11分别控制下半桥臂的A、B和C相晶闸管。正组晶闸管触发电路原理图如图8所示,反组的与正组相同。

图8 正组触发电路原理图

6电气原理总图

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

转速电流双闭环的数字式可逆直流调速系统的仿真与设计(课程设计完整版)

湖南科技大学 信息与电气工程学院 《课程设计报告》 题目:转速电流双闭环的数字式可逆直流调速系统的仿真与设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

任务书 题 目 转速电流双闭环的数字式可逆直流调速系统的仿真与设计 时 间安排 2013年下学期17,18周 目 的: 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB 软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL 进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 要 求:电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间s T s 1.0≤,电流超调量%5%≤i σ,空载起动到额定转速时的转速超调量%30%≤n σ。 总体方案实现:主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT 构成H 型双极式控制可逆PWM 变换器。其中属于脉宽调速系统特有的部分主要是UPM 、逻辑延时环节DLD 、全控型绝缘栅双极性晶体管驱动器GD 和PWM 变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差。 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。 指导教师评语: 评分等级:( ) 指导教师签名:

逻辑无环流可逆直流调速系统设计与研究

逻辑无环流可逆直流调速系统设计与研究 ——主电路设计 1 绪论 1.1电力拖动简介 随着科学技术的发展,人力劳动被大多数生产机械所代替。电力拖动及其自动化得到不断的发展。随着生产的发展,生产工艺对电力拖动系统的要求越来越高,尤其在其准确性、快速性、经济性、先进性等方面的要求,与日俱增。因此,需要不断地改进和完善电气控制设备,使电力拖动自动化可以跟得上技术要求。 电力拖动系统由电动机及其供电电源、传动机构、执行机构、电气控制装置等四部分组成。电动机及其供电电源是把电能转换成机械能;传动机构的作用是把机械能进行传递与分配;执行机构是使机械能完成所需的转变;电气控制装置是控制系统按着生产工艺的要求来动作,并对系统起保护作用。 随着生产的要求不断提高,技术不断更新,拖动系统也随之更新。同时,新型电机、大功率半导体器件、大规模集成电路、电子计算机及现代控制理论发展的发展使电力拖动自动化发生了巨大的变革。 1.2直流调速系统 直流电机由于其良好的起、制动性能和调速性能,在电力拖动调速系统中占有主导地位,虽然近年来交流电动机的调速控制技术发展很快,但是交流电动机传动控制的基础仍是直流电动机的传动技术。直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电机容易实现各种控制系统,也容易实现对控制目标的“最佳化”,直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度看,它又是交流拖动控制系统的基础。因此,掌握直流拖动控制系统可以更好的研究交流拖动系统。从生产机械要求控制的物理量来看,电力拖动控制系统有调速系统、位置

说明书逻辑无环流

实验五逻辑无环流可逆直流调速系统实验 一、实验目的 (1)了解、熟悉逻辑无环流可逆直流调速系统的原理和组成。 (2)掌握各控制单元的原理、作用及调试方法。 (3)掌握逻辑无环流可逆直流调速系统的调试步骤和方法。 (4)了解逻辑无环流可逆直流调速系统的静态特性和动态特性。 二、实验所需挂件及附件 序号型号备注 1 DJK01 电源控制屏该控制屏包含“三相电源输出”等几个模块。 2 DJK02 晶闸管主电路 3 DJK02-1三相晶闸管触发 电路该挂件包含“触发电路”、“正反桥功放”等几个模块。 4 DJK04 电机调速控制实验 I 该挂件包含“给定”、“调节器I”、“调节器II”、“转速变换”、“反号器”、“电流反馈与过流保护”等几个模块。 5 DJK04-1电机调速控制实 验II 该挂件包含“转矩极性检测”、“零电平检测”和“逻辑控制”等几个模块。 6 DJK08可调电阻、电容箱7 DD03-3电机导轨、光码盘 测速系统及数显转速表 8 DJ13-1 直流发电机

9 DJ15 直流并励电动机 10 D42 三相可调电阻 11 慢扫描示波器自备 12 万用表自备 三、实验线路及原理 在此之前的晶闸管直流调速系统实验,由于晶闸管的单向导电性,用一组晶闸管对电动机供电,只适用于不可逆运行。而在某些场合中,既要求电动机能正转,同时也能反转,并要求在减速时产生制动转矩,加快制动时间。 要改变电动机的转向有以下方法,一是改变电动机电枢电流的方向,二是改变励磁电流的方向。由于电枢回路的电感量比励磁回路的要小,使得电枢回路有较小的时间常数。可满足某些设备对频繁起动,快速制动的要求。 本实验的主回路由正桥及反桥反向并联组成,并通过逻辑控制来控制正桥和反桥的工作与关闭,并保证在同一时刻只有一组桥路工作,另一组桥路不工作,这样就没有环流产生。由于没有环流,主回路不需要再设置平衡电抗器,但为了限制整流电压幅值的脉动和尽量使整流电流连续,仍然保留了平波电抗器。 该控制系统主要由“速度调节器”、“电流调节器”、“反号器”、“转矩极性鉴别”、“零电平检测”、“逻辑控制”、“转速变换”等环节组成。其系统原理框图如图5-10所示。 正向启动时,给定电压U g为正电压,“逻辑控制”的输出端U l f为“0”态,U l r 为“1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主回路“正桥三相全控整流”工作,电机正向运转。

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

配合控制的有环流可逆调速系统的工作原理设计报告

自动控制系统课程 设计报告 课程名称:自动控制系统课程设计 设计题目:配合控制的有环流可逆调速系统设计

课程设计(论文)任务书

一、配合控制的有环流可逆调速系统概述及工作原理 (4) 1) 系统概述 (4) 2) 双闭环直流调速系统概述 (4) 3) V-M调速系统工作原理分析: (6) 二、主回路的设计 (8) 1) 主回路元器件参数计算及型号选择 (8) 2) 主电路保护元件的参数计算及选型。 (11) 3) 抑制环流电抗器参数的计算 (14) 4) 晶闸管脉冲触发电路设计: (16) 5) 电机励磁回路设计: (18) 6) 转速检测及反馈环节 (18) 三、控制回路的设计 (19) 1) 电流调节器ACR 的设计 (19) 2) 转速调节器的设计 (22) 3) 控制器输出限幅环节 (26) 4) 反相器设计 (26) 5) 电流反馈环节 (26) 四、直流稳压供电电源的设计 (27) 6) 工作原理 (27) 五、操作及系统故障保护回路的设计 (28) 六、参考文献 (29)

配合控制的有环流可逆调速系统概述及工作原理 1) 系统概述 有许多生产机械要求电动机既能正转,又能反转,而且常常还需要快速地起动和制动,这就需要电力拖动系统具有四象限运行的特性,也就是说,需要可逆的调速系统。较大功率的可逆直流调速系统多采用晶闸管-电动机系统。由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路。 采用两组晶闸管反并联的可逆V-M 系统,如果两组装置的整流电压同时出现,便会产生不流过负载而直接在两组晶闸管之间流通的短路电流,称作环流。配合控制消除平均直流环流的原则是正组整流装置处于整流状态,即为正时,强迫使反组工作在逆变状态,即为负,且幅值与相等,使逆变电压把整流电压顶住,则直流平均环流为零。 图1-1 V-M 可逆调查速系统 2) 双闭环直流调速系统概述 1. 单闭环调速系统存在的问题 图1-2 单闭环直流调速系统稳态结构框图(dcr d I I ) 1) 用一个调节器综合多种信号,各参数间相互影响, 2) 环的任何扰动,只有等到转速出现偏差才能进行调节,因而转速动态降落大。 3) 电流截止负反馈环节限制起动电流,不能充分利用电动机的过载能力获得最快的动态响

逻辑无环流V-M可逆直流调速系统

逻辑无环流V-M可逆直流调速系统设计 摘要 两组晶闸管装置反并联的电枢可逆线路是可逆调速系统的典型线路之一,这种线路有能实现可逆运行、回馈制动等优点,但也会产生环流。为保证系统安全,必须消除其中的环流。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。本文对逻辑无环流直流可逆调速系统进行了设计,并且计算了电流和转速调节器的参数。 本文介绍了逻辑无环流可逆直流调速系统的基本原理及其构成,并对其控制电路进行了计算和设计。运用了一种基于Matlab的Simulink进行仿真并对仿真结果进行分析。 关键词: 直流电机;环流;逻辑无环流可逆调速;Matlab仿真

目录 摘要................................................................... (1) 第一章设计任务及要求 (4) 1.1设计任务 (4) 1.2设计要求 (5) 第二章逻辑无环流V-M可逆直流调速系统结构及原理 2.1逻辑无环流调速系统简介 (5) 2.2逻辑无环流调速系统的结构与原理 (6) 第三章系统主电路设计 (7) 3.1主电路原理及说明 (7) 3.2主回路参数设计 (7) 3.2.1整流变压器的选择 3.2.2晶闸管参数的计算 3.3保护电路设计 (9) 3.3.1过电压保护 3.3.2过点流保护 3.4触发回路设计 (13) 3.5励磁回路设计 (15) 第四章调节器的设计 (15) 4.1电流调节器的设计 (15) 4.2速度调节器的设计 (17) 第五章控制回路的设计 (19) 5.1逻辑控制器的组成 (19) 5.2逻辑控制器的设计 (19) 5.2.1零电平检测 5.2.2转矩极性检测 5.2.3逻辑判断的电路 5.2.4延时电路 5.2.5连锁与保护 5.3反相器 (23)

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

逻辑无环流可逆直流调速系统课程设计

CHENGNAN COLLEGE OF CUST 课程设计(论文)题目:逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级: 1101班 专业:D自动化(工业自动化) 指导教师:李益华吴军 2014年7月

逻辑无环流可逆直流调速系统设计 学生姓名:吴艳兰 学号:201197250104 班级:1101班 所在院(系): 电气与信息工程系 指导教师:李益华吴军 完成日期: 2014年7月11日

逻辑无环流可逆直流调速系统设计 摘要 直流电动机具有良好的起制动性能,易于广泛范围内平滑调速,在需要高性能可控电力拖动的领域中得到广泛的应用。直流拖动控制系统在理论上和实践上都比较成熟,而且从反馈闭环控制角度来看,它又是交流拖动控制系统的基础,所以首先应该掌握好直流系统。 在许多生产机械中,常要求电动机既能正反转,又能快速制动,需要四象限运行的特性,此时必须采用可调速系统。本文着重介绍“逻辑无环流可逆直流调速系统”。逻辑无环流可逆直流调速系统省去了环流电抗器,没有了附加的环流损耗,节省变压器和晶闸管装置的附加设备容量。和有环流系统相比,因换流失败造成的事故率大为降低。 关键词:无环流;可逆直流调速系统;逻辑控制器

目录 1 绪论 (4) 1.1设计的目的和意义 (4) 1.2设计要求 (4) 2 系统结构方案的选择 (5) 3 主回路的选择 (6) 3.1 主电路形式的选择与论证 (6) 3.2 交流电源的选择(单相或三相) (7) 3.3 晶闸管元件的计算与选择 (7) 3.4 晶闸管保护措施的电路设计与计算 (7) 3.5 平波电抗器的计算与选择 (8) 3.6 测速机的选择与可变电位器的选择与计算 (10) 3.7 电机励磁回路设计 (10) 4 触发器的设计和同步相位的配合 (11) 4.1 触发电路的设计与选择 (11) 4.2 同步相位的配合 (12) 5 辅助电路设计 (13) 5.1 高精度给定电源的设计 (13) 5.2 其他辅助电路设计 (13) 5.2.1 转矩极性鉴别(DPT) (13) 5.2.2 零电平检测(DPZ) (14) 5.2.3 逻辑控制(DLC) (14) 5.2.4 电流反馈与过流保护(FBC+FA) (16) 5.2.5 转速变换(FBS) (17) 5.2.6 反号器(AR) (17) 6 电流环设计 (19) 6.1 调节器参数计算 (19)

H桥可逆直流调速系统设计与实验(1)

燕山大学 CDIO课程项目研究报告 项目名称: H桥可逆直流调速系统设计与实验 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 日期: 2014年6月3日

目录 前言 (1) 摘要 (2) 第一章调速系统总体方案设计 (3) 1.1 转速、电流双闭环调速系统的组成 (3) 1.2.稳态结构图和静特 (4) 1.2.1各变量的稳态工作点和稳态参数计算 (6) 1.3双闭环脉宽调速系统的动态性能 (7) 1.3.1动态数学模型 (7) 1.3.2起动过程分析 (7) 1.3.3 动态性能和两个调节器的作用 (8) 第二章 H桥可逆直流调速电源及保护系统设计 (11) 第三章调节器的选型及参数设计 (13) 3.1电流环的设计 (13) 3.2速度环的设计 (15) 第四章Matlab/Simulink仿真 (17) 第五章实物制作 (20) 第六章性能测试 (22) 6.1 SG3525性能测试 (22) 6.2 开环系统调试 (23) 总结 (26) 参考文献 (26)

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流调速系统,实现电流超调量小于等于5%;转速超调量小于等于5%;过渡过程时间小于等于0.1s的无静差调速系统。 项目分工:参数计算: 仿真: 电路设计: 电路焊接: PPT答辩: 摘要

逻辑无环流可逆调速系统汇总

目录 1逻辑无环流可逆直流调速系统简介 ..................................................................................... 1 2逻辑无环流直流调速系统参数和缓解特性的测定 . (3) 2.1电枢回路电阻R 的测定 ............................................................................................. 3 2.2主电路电磁时间常数的测定 ...................................................................................... 4 2.3电动机电势常数e C 和转矩常数M C 的测定 ............................................................... 6 2.4系统机电时间常数Tm 的测定 ................................................................................... 6 2.5测速发电机特性)(n f U TG 的测定 .......................................................................... 7 3驱动电路的设计 (9) 3.1电流调节器的设计 (9) 3.1.1电流调节器的原理图 ....................................................................................... 9 3.1.2电流调节器的参数计算 ................................................................................. 10 3.2速度调节器的设计 . (11) 3.2.1速度调节器的原理图 ..................................................................................... 11 3.2.2速度调节器的参数计算 ................................................................................. 12 3.3触发电路的设计 .. (14) 3.3.1系统对触发器的要求 ..................................................................................... 14 3.3.2 触发电路及其特点 ........................................................................................ 14 3.3.3KJ004的工作原理 . (15) 4无环流逻辑控制器DLC 设计 ............................................................................................. 18 5系统主电路设计 . (19) 5.1主电路原理及说明 .................................................................................................... 19 5.2保护电路的设计 ........................................................................................................ 19 总结 .......................................................................................................................................... 21 参考文献 .................................................................................................................................. 22 附录 (23)

逻辑无环流可逆直流调速系统的文献综述

摘要 摘要:本文主要论述了逻辑无环流可逆直流调速系统的基本原和构成,并对其控制电路进行计算和设计,运用MATLAB仿真对电气结构原理图进行仿真并对仿真结果进行动静态性能分析,采用优化设计方法改善系统性能,实现了转速电流双闭环逻辑无环流可逆直流调速系统的建模和仿真。 关键词:逻辑无环流;可逆直流;MATLAB仿真 引言 随着电力传动装置在现代化工业生产中的广泛应用,以及对其生产工艺、产品质量要求的不断提高,需要越来越多的生产机械能够实现正反向可逆运行。有环流可逆系统虽然具有反向快、过渡平滑等优点,但还必须设置几个环流电抗器,因此当工艺过程对系统正反转的平滑过渡特性要求不是很高时,特别是对于大容量的系统,常采用既没有直流平均环流又没有瞬时脉动环流的逻辑无环流控制可逆系统,当一组晶闸管工作时,用逻辑电路或逻辑算法去封锁另一组晶闸管的触发脉冲,使它完全处于阻断状态,以确保两组晶闸管不同时工作,从根本上切断环流的通路,这就是逻辑控制的无环流可逆系统。本文介绍了逻辑无环流可逆直流调速系统的发展历史、工作原理,系统主电路、控制电路、触发电路和保护电路。根据系统的动、静态性能指标采用工程设计方法设计转速、电流调节器参数,并运用Matlab的Simulink工具箱和电力系统工具箱,实现逻辑无环流可逆直流调速系统的建模与仿真。 1逻辑无环流可逆直流的发展历史直流电动机是将直流电能转换为机械能的电动机。因其良好的调速性能而在电力拖动中得到广泛应用。直流电动机按励磁方式分为永磁、它励和自励三类,其中自励又分为并励、串励和复励三种 1840~1955年为探索实验时期: 从1840年到1955年的116年期间,直线电机从设想到实验到部分实验性应用,经历了一个不断探索,屡遭失败的过程。自从Wheatsone提出和试制了直线电机以后,最早明确地提到直线电机文章的是1890年美国匹兹堡市的市长,在他所写的一篇文章中,首先明确地提到了直线电机以及它的专利。然而,由于当时的制造技术、工程材料以及控制技术的水平,在经过断断续续20多年的顽强努力后,最终却未能获得成功。 至1905年,曾有两人分别建议将直线电动机作为火车的推进机构,一种建议是将初级放在轨道上,另一种建议是将初级放在车辆底部。这些建议无疑是给当时直线电机研究领域的科研人员的一剂兴奋剂,以致许多国家的科研人员都投入了这些研究工作。1917年出现了第一台圆筒形直线电动机,事实上那是一种具有换接初级线圈的直流磁阻电动机,人们试图把它作为导弹发射装置,但其发展并没有超出模型阶段。 至此,从1930~1940年期间,直线电机进入了实验研究阶段,在这个阶段中,科研人员获驭了大量的实验数据,从而对已有理论有了更深一层的认识,奠定了直线电机在今后的应用基础。 从1940~1955年期间世界一些发达国家科研人员,在实验的基础上,又进行了一些实验应用工作。1945年,美国西屋电气公司首先研制成功的电力牵引飞机弹射器,它以7400kW

逻辑无环流控制可逆直流调速系统

实验二逻辑无环流可逆直流调速系统 一.实验目的 1.了解并熟悉逻辑无环流可逆直流调速系统的原理和组成。 2.掌握各控制单元的原理,作用及调试方法。 3.掌握逻辑无环流可逆调速系统的调试步骤和方法。 4.了解逻辑无环流可逆调速系统的静特性和动态特性。 二.实验内容 1.控制单元调试。 2.系统调试。 3.正反转机械特性n=f(I d)的测定。 4.正反转闭环控制特性n=f(U g)的测定。 5.系统的动态特性的观察。 三.实验系统的组成及工作原理 逻辑无环流系统的主电路由二组反并联的三相全控整流桥组成,由于没有环流,两组可控整流桥之间可省去限制环流的均衡电抗器,电枢回路仅串接一个平波电抗器。 控制系统主要由速度调节器ASR,电流调节器ACR,反号器AR,转矩极性鉴别器DPT,零电流检测器DPZ,无环流逻辑控制器DLC,触发器,电流变换器FBC,速度变换器FBS 等组成。其系统原理图如图1所示。 正向起动时,给定电压U g为正电压,无环流逻辑控制器的输出端U blf为“0”态,U blr 为“1”态,即正桥触发脉冲开通,反桥触发脉冲封锁,主电路正组可控整流桥工作,电机正向运转。 减小给定时,U g

逻辑无环流直流可逆调速系统设计

; 课程设计任务书 学生姓名:苌城专业班级:自动化0706 指导教师:饶浩彬工作单位:自动化学院 题目: 逻辑无环流直流可逆调速系统设计 初始条件: 1.技术数据: 晶闸管整流装置:R rec=Ω,K s=40。 / 负载电机额定数据:P N=,U N=230V,I N=37A,n N=1450r/min,R a=Ω,I fn=1.14A, GD2= 系统主电路:T m=,T l= 2.技术指标 稳态指标:无静差(静差率s≤2, 调速范围D≥10) 动态指标:电流超调量:≤5%,起动到额定转速时的超调量:≤8%,(按退饱和方式计算) 要求完成的主要任务: ? 1.技术要求: (1) 该调速系统能进行平滑的速度调节,负载电机可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作 (2) 系统静特性良好,无静差(静差率s≤2) (3) 动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤10%,调速系统的过渡过程时间(调节时间)t s≤1s (4) 系统在5%负载以上变化的运行范围内电流连续 (5) 调速系统中设置有过电压、过电流等保护,并且有制动措施

2.设计内容: ! (1) 根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图 (2) 调速系统主电路元部件的确定及其参数计算(包括有变压器、电力电子器件、平波电抗器与保护电路等) (3) 动态设计计算:根据技术要求,对系统进行动态校正,确定ASR调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳定,并满足动态性能指标的要求 (4) 绘制逻辑无环流直流可逆调速系统的电气原理总图(要求计算机绘图) (5) 整理设计数据资料,课程设计总结,撰写设计计算说明书 时间安排: 课程设计时间为一周半,共分为三个阶段: (1): (2)复习有关知识,查阅有关资料,确定设计方案。约占总时间的20% (3)根据技术指标及技术要求,完成设计计算。约占总时间的40% (4)完成设计和文档整理。约占总时间的40% 指导教师签名:年月日 系主任(或责任教师)签名:年月日 】

逻辑无环流直流可逆调速系统的建模与仿真

远程与继续教育学院 本科毕业论文(设计) 题目:逻辑无环流直流可逆调速系统的建模与仿真学习中心:内蒙古学习中心 学 姓名:孔利强 专业:电气工程及其自动化 指导教师:王旭东 2017 年 9 月 5 日

中国地质大学(武汉)远程与继续教育学院 本科毕业论文(设计)指导教师指导意见表 学生姓名:孔利强学号专业:电气工程及其自动化毕业设计(论文)题目:逻辑无环流直流可逆调速系统的建模与仿真

中国地质大学(武汉)远程与继续教育学院 本科毕业设计(论文)评阅教师评阅意见表 学生姓名:孔利强学号专业:电气工程及其自动化毕业设计(论文)题目:逻辑无环流直流可逆调速系统的建模与仿真

论文原创性声明 本人郑重声明:本人所呈交的本科毕业论文《交流电机串级调速系统建模与仿真》,是本人在导师的指导下独立进行研究工作所取得的成果。论文中引用他人的文献、资料均已明确注出,论文中的结论和结果为本人独立完成,不包含他人成果及使用过的材料。对论文的完成提供过帮助的有关人员已在文中说明并致以谢意。 本人所呈交的本科毕业论文没有违反学术道德和学术规范,没有侵权行为,并愿意承担由此而产生的法律责任和法律后果。 论文作者(签字):孔利强 日期:2017年9 月 5 日

摘要 随着科学技术的发展,人力劳动被大多数生产机械所代替。电力拖动及其自动化得到不断的发展。随着生产的发展,生产工艺对电力拖动系统的要求越来越高,尤其在其准确性、快速性、经济性、先进性等方面的要求,与日俱增。因此,需要不断地改进和完善电气控制设备,使电力拖动自动化可以跟得上技术要求。 电力拖动系统由电动机及其供电电源、传动机构、执行机构、电气控制装置等四部分组成。电动机及其供电电源是把电能转换成机械能;传动机构的作用是把机械能进行传递与分配;执行机构是使机械能完成所需的转变;电气控制装置是控制系统按着生产工艺的要求来动作,并对系统起保护作用。 随着生产的要求不断提高,技术不断更新,拖动系统也随之更新。同时,新型电机、大功率半导体器件、大规模集成电路、电子计算机及现代控制理论发展的发展使电力拖动自动化发生了巨大的变革 关键词: 1、直流电机 2、无环流系统 3、调节器

逻辑无环流可逆直流调速系统设计与研究——DLC

摘要 在可逆调速系统中,电动机最基本的要素就是能改变旋转方向。而要改变电动机的旋转方 向有两种办法:一种是改变电动机电枢电压的极性,第二种是改变励磁磁通的方向。所谓逻辑无环流系统就是在一组晶闸管工作时,用逻辑电路封锁另一组晶闸管的触发脉冲,使该组晶闸管完全处于阻断状态,从根本上切断环流通路。这种系统不仅能实现逻辑无环流可逆调速,还能实现回馈制动。对于大容量的系统,从生产角度出发,往往采用既没有直流平均环流,又没 有瞬时脉动环流的无环流可逆系统,无环流可逆系统省去了环流电抗器,没有了附加的环流损耗,和有环流系统相比,因换流失败造成的事故率大为降低。因此,逻辑无环流可逆调速系统在 生产中被广泛运用。 关键词:逻辑无环流;可逆直流调速系统;DLC;保护电路;触发电路。

目录 1绪论 (1) 1.1无环流调速系统简介 (1) 1.2系统设计 (3) 2系统主电路设计 (4) 3调节器的设计 (5) 3.1电流调节器的设计 (5) 3.2速度调节器的设计 (6) 4 DLC 设计 (7) 4.1逻辑控制器的原理 (7) 4.2速度给定环节设计 (9) 4.3无环流控制系统各种运行状态 (10) 4.3.1 正向起动到稳定运转 (10) 4.3.2 正向减速过程 (10) 4.3.3 正转制动 (11) 4.4.4 停车状态 (13) 5触发电路设计 (14) 6保护电路设计 (15) 6.1过电流保护 (15) 6.2过电压保护 (16) 17总结 .............................................................................................................................................. 18参考文献 ...................................................................................................................................... 19附录一 .......................................................................................................................................... 24附录二 ..........................................................................................................................................

相关文档
相关文档 最新文档