文档库 最新最全的文档下载
当前位置:文档库 › 齿轮泵设计步骤2016(DOC)

齿轮泵设计步骤2016(DOC)

齿轮泵设计步骤2016(DOC)
齿轮泵设计步骤2016(DOC)

第2章 液压泵的设计与计算

2.1齿轮泵的设计与计算

设计齿轮泵时,应该在保证所需性能和寿命的前提下,尽可能使泵的尺寸小、重量轻、制造容易、成本低,以求技术上先进,经济上合理。因此,合理选择齿轮泵的各项参数及有关尺寸是非常关键的,设计时通常给出泵的额定压力p 和排量V 作为原始设计参数。现以两个齿轮基本参数相同的高压齿轮泵为例来说明其设计要点。

2.1.1齿轮泵各参数的选择原则

齿轮泵各参数的主要关系式是平均流量计算公式,即:

620102-?=n BZm Q πχ (min /L ) (2—1)

62102-?=V n BZm Q ηπχ (min /L ) (2—2)

式中:0Q ——泵的理论流量;

Q ——泵的实际流量;

χ——流量修正系数;χ值通常为1.05~1.15;

低压齿轮泵齿数Z 一般为13~19,推荐66.62=πχ;

高压齿轮泵齿数Z 一般为6~13,推荐72=πχ;

B ——齿宽(mm);

Z ——齿数;

m ——模数(mm);

n ——转速(r/min);

V η——容积效率,—般V η=0.85~0.95。

流量Q 是设计参数,只要确定B 、Z 、m 、n 后泵的结构尺寸就大体确定了,然后参考有关结构进行设计,最后进行强度校验。下面来讨论如何确定B 、Z 、m 、n 这些参数。

1.确定转速n :从流量公式可知,齿轮泵的流量Q 与转速n 成正比,转速越高,则流量越大。但转速不能太高,因为转速太高时,油液在离心力的作用下,不能填满吸油腔的工作容积,并且对吸油腔的吸油也造成阻力,这时很容易产生气蚀现象,使泵的容积效率降低,特别是当油液粘度高时,齿轮节圆的线速度就受一定限制。在各种油液粘度下,允许最大节圆线速度见表2-1。

此外,液压泵的转速也不能太低,因为当工作压力一定时,液压泵的泄漏量也接近于一定值,它与转速的关系不大;但转速越低,流量越小,则液压泵的泄漏量与输油量的相对比值将越大,也就是液压泵的容积效率越低。当转速低至液压泵的理论流量和泄漏量相等时,则液压泵就不能出油。最低节圆圆周速度min V 可按下列经验公式确定:

50

min 17.0E p V ?= (s m /) (2—3)

式中:p ——液压泵的工作压力(bar);

50E ?—— 油液在50℃时的恩氏粘度。

当齿轮泵的转速低于200~300 r/min 时,泵已不能正常工作了。若齿轮泵采用交流电动机拖动,转速一般为:750 r/min 、1000 r/min 、1500 r/mi n ,在航空上用到3000 r/min 或更高。

2.确定齿数Z :齿数Z 的确定,应根据液压泵的设计要求从流量、压力脉动、机械效率等方面综合考虑。从泵的流量方面来看,在齿轮分度圆直径不变的条件下,齿数越少,模数越大,泵的流量就越大。从泵的性能来看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。

目前齿轮泵的齿数Z 一般为6~19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13~19。齿数14~17的低压齿轮泵,由于根切较小,—般不进行修正。对于高压齿轮泵,要求有较大的齿根强度。此外为了减小轴承的受力,要减小齿顶圆直径,这样势必要增大模数,减少齿数,因此高压齿轮泵的齿数较少,一般取Z=6~14。为了防止根切,削弱了齿根强度,齿形均须进行修正。

3.确定齿宽B :齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高。但对高压齿轮泵,齿宽不宜过大,否则将使齿轮轴及轴承上的载荷过大,使轴及轴承设计困难。一般对于高压齿轮泵,m B )6~3(=。对于低压齿轮泵,m B )10~6(=。这里m 为齿轮模数。泵的工作压力越高,上述系数应取得越小。

4.确定齿轮模数:对于低压齿轮泵来说,确定模数m 主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面考虑。

从流量公式(2—1)可以看出,模数m 越大,泵的流量就越大。并且当齿轮节圆直径一定时,对流量来讲,增大模数比增加齿数有利。因此为了减小泵的体积,希望在可能的条件下尽量增大模数,减少齿数。但齿数太少将使液压泵的流量及压力脉动增加,因此模数选择要适当。模数m 的粗略估算可用下面的经验公式:

Q m )6.0~4.0(= (mm ) (2—4)

式中:Q ——泵的实际流量(min /L )。

上述计算公式中,假定m B )10~6(=;容积效率85.0=V η;当这些参数不在此范围内时,系数值也要变化。

目前中低压齿轮泵所用的模数值如表2-2所示。

齿轮泵精确流量计算公式为(见式(2—5))

62022

010)12(2-?--=t R R Bn Q H

e π (min /L )(2—5) 当齿顶高等于模数m (即齿顶高系数10=h )的标准齿轮,其

2)2(+=Z m R e ,2

mZ R H =,απcos 0m t = 式中:e R ——齿顶圆半径;

H R ——节圆半径;

0t ——齿轮基节;

将上式代入流量公式得

6222010)12cos 1(2-?-+=α

ππZ Bnm Q (min /L ) (2—6)

式中:α——标准压力角,?=20α。

令B=Km ,经整理后得

36

0)

27.0(210+?=Z nK Q m π (mm ) (2—7) 式中:0Q ——泵的理论流量,(min /L );

n ——泵的转速,(r/min);

K ——齿宽系数,对于低压齿轮泵K=6~10,对于高压齿轮泵K=3~6;

Z ——齿数,Z=6~19。

对于齿数Z<13的齿轮泵,齿形须修正,其模数的精确计算公式为:

36

0)

27.1(210+?=Z nK Q m π (mm ) (2—8) 2.1.2齿轮泵的设计步骤

齿轮泵的流量Q 、压力p 为已知的设计参数。

1.确定泵的理论流量0Q 为

V Q Q η/0= (2—9)

式中:V η——泵的容积效率,一般V η=0.85~0.95。

2.选定转速:由原动机直接驱动,原动机的转速即为泵的转速,或将原动机减速后作泵的转速。若采用交流电动机驱动,一般转速为750、1000、1500、3000r/min 。

3.选取齿宽系数K :对于低压齿轮泵K=6~10,对于高压齿轮泵K=3~6。压力高取小值,压力低取大值。

4.选取齿数Z :

对于中低压齿轮泵:Z=13~19;

对于高压齿轮泵: Z=6~14(须齿形修正)。

5.计算齿轮模数m :

当为标准齿轮时:

36

0)

27.0(210+?=Z nK Q m π (mm ) (2—10) 当为修正齿轮时:

36

0)

27.1(210+?=Z nK Q m π (mm ) (2—11) 选取不同的K 值及Z 代入上式可以得到不同的m 值,这样可以获得许多组齿轮泵的参数,可以从其中选择一组比较理想方案,作为所要设计的齿轮泵的参数,并把计算模数圆整为标准模数。

6.校验齿轮泵的流量。该流量与设计理论流量相差5%以内为合格。

当为标准齿轮时:

6222010)12cos 1(2-?-+=α

ππZ Bnm Q (min /L ) (2—12)

当为修正齿轮时:

6222010)12cos 2(2-?-+=α

ππZ Bnm Q (min /L ) (2—13)

当泵流量与设计理论流量相差很小时,可以修改齿宽系数来调整流量,当相差大时,则需重新修改选定的参数。

7.校核齿轮节圆线速度H V 。

][601000H H H V n

D V

式中:H D ——节圆直径,(mm)

n ——转速,(r/min)

][H V ——齿轮节圆许用线速度,其值见表2-1。

若轮周速度太大,须减少节圆直径,办法是减少齿数或增加齿宽,有时也可以修改转速n 。

8.确定困油卸荷槽尺寸。

(1)两卸荷槽之间的距离a

απ22cos ?=A Z

m a

式中:0t ——齿轮基节(mm )

H α——齿轮啮合角(°)

α——分度圆压力角(°)

A ——两齿轮实际中心距(mm )

m ——模数(mm )

Z ——齿数

(2)卸荷槽宽度:min C

ααεπ2222min cos 1cos A

Z m m C -= 式中:ε——重叠系数。

(3)卸荷槽深度h :

卸荷槽深度的大小,影响困油排出的速度,一般取m h 8.0>。

式中:m ——齿轮模数(mm )。

图2-1 困油卸荷槽尺寸计算图

9.计算齿轮各部分尺寸:e D 、1D 、D 、B 等,对于修正齿轮,则还须计算中心距A ,移距系数ξ、啮合角H α等。

修正后的实际中心距A 为标准值: )1(+=Z m A (2—15)

修正后的齿顶圆直径e D 为标准值:)3(+=Z m D e (2—16)

啮合角H α由下式决定:)cos 1

(

cos 1αα+=-Z Z H (2—17) 式中:m ——齿轮模数(mm )

Z ——齿数

D ——齿轮分度圆直径,)(mm mZ D =;

1D ——齿根圆直径;

H α——齿轮啮合角

α——齿轮压力角

保证齿侧间隙为0.08m 的移距系数ξ可以通过下式计算:

α

αααξtg inv inv Z H 2cos /04.0)(--= (2—18) 式中:ααinv inv H ,——渐开线函数 。

上述修正方法称为“增一齿修正”,采用此种修正方法所求得的ξ值是大于为消除根切所需的最小移距系数min ξ值。

按ξ值可以求出加工时刀具的切削深度,即全齿高

m m h )5.0(25.2--=ξ。

经修正后的齿形不仅消除了根切现象,增加了齿根的强度,而且使齿面接触更紧密,减小了齿面的滑移,提高了泵的机械效率和容积效率。

10.参考有关结构对齿轮泵进行结构设计,边计算、边绘图、边修改。

例如根据工作压力的高低确定是否需要采用径向液压平衡及轴向间隙的自动补偿;采用何种径向力平衡措施;当压力MPa p 10>时,一般采用轴向间隙的自动补偿。

是采用三片式结构(由前泵盖、泵体、后泵盖)还是采用两片式结构(由壳体和前盖组成)。三片式结构有以下优点:

(1) 毛坯制造容易,甚至可用型材切料;

(2)便于机械加工;

(3)便于布置双向端面间隙自动补偿,从而改善补偿性能和提高寿命;

(4)便于双出轴布置,根据需要可以串接另一个齿轮泵。

11.确定液压泵的驱动功率

η

61060?=pQ N (kW ) (2—19) 式中:p ——齿轮泵压力,(2/m N );

Q ——齿轮泵输出流量,(L/min);

η——齿轮泵总效率,一般取η=0.75~0.90。

12.强度校核和轴的刚度计算。对低压齿轮泵,齿轮强度不必验算,—般均能满足要求;对高压齿轮泵,必须进行齿轮强度校验。

采用滚动轴承时,精确地计算轴颈的挠度非常重要。因为即使轴的挠曲并不显著,也会

引起滚针或滚柱滚道边缘接触应力剧烈增加,导致这些表面很快就会损坏。采用滑动轴承时,轴的挠曲也会使局部接触应力剧烈增加并破坏润滑油膜,造成轴承的烧伤。为了防止这种破坏,必须尽可能采取措施减少轴的挠度。

13.轴承的设计与选择。由于两齿轮的轴线距离较小,往往不能安装所需的球轴承,因此在传统齿轮泵中一般采用径向尺寸较小的滚针轴承或滑动轴承。

当采用滑动轴承时,计算出滑动轴承的尺寸d、l。当采用滚针轴承时,选择合适的滚针轴承并算出轴承寿命。目前一般齿轮泵轴承的计算寿命不低于1000小时。

滚针轴承的优点:工作时摩擦系数小,起动摩擦力矩小,机械效率高;承载能力强;既适用低转速也适用于高转速;能在较大温度范围内工作;抗污染能力强。其缺点是:工作中噪声大;轴承尺寸较大,结构布置不便;当采用长的滚针轴承时,对制造和装配误差较敏感;

在高压齿轮泵中,pv值较大,对滚针精度要求较高以及热处理工艺规程要严格控制。近来趋

向于选取短而粗的滚针。

滑动轴承的优点是:结构简单;安装方便;工作中噪声低;抗冲击性能好;价格便宜;只要材质和加工精度选择恰当,润滑条件良好,就能承受相当高的负载。其缺点是:抗污染能力差;在高温时油膜强度低,易烧坏;起动时摩擦力矩大;当转速很低时不易形成油膜,易烧坏。

复合材料轴承由于结构简单、成本低廉、过载能力强、抗污染能力强等优点,目前在齿轮泵中得到应用。与金属轴承相比,复合材料轴承的摩擦、磨损性能有以下特点:

(1)工作负荷与摩擦系数之间的关系不像金属那样决定于弹性接触变形或塑性接触变形,而是决定于摩擦对偶材料之间的工作状态;

(2)相对滑动速度和摩擦系数之间的关系决定于聚合物基体材料的蠕变特性、纤维的方位及相对滑动的方向。

因而复合材料轴承对相配的轴颈材料、硬度、表面粗糙度等有相应的要求,与轴颈的配合间隙必须严格按厂家推荐的公差进行设计和制造。

齿轮泵是可逆元件,从原则上来讲,一般的齿轮泵都可以作为齿轮马达来使用,因此齿轮马达的设计方法和步骤与齿轮泵是相同的,但考虑到马达工作的特殊性,如带载起动、正反转,冲击等,齿轮马达在结构上有如下特点:

(1)考虑到马达要正反转,因此马达具有左右对称结构,采用外泄油口。

(2)为了改善起动性能,马达一般不宜采用端面间隙自动补偿装置,并选用滚针轴承。

(3)要求马达尺寸小,输出转矩脉动小,齿轮马达齿数Z取10~14。

2.1.3齿轮泵的工艺、材料及技术要求

目前使用的齿轮泵中,齿轮和轴通常做成整体。其优点是结构紧凑,装配方便。对于尺寸较大的齿轮泵,齿轮和轴可以做成分离式,齿轮和轴之间采用键联接,这样结构工艺性好,加工齿轮侧面较容易,在平面磨床上加工相同的齿宽很容易获得。

齿轮泵通常采用的零件材料是:泵体和端盖采用铸铁或铝合金,齿轮和轴采用45号钢、40Cr、18CrMnTi、20Cr、38CrMoAl等材料(前面两种材料用于低压齿轮泵,后面三种材料用于高压齿轮泵),材料经渗碳氮化处理,表面硬度达HRC=60~62,心部硬度HRC=28~44。使齿轮具有较高的耐磨性和冲击韧性。淬火后的工作表面必须磨光。轴套—般采用40号钢、40Cr和青铜。

下面给出齿轮泵典型零部件的工艺要求,仅供参考。

齿轮泵的主要零件的技术要求如下:

(1)泵体内孔锥度和椭圆度小于0.01mm;

(2)齿顶圆和泵体配合H7/f7;

泵径向间隙一般为0.02~0.06mm;

(3)一对齿轮宽度差小于0.005~0.01mm,一对齿轮同侧轴套宽度差小于0.005~0.01mm;

(4) 齿轮轴孔和齿顶圆之间的偏心量小于0.0l mm ;

(5) 用涂色法检查,在齿高方向上,齿轮啮合长度大于65%,在齿宽方向上齿轮啮合长度

大于60%;

(6) 齿面粗糙度为0.2m μ,齿轮两侧面粗糙度为0.2m μ,轴颈的粗糙度为0.1m μ,泵的其

它主要密封面(如轴套内孔表面,轴套端面,齿顶圆表面及泵壳内表面等)的粗糙度一般为0.4m μ;

(7) 轴椭圆度及锥度小于0.005mm ;

(8) 泵体中心偏心距偏差小于0.03~0.04mm ,中心线平行度小于0.01~0.02mm 。

齿轮油泵毕业设计开题报告

附件三 西安交通大学城市学院 毕业设计(论文)开题报告 题目:齿轮泵的设计 所在系:机械工程系 学生姓名: 专业:机械设计制造及其自动化 班级:学号 指导教师: 教学服务中心制表 2012年2月

一、对毕业设计题目的陈述: 液压系统已经越来越广泛应用与各种机械产品,液压驱动以自身的优越性已经广泛应用于汽车行业,特别是专用车辆行业。液压举升机构、助力液压制动机构以及驱动液压马达工作的液压泵,已经受到越来越多的人的青睐。其中的液压齿轮泵是液压系统的核心部件,显得尤为中要。 为了适应液压传动系统正向着快响应、小体积、低噪声的方向发展,齿轮泵除积极采取措施保持其在中低压定量系统、润滑系统等的霸主地位外,尚需向以下几个方向发展: (1) 低流量脉动:流量脉动将引起压力脉动,从而导致系统产生振动和噪声,这是与现代液压系统的要求不符的。降低流量脉动的方法,除了前面所介绍的措施外,采川复合多齿轮泵是一种趋势。 (2)高压化:高压化是系统所要求的,也是齿轮泵与柱塞泵、叶片泵竞争所必须解决的问题。齿轮泵的高压化工作己取得较大进展,但因受其本身结构的限制,要想进一步提高工作压力是很困难的,必须研制出新结构的齿轮泵。在这方面,由多个齿轮组成的复合齿轮泵将有很大优势,国内已有许多研究者对此进行了研究,并取得了显著的成果。 (3)低噪声:国外早就有“安静”的液压泵之说。随着人们环保意识的增强,对齿轮泵的噪声要求也越来越严格。齿轮泵的噪声主要由两部分组成,一部分是齿轮啮合过程中所产生的机械噪声,另一部分是困油冲击所产生的液压噪声。前者与齿轮的加工和安装精度有关,后者则主要取决于泵的卸荷是否彻底。对于外啮合齿轮泵,要实现完全卸荷是很困难的,因此进一步降低泵的噪声受到一定的限制。在这方面,内啮合齿轮泵因具有运转平稳、无困油现象、噪声低等特点而受到普遍重视,特别是直线共轭齿廓的内啮合齿轮泵因其具有运转平稳、噪声低而倍受青睐,正成为研究的焦点。 (4)变排量:齿轮泵的排量不可调节,限制了其使用范同。为了改变齿轮泵的排量,国内外学者进行了大量的研究工作,并取得了很多研究成果。有关齿轮泵变排量方面的专利

齿轮油泵课程设计

课程设计说明书 课程名称《工程图学综合实践》 设计名称齿轮油泵拆装测绘 设计时间 2011年10-12月 系别机电工程系 专业机械设计制造及自动化 班级 14班 姓名陈振明 指导教师邓宝清 2011 年 12 月12 日

目录 一、任务 (3) (一)本次课程设计内容 (3) (二)齿轮油泵简介 (3) (三)实际分配任务 (4) 二、进度表 (5) 三、课程设计过程 (5) (一)拆装与测绘 (5) (二)建模 (6) (三)装配与爆炸 (10) (四)绘制零件图 (13) (五)绘制装配图 (13) 四、本次课程设计的感受 (13) 附表 (14) 附图 (155) 主要参考文献 (21)

一、任务 (一)本次课程设计内容:齿轮油泵的拆装、测绘、建模及工程图绘制。 (二)齿轮油泵简介 1.齿轮油泵的工作原理 齿轮泵是用两个齿轮互啮转动来工作,对介质要求不高。一般的压力在6Mpa以下,流量较大。齿轮油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分成两个独立的部分。右边为吸入腔,左边为排出腔,齿轮油泵在运转时主动齿轮带动被动齿轮旋转,当齿轮从啮合到脱开时在吸入侧就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧,齿轮进入啮合时液体被挤出,形成高压液体并经泵排出口排出泵外。 图1 工作原理 齿轮油泵在正常工作时,具有一定的油压范围,为使工作油压不超过该额定压力,一般在泵盖上都有限压阀装置,它由螺塞、小垫片、弹簧、钢珠定位圈和钢珠组成。当油压超过额定压力时,高油压就克服弹簧压力,将钢珠阀门顶开,使润滑油自压油腔流回吸油腔,以保证整个润滑系统安全工作。其他零件,如填料、垫片、小垫片等起密封防漏作用。垫片的厚度大小不同,可以调节齿轮两侧面间隙的大小。 2.齿轮油泵的说明 本课程设计中所用到的齿轮油泵型号为CB-B2.5,是一种无侧板、三片式结构的外啮合低压齿轮油泵,它没有径向平衡结构和轴向间隙补偿装置,依靠间隙密封原理工作。该产品具有体积小、重量轻、结构简单,工作可靠、价格低廉、维护方便等优点,主要应用于各种机床液压系统及负载较小的液压传动系统中。

齿轮泵设计步骤

一、主要技术参数 根据任务要求,确定齿轮泵的理论设计流量q t . 二、根据公式选定齿轮泵的转速n ,齿宽系数k b 及齿数z 1.齿轮参数的确定及几何要素的计算 确定设计的零件在工作时的工作介质的粘度,然后再由表一进行插补可得此 次设计的最大节圆线速度V 。即: 节圆线速度V : 601000V ???= n D π 式中D ——节圆直径(mm ) n ——转速 表2.1 齿轮泵节圆极限速度和油的粘度关系 流量与排量关系式为: n 00P Q = 0Q ——流量·· 0P ——理论排量(ml/r ) 2.齿数Z 的确定

应根据液压泵的设计要求从流量、压力脉动、机械效率等各方面综合考虑。从泵的流量方面来看,在齿轮分度圆不变的情况下,齿数越少,模数越大,泵的流量就越大。从泵的性能看,齿数减少后,对改善困油及提高机械效率有利,但使泵的流量及压力脉动增加。 目前齿轮泵的齿数Z 一般为6-19。对于低压齿轮泵,由于应用在机床方面较多,要求流量脉动小,因此低压齿轮泵齿数Z 一般为13-19。齿数14-17的低压齿轮泵,由于根切较小,一般不进行修正。 3.确定齿宽。齿轮泵的流量与齿宽成正比。增加齿宽可以相应地增加流量。而齿轮与泵体及盖板间的摩擦损失及容积损失的总和与齿宽并不成比例地增加,因此,齿宽较大时,液压泵的总效率较高.一般来说,齿宽与齿顶圆尺寸之比的选取围为0.2~0.8,即: )(8.0~2.0B =a D 20m 66.6q 1000Z B = Da ——齿顶圆尺寸(mm ) 4.确定齿轮模数。 对于低压齿轮泵来说,确定模数主要不是从强度方面着眼,而是从泵的流量、压力脉动、噪声以及结构尺寸大小等方面。 通过对不同模数、不同齿数的齿轮油泵进行方案分析、比较结果,确定此型齿轮油泵的齿轮参数,最后得到齿轮的基本参数即模数m 齿数Z 齿宽b 。 得到齿轮的齿数后,若齿轮的齿数≥17则不会发生根切的现象,所以在这里不考虑修正,接下来按照标准公式计算齿轮的基本参数。 (1)理论中心距mz D A f ==0

课程设计评语模板

抄写注意:[]内的句子是其前面一句话的替换句,同学们抄写时可选择[] 内外的句子自由组合,形成不完全一样的评语体系,同时请注意保持语句通顺。课程设计评语模板一一优秀 全程主持(积极参与)课程设计[主持(积极参与)全部课程设计任务,如策划、设计方案、人员分工等];在课设团队中起重要组织、协调作用[负责组织、协调团队成员的分工];独立工作能力强,工作态度认真,作风严谨;为团队课程设计任务的完成做出重大贡献[为完成课程设计任务付出很多精力及时间]。 能很好的完成课程设计任务,达到课程设计大纲中规定的全部要求;课程设计报告结构合理,层次清晰,文字表达能力强、计算正确、图纸符合要求;能对课程设计内容进行全面、系统的总结,并能用理论知识对课程设计所涉及的问题加以深入分析[收集并综合利用资料的能力强,独立运用所学知识的能力强,独立分析问题和解决问题的能力强,有自己的创新之处]; 答辩时对该设计项目过程的把握程度好[答辩时对设计进度及任务分工情况了如指掌],回答问题思路清晰[回答教师问题圆满,并有某些独到的见解],陈述 相关知识点时语言流利、概念清楚[从答辩情况来看,基础理论知识扎实]。 经答辩小组讨论,一致认定其课程设计最终成绩为优秀。

抄写注意:[]内的句子是其前面一句话的替换句,同学们抄写时可选择[] 内外的句子自由组合,形成不完全一样的评语体系,同时请注意保持语句通顺。课程设计评语模板——良好 全程参与课程设计[参与全部课程设计任务,参与设计方案、分工等前期工作];能较好地协调自己与团队其他成员间的工作[与团队其他成员之间配合、协调较好];独立工作能力较好[工作态度认真、细致、严谨],为完成课程设计任务做出了较大贡献。 能较好的完成课程设计任务,达到课程设计大纲中规定的全部要求;课程设计报告结构合理,层次清晰,文字表达能力强,计算正确、图纸符合要求;能对课程设计内容进行全面、系统的总结,并能用理论知识对某些问题加以深入分析[收集并综合利用资料的能力较强,独立运用所学知识的能力较强,独立分析问题和解决问题的能力较强]; 答辩时对该设计项目过程的较为了解[答辩时对设计进度及任务分工情况了解清楚],回答问题思路较清晰[回答教师问题较圆满],陈述相关知识点时语言流利、概念较清楚[从答辩情况来看,基础理论知识较丰富]。

CB-B16型外啮合齿轮泵齿轮副参数设计及其绘制(唐柑培)详解

机械原理综合实训课程 设计计算说明书 设计题目: 外啮合齿轮泵的设计 班级: 2013 级材料一班班 学号:201310112113 学生: 唐柑培 指导教师: 李玉龙 起止日期: 2015 年 5 月11 日至 2015 年5月22 日

成都学院(成都大学) 机械工程学院 【机械原理】综合实训课程任务书

目录 一、外啮合齿轮泵工作原理············ 二、电机型号以及减速装置的选型········ 三、齿轮副参数的确定·············· 四、齿轮绘制················· 五、设计小结················· 六、参考文献················

一、外啮合齿轮泵工作原理 外啮合齿轮泵简介 图 1 是外啮合齿轮泵的工作原理图。由图可见,这种泵的壳体内装有一对外啮合齿轮。由于齿轮端面与壳体端盖之间的缝隙很小,齿轮齿顶与壳体内表面的间隙也很小,因此可以看成将齿轮泵壳体内分隔成左、右两个密封容腔。当齿轮按图示方向旋转时,右侧的齿轮逐渐脱离啮合,露出齿间。因此这一侧的密封容腔的体积逐渐增大,形成局部真空,油箱中的油液在大气压力的作用下经泵的吸油口进入这个腔体,因此这个容腔称为吸油腔。随着齿轮的转动,每个齿间中的油液从右侧被带到左侧。在左侧的密封容腔中,轮齿逐渐进入啮合,使左侧密封容腔的体积逐渐减小,把齿间的油液从压油口挤压输出的容腔称为压油腔。当齿轮泵不断地旋转时,齿轮泵的吸、压油口不断地吸油和压油,实现了向液压系统输送油液的过程。在齿轮泵中,吸油区和压油区由相互啮合的轮齿和泵体分隔开来,因此没有单独的配油机构。 齿轮泵是容积式回转泵的一种,其工作原理是:齿轮泵具有一对互相啮合的齿轮,齿轮(主动轮)固定在主动轴上,齿轮泵的轴一端伸出壳外由原动机驱动,

课程设计模板新

安徽省巢湖学院计算机与信息工程学院 课程设计报告 课程名称: 课题名称: 专业班级:10网络工程 同组姓名:李靖波、杨柳、朱艳萍、何学露、刘钊同组学号:09012021、、、09012011、09012034 联系方式: 指导教师:

目录 一、课程设计目的 ................................................................................................................................................. 1 二、课程设计内容 ................................................................................................................................................. 1 2.1、需求分析 ................................................................................................................................................ 1 2.2、同组人员的任务分配 ............................................................................................................................ 2 三、设计思路与步骤 ............................................................................................................................................. 2 四、程序设计 ......................................................................................................................................................... 2 五、设计结果 ......................................................................................................................................................... 5 六、设计分析与总结 ......................................................................................................................................... 11附录:参考文献 ................................................................................................................................................. 13

齿轮油泵设计说明书

绪论 一、课程设计容 根据齿轮油泵的工作原理和零件图,看懂齿轮油泵的全部零件图,并将标准件按其规定标记查出有关尺寸。应用AutoCAD软件绘制所有正式零件图,装配图(A3图纸幅面1),用UG绘制所有正式零件的三维图形。 二、齿轮油泵工作原理 齿轮油泵示意图 工作原理部分:齿轮油泵是依靠一对齿轮的传动把油升压的一种装配,泵体12有一对齿轮,轴齿轮15是主动轮,轴齿轮16是被动轮,如下图所示。动力从主动轮输入,从而带动被动轮一起旋转。转动时齿轮啮合区的左方形成局部真空,压力降低将油吸入泵中,齿轮继续转动,吸入的油沿着泵体壁被输送到啮合处的右方,压力升高,从而把高压油输往需要润滑的部位。 防渗漏:为使油泵不漏油,泵体和泵盖结合处有密封垫片13(垫片形状与泵体、泵盖结合面相同),主动轴齿轮伸出的一端处填料压盖防漏装置,由填料10、填料压盖9、

螺栓组(件18、件8)组成。 连接与定位:泵体与泵盖之间用螺钉18连接,为保证相对位置的准确,用定位销11定位。 齿轮油泵工作原理 拆装顺序:泵体---主动轴和被动轴---垫片、泵体—定位销—螺钉 ---填料---压盖 三、齿轮油泵零件之间的公差配合 1. 齿轮端面与泵体、泵盖之间为32K6; 2. 齿顶圆与泵体孔为Φ48H7/d7; 3. 主动轴齿轮、被动轴齿轮的两支承轴与泵体、泵盖下轴孔为Φ16H7/h6; 4. 填料压盖与泵体孔径为Φ32H11/d11。 四、齿轮油泵的其它技术要求 1. 装配后应当转动灵活,无卡阻现象; 2. 装配后未加工的外表面涂绿色。

第一章 二维零件图

第一章绘制三维零件图 第一节、泵盖 齿轮油泵泵盖如图所示。 具体建模步骤如下: 图 1-1 泵盖 一、整体建模 1、打开UG,新建模型。在菜单栏中选择“插入”\“设计特征”\“长方体”命令。系统弹出“长方体”对话框。如图1-2a所示。 2、在“类型”下拉表框中选择“两点和高度”选项,单击按钮弹出点对话框设置两点位置,相对于wcs坐标系第一点位置为(42,21,0)、第二点为(-42、-21、0),在“尺寸”选项中输入高度为10mm。点击确定建立一个长84mm、宽42mm、高10mm的长方体,完成如图1-2b所示

齿轮泵设计

UG实训设计报告 ——齿轮泵的设计 姓名: 班级: 学号: 指导老师: 时间:

一、从动轴 从动轴零件图如图所示: 1.、新建文件 单击菜单栏中“文件”→“新建”命令,或单击“标准”工具栏中的(新建)按钮,在“模板”列表框中选择“模型”选项,在“名称”文本框中输入“congdongzhou”,单击“确定”按钮,进入UG主界面。 2、创建圆柱体特征 (1)、单击菜单栏中的“插入”→“设计特征”→“圆柱体”命令,打开如图1所示的“圆柱”对话框,数据如图1所示,其它选项默认。 3、倒斜角

(1)、选择菜单栏中的“插入”→“细节特征”→“倒斜角”命 令,打开如图所2所示的对话框。 1 图1 图2 (2)、数据如图所示,选择圆柱体上、下表面的边,点击“确定”按钮。 二、填料压盖

1.、新建文件 单击菜单栏中“文件”→“新建”命令,或单击“标准”工具栏中的(新建)按钮,在“模板”列表框中选择“模型”选项,在“名称”文本框中输入“tianliaoyagai”,单击“确定”按钮,进入UG主界面。 2 2、创建草图 (1)、单击标准工具栏中的(草图)按钮,或选择菜单栏中的“插入”→“草图”命令。进入如图3所示对话框,默认选项,点击“确定”按钮。 图3

(2)、创建如图4所示草图,数据如图所示,点击“完成草图”按钮。 3、拉伸 (1)、选择菜单栏中的“插入”→“设计特征”→“拉伸”命令,或单击“特征”工具栏中的(拉伸)按钮,打开如图4所示的对话框。 (2)在绘图窗口中选择草图的外边框拉伸,数据如图5所示,Z轴为指定矢量,点击“确定”按钮。 图4 图5 (3)、同理对直径5,32和22的圆拉伸,数据分别如图6、7、8所示。 3

课程设计报告【模板】

模拟电子技术课程设计报告设计题目:直流稳压电源设计 专业电子信息科学与技术 班级电信092 学号 200916022230 学生姓名夏惜 指导教师王瑞 设计时间2010-2011学年上学期 教师评分 2010年月日

昆明理工大学津桥学院模拟电子技术课程设计 目录 1.概述 (2) 1.1直流稳压电源设计目的 (2) 1.2课程设计的组成部分 (2) 2.直流稳压电源设计的内容 (4) 2.1变压电路设计 (4) 2.2整流电路设计 (4) 2.3滤波电路设计 (8) 2.4稳压电路设计 (9) 2.5总电路设计 (10) 3.总结 (12) 3.1所遇到的问题,你是怎样解决这些问题的12 3.3体会收获及建议 (12) 3.4参考资料(书、论文、网络资料) (13) 4.教师评语 (13) 5.成绩 (13)

昆明理工大学津桥学院模拟电子技术课程设计 1.概述 电源是各种电子、电器设备工作的动力,是自动化不可或缺的组成部分,直流稳压电源是应用极为广泛的一种电源。直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。 直流稳压电源通常由变压器、整流电路、滤波电路、稳压控制电路所组成,具有体积小,重量轻,性能稳定可等优点,电压从零起连续可调,可串联或关联使用,直流输出纹波小,稳定度高,稳压稳流自动转换、限流式过短路保护和自动恢复功能,是大专院校、工业企业、科研单位及电子维修人员理想的直流稳压电源。适用于电子仪器设备、电器维修、实验室、电解电镀、测试、测量设备、工厂电器设备配套使用。几乎所有的电子设备都需要有稳压的电压供给,才能使其处于良好的工作状态。家用电器中的电视机、音响、电脑尤其是这样。电网电压时高时低,电子设备本身耗供电造成不稳定因家。解决这个不稳定因素的办法是在电子设备的前端进行稳压。 直流稳压电源广泛应用于国防、科研、大专院校、实验室、工矿企业、电解、电镀、充电设备等的直流供电。 1.1直流稳压电源设计目的 (1)、学习直流稳压电源的设计方法; (2)、研究直流稳压电源的设计方案; (3)、掌握直流稳压电源的稳压系数和内阻测试方法。 1.2课程设计的组成部分 1.2.1 设计原理

齿轮泵的结构改进设计论文

摘要 齿轮泵是液压系统中最重要的动力源,在液压传动系统中应用广泛, 因此, 吸引了大量学者对其进行研究,其主要部件是内部相互啮合的一对齿轮。现代机械工程对齿轮泵提出很多新要求,如压强高、排量大、脉动低、噪音低等,所以对齿轮泵的性能分析与改进成为了很重要的课题。 本课题以齿轮泵为研究对象,总结了齿轮泵的特点,深入研究了齿轮泵整体结构及其原理,并利用UG三维建模软件对其进行实体建模,对齿轮泵的流量特征、径向啮合力进行理论分析和数值计算,为齿轮泵的设计提供必要的理论依据。研究了多种齿轮泵的齿廓类型,并推导出这些齿廓线方程。最后学习了流体动力学相关的基础理论知识,利用CFD前处理软件Gambit和后处理软件Fluent对以上五种齿廓齿轮泵进行流体分析,并比较不同齿廓分析后的结果,分别计算了齿轮泵齿间区的流量、齿轮啮合区域的流量,最后就得到了齿轮泵的流量。在时间和转速确定的情况下,得到齿轮泵的流速。外啮合齿轮泵的结构对其内部的流场有很大的影响,采用fluent有限元法求解计算模型,就不同齿廓的变化特点进行对比,可以得出每种类型齿廓的相应的优缺点,从而得出最优的分析结果并在此基础上改进设计出新的齿廓线。 本文对齿轮泵的输出特性研究,推到出齿廓线方程,最后结合流体动力学理论,运用CFD前处理软件Gambit和后处理软件Fluent对以上五种不同的齿廓齿轮泵进行流体分析,在相同的转速下,比较不同齿廓的分析结果,渐开线齿廓在齿轮泵中的增压效果最好,并提出一些优化方案。 关键词:齿轮泵;齿廓;有限元法;输出特性;流体分析

Abstract Gear pump is the most important source of power in the hydraulic system, widely used in the hydraulic drive system, therefore, attracted a large number of scholars study, and its main components are a pair of gears meshing with each other by the internal。Modern mechanical engineering have made a lot of new requirements to gear pump,such as high pressure, large displacement,low ripple and low noise, Performance Analysis and Improvement of the gear pump has become a very important issue. The topics to gear pump for the study, summed up the characteristics of the gear pump, in-depth study of the overall structure and principle of the gear pump and UG three-dimensional modeling software, solid modeling, the flow characteristics of the gear pump, theoretical analysis and numerical calculation of the radial direction meshing force of radial direction, to provide the necessary theoretical basis for the design of gear pump. A variety of the type tooth profile of the gear pump and derive the equations of these tooth profile. Finally learn the basic theoretical knowledge of fluid dynamics, to CFD pre-processing software Gambit and post-processing software Fluent for more than five tooth profile gear pump fluid analysis, and comparison results of different tooth profile analysis were calculated flow rate of the area of the interdental, gear meshing area of flow of the gear pump the, and finally got the flow of the gear pump. In the case of time and speed determined to obtain flow rate of the gear pump. Structure of the external gear pump has a great influence on its internal flow field, using the fluent finite element method for solving the calculation model, comparison of the changes in the characteristics of the different tooth profile can be drawn from the corresponding advantages and disadvantages of each type of tooth profile to arrive at the best results of the analysis to improve the design of a new tooth profile on this basis. The output characteristics of the gear pump onto the tooth profile equation and finally the theory of fluid dynamics, the use of pre-processing of software CFD Gambit and post-processing software Fluent fluid analysis more than five different tooth profile of the gear pump in the same speed, different tooth profile analysis result of that the best of booster effect is involute line tooth profile of the gear pump, and put forward some optimization program of it. Keywords: gear pump; tooth profile; finite element method; output characteristics; fluid analysis

齿轮泵毕业设计

苏州托普信息职业技术学院 毕业论文 论文题目齿轮泵的设计 指导教师吴小花 专业机械制造与自动化班级机械1201 姓名张杰学号 1205300125

摘要:在当今社会泵的应用是很广泛的,在国民经济的许多部门要用到它。在供给系统中几乎是不可缺少的一种设备。在泵的实际应用中损耗严重,特别是化工用泵在实际应用中损耗,主要是轴封部分,在输送过程中由于密封不当而出现泄漏造成重大损失和事故。轴封有填料密封和机械密封。填料密封使用周期短,损耗高,效率低。本设计中设计的齿轮泵排量较小安全性较高,轴封设计合理,精度较高,齿轮泵使用寿命较高。 关键词:泵填料密封机械密封

一、课程设计任务书………………………………………( 4 ) 二、齿轮的设计与校核……………………………………( 5 ) 三、卸荷槽的计算…………………………………………( 12 ) 四、泵体的校核……………………………………………( 13 ) 五、滑动轴承的计算………………………………………( 14 ) 六、联轴器的选择及校核计算……………………………( 17 ) 七、连接螺栓的选择与校核………………………………( 18 ) 八、连接螺栓的选择与校核………………………………( 20 ) 九、齿轮泵进出口大小确定………………………………( 21 ) 十、齿轮泵的密封…………………………………………( 22 ) 十一、法兰的选择…………………………………………( 23 ) 十二、键的选择……………………………………………( 24 ) 十三、键的选择……………………………………………( 25 ) 设计小结……………………………………………………( 27 ) 参考文献……………………………………………………( 29 )

课程设计模板

附件2:课程设计模板参考 《******》 (课程名称) 整体教学设计 (XXXX~XXXX学年第X学期) (第X学年第X学期) 课程名称: 所属系部: 制定人: 合作人: 制定时间:

××职业技术学院

课程整体教学设计 一、课程基本信息 一、课程定位 (尽可能用图形、表格表述) 1. 岗位分析: 本专业毕业生的(技术、管理)岗位分析:初次就业、二次晋升、未来发展。 指出本课程面向的主要岗位。画出其典型工作流程图。 写出该岗位的主要能力需求、知识需求和素质需求。 2. 课程分析:

标出本课程在课程体系中的位置(前导课、后续课)。 说明本课程与普通高校、中职(高职)、培训班相关课程的异同。 二、课程目标设计 总体目标: (这是课程的第一层目标,须与课程标准中相关表述一致,对于尚未制定课程标准的课程,由指定教师写出初稿,课程组教师集体研讨商定本课程的总体目标。) 能力目标:((学生)能根据××(标准、规范),运用××(知识),做××(事情)) 知识目标:(知道...;了解…;理解…;掌握…。) 素质目标:(职业道德、职业素质、职业规范在本课中的具体表现) 其它目标:(有则写,无则不写) 三、课程内容设计:

四、能力训练项目设计 五、项目情境设计 每个项目的多个情境。即该项目的由来、约束条件和工作环境。 用情境引出项目任务。情境类型尽可能齐全,情境展示尽可能生动。 六、课程进程表

注1:“第×次”指的是该次课在整个课程中的排序,也就是在“单元设计”中的标号,不是在本周内的次序。 注2.:“师生活动”指的是师生“做什么(项目、任务中的)事情;学什么内容”。此项内容在这里只是个标题,具体化为“单元设计”后,就要详细展开为“怎样做?怎样学?”。 六、第一次课设计(面向全课,力争体验)。 最后一次课设计(面向全课,高水平总结)。 七、考核方案(考核方案先由指定教师写出,然后由课程组成员集体研讨商定) 八、教学材料(指教材或讲义、参考资料、所需仪器、设备、教学软件等) 九、需要说明的其他问题 十、本课程常用术语中英文对照 附:课程整体设计体会

(完整版)渐开线内啮合齿轮泵的设计本科毕业设计

渐开线内啮合齿轮泵的设计 摘要 齿轮泵由于结构紧凑、体积小、重量轻、转速范围大、自吸性能好和对油液的污染部敏感等优点而广泛应用在机床工业、航天工业、造船工业及工程机械等各种机械的液压系统中。 流量脉动、噪声和效率是评价齿轮泵性能的三大指标,它们之间互相联系,互相作用。齿轮泵的流量脉动引起压力脉动,而压力脉动是引起齿轮泵流体噪声的主要因素,在降低噪声和流体脉动的同时,应防止齿轮泵溶积效率的降低。因此,在齿轮泵的设计中,应综合考虑这三者的影响。 本论文以渐开线内啮合齿轮泵为研究对象,从其工作原理出发以及内啮合齿轮泵的齿轮几何参数上对其进行较为详细的分析和计算。从内啮合齿轮泵的设计要点出发,计算出内啮合齿轮泵齿轮副的几何参数,推导出其轮齿啮合时不发生渐开线干涉、齿廓重迭干涉和径向干涉的条件,并代入各参数进行验证,最终确定其几何参数。在此基础上,对渐开线内啮合齿轮泵的总体结构进行研究设计,并选取合适的零部件材料。 参考何存兴老师的《液压元件》教材进行内啮合齿轮泵排量的计算公式的推导。 关键词:内啮合齿轮泵几何参数干涉排量

The design of involute internal pump Abstract Gear pumps are widely used in , shipbuilding and engineering machinesetc, because of their virtues, such as simple and compact structure,lighter weight, wide range of rotate speed, better capability of self-suck and not with the oil’s polluting. Flow pulsation, noise and efficiency, which effect on each other, are three primary criterions that evaluate the performance of gear pumps. The , and pressure pulsation is caused by flow pulsation.. The cubage efficiency should be prevented to reduced when noise and flow pulsation are reduced. So, their effect should be considered when gear pumps are designed. The research object of this dissertation are involute internal gear pumps . On the basis of their working principle , analyses and calculates the geometry parameters of the internal gear pumps. From the designing mainpoint of the geometry parameters of the internal gear pumps, a new desire is called for. Which worked out in the gear pump gears meshing of the geometric parameters, derived its tooth meshing not to interfere in involute line, tooth overlap intervention and interference in the radial conditions, And into the various parameters to verify, ultimay determine their geometric parameters. On this basis, to gradually open lines mesh

齿轮泵三维设计报告

三维设计技术课程设计说明书设计题目:齿轮泵的三维设计 班级:2013级冶炼-2班 设计人员(按贡献大小排序): 吴迪 荣强 伟 朱宝 指导教师:王 2016年11月

一、设计任务概述:本设计主要围绕齿轮泵这个实例展开。液压油泵作为 一种重要的液压元件,其规格和型号比较繁多,传统的开发过程繁琐,效率低下、Solidworks是一款快捷的制图软件,克服了以上的不足之处,大大提高了设计人员的开发速度,本文将着重就Solidworks的实体建模、虚拟装配、爆炸式图等功能进行齿轮泵的设计。齿轮泵包含多个零部件,本设计巧妙的利用Solidworks这种综合运用多种建模方法和设计方法进行。 二、设计任务分工: 查找资料:吴迪 三维图设计:吴迪 二维图设计:吴迪、荣强 说明书书写:吴迪、荣强、伟、朱宝 齿轮泵工作原理分析:吴迪 设备的工作原理:外啮合齿轮泵是应用最广泛的一种齿轮油泵,一般齿轮泵通常指的就是外啮合齿轮泵。它主要有主动齿轮、从动齿轮、泵体、泵盖和安全阀等组成。泵体、泵盖和齿轮构成的密封空间就是齿轮泵的工作室。两个齿轮的轮轴分别装在两泵盖上的轴承孔,主动齿轮轴伸出泵体,由电动机带动旋转。 齿轮泵工作时,主动轮随电动机一起旋转并带动从动轮跟着旋转。当吸入室一侧的啮合齿逐渐分开时,吸入室容积增大,压力降低,便将吸人管中的液体吸入泵;吸入液体分两路在齿槽被齿轮推送到排出室。液体进入排出室后,由于两个齿轮的轮齿不断啮合,便液体受挤压而从排出室进入排出管中。主动齿轮和从动齿轮不停地旋转,泵就能连续不断地吸入和排出液体。泵体上装有安全阀,当排出压力超过规定压力时,输送液体可以自动顶开安全阀,使高压液体返回吸入管。

齿轮泵设计说明书

% 武汉科技大学 本科毕业设计(论文) · 题目:中高压外啮合齿轮泵设计 姓名: 专业: 学号: 指导教师: 【 武汉科技大学机械工程学院 二0一三年五月

目录 摘要.................................................................. I Abstract.......................................................................... II 1绪论. (1) 研发背景及意义 (1) 齿轮泵的工作原理 (2) 齿轮泵的结构特点 (3) 外啮合齿轮泵基本设计思路及关键技术 (3) 2 外啮合齿轮泵设计 (5) 齿轮的设计计算 (5) 轴的设计与校核 (7) 齿轮泵的径向力 (7) 减小径向力和提高齿轮轴轴颈及轴承负载能力的措施 (8) 轴的设计与校核 (8) 卸荷槽尺寸设计计算 (11) 困油现象的产生及危害 (11) 消除困油危害的方法 (13) 卸荷槽尺寸计算 (15) 进、出油口尺寸设计 (17) 选轴承 (17) 键的选择与校核 (17) 连接螺栓的选择与校核 (18) 泵体壁厚的选择与校核 (18) 总结 (19) 致谢 (20) 参考文献 (22)

摘要 外啮合齿轮泵是一种常用的液压泵,它靠一对齿轮的进入和脱离啮合完成吸油和压油,且均存在泄漏现象、困油现象以及噪声和振动。减小外啮合齿轮泵的径向力是研究外啮合齿轮泵的一大课题,为减小径向力中高压外啮合齿轮泵多采用的是变位齿轮,并且对轴和轴承的要求较高。为解决泄漏问题,低压外啮合齿轮泵可采用提高加工精度等方法解决,而对于中高压外啮合齿轮泵则需要采取加浮动轴套或弹性侧板的方法解决。困油现象引起齿轮泵强烈的振动和噪声还大大所短外啮合齿轮泵的使用寿命,解决困油问题的方法是开卸荷槽。 关键词:外啮合齿轮泵,变位齿轮,浮动轴套,困油现象,卸荷槽 (此毕业设计获得2013届优秀毕业设计荣誉,共有5张零件图,1张装配图,并且有开题报告、外文翻译、答辩稿,答辩ppt,保证让你的毕业设计顺利过关!先找份好的工作,不再为毕业设计而发愁!!!有需要零件图和装配图的同学请联系)

课程设计评语模板精简版

课程设计评语模板——优秀 1.全程主持课程设计;在团队中起重要组织、协调作用,工作认真负责;为课程设计的完成做出重大贡献。 设计报告结构合理,层次清晰,文字表达流畅、计算正确;能对课程设计内容进行全面、系统的总结。 答辩时对该设计项目过程的把握程度好,回答问题思路清晰,语言流利、概念清楚。 经答辩小组讨论,成绩为优秀。 2.积极参与课程设计;独立工作能力强,工作态度认真;为课程设计的完成做出重大贡献。 能很好的完成课程设计任务,达到大纲中规定的全部要求;设计报告结构合理,层次清晰,文字表达流畅、计算正确;能对课程设计内容进行全面、系统的总结,独立运用知识的能力强,独立分析问题和解决问题的能力强,有自己的创新之处; 答辩时对该设计过程的把握程度好,回答问题思路清晰、概念清楚。 经答辩小组讨论,成绩为优秀。 3.积极参与全部课程设计任务;态度认真,积极配合团队工作;为课程设计的完成做出重大贡献。 设计报告结构合理,层次清晰,文字表达流畅、计算正确;能对设计内容进行全面、系统的总结,并能用所学知识对课程设计所涉及的问题加以深入分析,有自己的创新之处; 答辩时对该设计项目过程的把握程度好,回答问题圆满。 经答辩小组讨论,成绩为优秀。 课程设计评语模板——良好 1.全程参与课程设计;能很好地配合团队工作;工作态度认真、细致,为完成课程设计任务做出了较大贡献。 能较好的完成课程设计任务,达到大纲中规定的全部要求;设计报告结构合理,层次清晰,文字表达较流畅、计算正确;能对课程设计内容进行全面、系统的总结,分析问题和解决问题的能力较强; 答辩时对该设计项目过程了解,回答教师问题较圆满。 经答辩小组讨论,成绩为良好。 2.积极参与全部课程设计,与其他成员之间配合、协调较好;态度认真、严谨,为完成课程设计任务做出了较大贡献。 能较好的完成课程设计任务,达到设计大纲中规定的全部要求;设计报告结构合理,层次清晰,文字表达较流畅、计算正确;收集并综合利用资料的能力较强,分析问题和

齿轮泵使用说明书

齿轮泵使用说明书 使用前必须遵守事项 ■本注意事项仅适用于本公司齿轮泵产品。 ■本说明书重点说明了产品使用方法。 ■为了充分发挥产品的性能,预防事故,并且使泵长时间正常运转需要定期检查各项部位,本产品安装测试前要仔细阅读本说明书。 ■为了安全不能随意改动本产品,修理,改动后发生事故,我公司不负责任。 ■要熟读本说明书上实际安装,运转,保修,检查等最终使用步骤。 ■长时间不使用时需要断电,放在通风干燥的地方保管。 ■对本产品有疑问时可以通过代理商或是办事处联系解决。 安全注意事项 ●使用产品(安装,运转,保修,检查)前要熟读本说明书上正确使用方法。 ●本说明书把安全注意事项以危险和注意区分说明。 ●齿轮泵禁止使用带有挥发性的油和危险性高的液体,如用以上液体漏出后容易引发火灾,环境污染等危险。 ●禁止使用漏油的泵,如泵出现漏油的现象,请尽快终止使用并替换或修理,如油漏到地面请尽快擦净,以免滑倒受伤。 ●齿轮泵使用温度范围在(-5℃~80℃),如超过以上温度密封件将失去其功能出现漏油等现象,请不要在超出以上温度范围下使用。 ●泵出油口部位的接头等配件要选择能够承受比泵最大压力大1.5倍的产品。 ●请按照说明书上的方法安装泵,设计管道。 齿轮泵的旋转方向是一致的,如安装不正确,驱动时容易磨损密封件,使油溢出。 ●泵的出油口部分一定要安装完成后驱动。 容易造成泵的损坏或是发生火灾等危险。 ●泵在驱动状态时请勿将出油管拆卸,容易使油溢出造成危险。 ●请勿拆卸泵上任何螺丝或配件。 ●出油管上请安装压力调节阀。 ●为了防止出现漏油现象,请确保使用压力低于泵的最高压力。 ●泵的表面温度较高时请勿用手背触摸,容易烫伤。 ●请勿踩踏泵。 ●泵需移动时要注意不要摔落。

相关文档