文档库 最新最全的文档下载
当前位置:文档库 › 探地雷达

探地雷达

探地雷达
探地雷达

探地雷达原理及应用读书报告

班级:061094班姓名:洪旭程学号:20091001724

探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。

探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司( Geophysical Survey System Inc. ) 的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。

一、探地雷达的工作原理

探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) 。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。

图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示) 。

图2 中横坐标的单位为m ,横轴代表地表面的探测距离,在地表面均匀打点可以得到相应点

位的地下介质分布情况;纵坐标

代表的是电磁波从发射到遇见地下目标体或基岩时反射回地面并被仪器接收所需要的时间。有了雷达记录的双程反射时间即可据公式(1) 算出该界面的埋藏深度H :

H = (t·c)\ 2 εr (1)

其中, t 为目标层雷达波的反射时间; c 为雷达波在真空中的

传播速度(0. 3 m/ ns) ;εr 为目标层以上介质相对介电常数均值。

二、探地雷达数据采集及处理

2.1 数据采集

探地雷达采用高频电磁波的形式进行地下介质的探测,其运动学规律与地震勘探方法类似,因而地震勘探的数据采集方法可以被借鉴到探地雷达野外测量中,其中包括反射﹑折射和透射测量方式。在反射测量方式中以剖面法多次覆盖技术为主,其他方法为辅。

剖面法是发射天线和接收天线以固定间距沿测线同步移动的一种测量方式。剖面法的测量结果用探地雷达时间剖面图像来表示。当天线距离很小时,相当于自激自收的数据采集方式,得到的记录能较准确地反映测线处各反射界面的形态和介质体的空间位置等信息。然而,由于地下介质对电磁波的吸收,来自深处界面的反射波会由于信噪比过低而不易识别,这时需应用不同天线距的发射-接收天线在同一测线上进行重复测试,然后将测试记录中相同位置的记录进行叠加,以增强对深部介质探测的分辨率。在探地雷达探测过程中,可以根据现场地形﹑设备状况以及实际需要来选择不同的测量方式。

2.2 数据处理

探地雷达数据处理的目的主要是压制各种噪声,增强有效信号,提高资料信噪比,以最大可能的分辨率在探地雷达图像剖面上显示反射波,以便从数据中提取速度、振幅、频率、相位等特征信息,帮助解释人员对资料进行有效的地质解释。探地雷达的数据处理流程一般分两部分:第一部分为数据编辑,包括数据合并、废道剔除、测线方向一致化、漂移处理;第二部分是常规处理以及探地雷达图像增强处理,包括数字滤波、振幅恢复、均衡、归一化、小波变换、时深转换等。

三、影响探地雷达的因素

影响探地雷达的探测深度、分辨率以及精度的因素主要包括内在与外在的两方面。内在因素主要是指探测对象所处环境的电导率,介电常数等因素;外在因素主要与探测方法有关, 如探测所采用的频率,采样速度等。在实际应用中,综合考虑这些因素,采用适当的方法技术, 是探测成功与否的关键。本文主要就环境电导率、介电常数以及探测频率的影响做一些探讨。

3.1 环境电导率的影响

环境电导率是影响探地雷达探测深度的重要因素,高频电磁波在地下介质的传播过程中会发生衰减。由于探地雷达的工作频率较高,一般认为,高频电磁波在地下介质的传播过程满足介电极限条件,即ωεmσ。ω为电磁波的频率;ε为环境的介电常数;σ为环境的电导率。高频电磁波的衰减系数满足

(1)

其趋肤深度

(2)

实际上,由于大地电阻率一般都比较低, 达不到介电极限条件, 其工作条件介于准静态极限(ωεnσ) 与介电极限条件之间。对于静态极限,其趋肤深度

(3)

可见,不管工作条件是在介电极限还是在准静态极限条件,或者是界于两者之间,其趋肤深度都是随电导率的增大而减少,即环境的电导率越低,高频电磁波的衰减越慢,探测深度越大。在工程实践中,环境电导率的值一般在4~10 - 9 S/ m,对于常见的非饱和含水土壤和沉积

型地基,其电导率的大小主要受含水量及粘土含量的影响,存在以下经验公式

σ = n (1 - s) σa + ns σw + (1 - n) σs , (4)

式中,σ为电导率;σa ,σw ,σs 分别为空气、水和土的电导率; n 为孔隙率; s 为含水饱和度。一般地说,低电导率条件(σ< (10~7) S/ m) 是很好的雷达应用条件,如空气、干燥花岗岩、干燥石灰岩、混凝土等, (10~7) S/ m <σ< (10~2) S/ m 为中等应用条件,如纯水、冰、雪、砂、干粘土等,σ> (10~7) S/ m 为很差的应用条件,如湿粘土,湿的页岩,海水等。

3.2 介电常数的影响

介电常数反映了处于电场中的介质存储电荷的能力。介质的介电常数主要受介质的含水量以及孔隙率影响,与电导率相类似,也存在以下经验公式

ε = n (1 - s) ε a + ns εw + (1 - n) εs , (5)

通常把一种介质的介电常数与空气介电常数的比称为相对介电常数。相对介电常数的范围为:1 (空气) 至81 (水) 。表1 为工程勘察中常见介质的相对介电常数。

表1 常见介质的相对介电常数

介质类型相对介电常数介质类型相对介电常数

空气1 花岗岩4~7

雪1~2 砂岩6

PVC 材料3 页岩5~15

沥青3~5 石灰岩4~18

纯水冰4 玄武岩8~9

混凝土4~11 (5) 土壤和沉积物4~30高频电磁波在介质中的传播速度主要取决于介质的介电常数,其速度

v = c/ ε , (6)

式中, c 为光速。高频电磁波在两种不同介质的界面产生反射,反射系数

r = ( ε 1 - ε 2 ) / ( ε 1 + ε 2 ) , (7)

由于探地雷达是接受反射波的信息来探测目标体,而反射信号的强弱取决于介电常数的差异,因此,介电常数的差异是探地雷达应用的先决条件。

3.3 探测频率的影响

一般的探地雷达都拥有多种频率的天线,一些厂家的天线中心频率低频可达到16 MHz ,高频可达到2 GHz。通常,把探测时所采用的天线中心频率称为探测频率,而其实际的工作频率范围是以探测频率为中心的频带,探测频率主要影响探测的深度和分辨率。当探地雷达工作在介电极限条件时,高频电磁波的衰减几乎不受探测频率的影响,比如,电磁波在空气中传播,由于不存在传导电流,电磁波不发生衰减。但实际上,由于大地电阻率一般都比较低,其工作条件达不到介电极限条件。由于传导电流的存在,高频电磁波在传播过程中发生衰减,其衰减的程度随电磁波频率的增加而增加。因此,在实际工作时,必须根据目标体的探测深度选用合理的探测频率。在工程地质勘察中,勘察深度一般在5~30 m ,选择低频探测天线,要求探测频率低于100 MHz。对于浅部工程地质,探测深度在1~10 m ,探测频率可选择100~300 MHz ;对于探测深度在0. 5~3. 5 m 的工程、环境以及考古勘察工作,探测频率可选用300~500 MHz ;对于混凝土、桥梁裂缝等厚度在0~1 m 左右的检测,探测频率一般选用900 MHz~2 GHz。

探测频率是制约探测深度的一个关键因素,同时也决定了探测的垂直分辨率,一般是探测频率越高,探测深度越浅,探测的垂直分辨率越高。对于层状地层,以Tm 表示可分辨的最小层厚度,λ为高频电磁波的波长, 则有Tm = 0. 5λ, 由于λ= v/ f , 其中, v 为电磁波的传播速度, f 为电磁波的频率,而又因(6) 式,于是Tm = c/ 2 f ε。由此可见,探测频率和介质的介电常数是决定垂直分辨率的两个主要因素。对于金属圆柱体,其可探测的最小直径约为埋深的8 % ,埋深大于3 m,其可探测的最小直径约为埋深的50 %。探测频率也是制约水平分辨率的一个关键因素。探地雷达向地下传播是以一个圆锥体区域向下发送能量, 如图1 所示。电磁波的能量主要聚集在能量区, 而不是一个单点上。在能量区的中央有一个称为第一Fresnel 带的区域。雷达接收的反射波能量主要来自该区域,因此,反射波的信号反映的是反射区内介质的平均效应,也就是说,当水平尺度小于反射区尺度时,雷达是难以分辨的,而反射区的半径Rf 主要由电磁波的波长λ和反射面的深度R0 决定,其关系为Rf = (λR0 + 1/ 42λ) 1/ 2 。电磁波频率越高,波长越短,反射区的半径越小,水平分辨率高。

四、探底雷达的应用实例

4.1管线探测中的运用

地质情况

沪宁高速公路改造工程, 在跨越丹阳运河时需进行大口径灌注桩的施工。由于石油天然气管道在设计的桩位附近, 准确位置不详, 为保证打桩工程的安全实施, 需查明该管线精确的水平位置。为了穿越运河, 管线的埋深相当大, 属于超深管线, 所以探测难度较大。

推断解释

采用探地雷达型号为加拿大Sensor & Soft-w are Inc. 生产的PU LSE EKKO- 4 型。沿着管线的走向一共布置了三条剖面, 每条剖面走向垂直于管线走向, 剖面按照对应的桥桩进行编号, 即分别为55# 、52# 和50# 。使用天线频率为50MH z, 天线间距为1m, 测点间距为0. 25m。探测结果分别如图3、图4 和图5 所示,雷达探测波形图的水平坐标为距离( 单位: m) , 左侧纵坐标为雷达波双程传播时间( 单位: ns) , 右侧

纵坐标为深度( 单位: m) 。55# 雷达剖面( 图3) 中, 在水平位置13. 5~15. 5m、深度方向16~ 18m 区域出现较为明显的异常反射波; 在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波的振幅, 表明此位置处的确存在强反射体, 即天然气管道。

52# 雷达剖面( 图4) 中, 在水平位置19. 0~21. 0m、深度方向26~ 28m 区域出现较为明显的异常反射波; 在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波振幅, 表明此位置处的确存在强反射体, 即天然气管道。

50# 雷达剖面( 图5) 中, 在水平位置17. 0~18. 75m、深度方向26~ 28m 区域出现较为明显的异常反射波; 在该深度区域内, 所圈定的异常范围内其反射波振幅明显强于周围介质的反射波振幅, 表明此位置处的确存在强反射体, 即天然气管道; 此处应当说明的是, 在本条雷达剖面的结束位置处仍没未看到天然气管道反射波与另一侧周围介质的分界面, 是因为该剖面结束位置处有一水沟, 导致测线只能在该位置结束, 因此剖面未能显示出全部异常区。根据本次探测结果, 高速公路桥的基桩距探地雷达探测到的天然气管道中心地面投影位置最小达3. 5m, 桩基施工只要控制好垂直度, 不会触及到天然气管道, 可以安全施工。

4.2隧道超前预报中的运用

地质情况

在宜万铁路某施工隧道进行超前预报,测区属构造剥蚀—溶蚀深切割中山,基本地形配置为台原山地和深切峡谷。地势北高南低,山顶高程1 593~1 100 m ,河谷切割深度200~700 m ,山脉一般沿NE 向和EW 向延伸。地形条件对区内岩溶发育起明显控制作用,岩溶发育总体呈深切峡谷型特征。测区地处亚热带温暖湿润气候区,四季分明,冬季干冷少雨,夏季湿热多雨,其气候条件有利于岩溶发育。

推断解释

图2 (a) 是使用瑞典RAMACPGPR 探地雷达100MHz 主频天线采集的雷达数据,采样频率995 MHz ,采样点数为512 ,天线间隔110 m ,采样间隔011 m。从图上可以明显看出,在掌子面前方519~718 m 和1114~1410 m 之间分别各有一个明显异常。后经开挖验证,第一处异常为不同岩性的界面,第二处异常是一夹泥薄层,并与隧道顶部的一个大溶洞相通,因该地区在预报检测之后发生过大的降雨,在实际开挖时发生了突泥。由于事先采取了有效的防范措施,所以未造成任何工程事故。探地雷达的隧道超前预报工作为隧道安全施工起到了保驾护航的作用。图2 (b) 是用瑞典RAMACPGPR 探地雷达50 MHz主频天线采集的雷达数据,采样频率为499 MHz ,采样点数为480 ,天线间隔110 m ,采样间隔011 m。

从图上可以看出, 在掌子面前方810~1615 m 处有一处明显异常。数据采集过程中,发现隧道已开挖部分大多为碳质灰岩,而在接近掌子面的地段,碳质灰岩中夹杂的方解石明显增多,这是岩溶发育或裂隙发生的初步特征,因此判断该处异常可能是富含水。经开挖验证,现场情况与预报结果相符。

4.3水坝渗漏检测中的运用

地质情况

黑龙江省甘南县某水库始建于1958 年, 为省内大型水库。该水库的坝型为粘土均质坝,

表层为块石护坡。1998 年遭受超百年不遇洪水, 库区水位达205. 69 m, 土坝后坡在高程193~ 200 m 范围内发生33 处面积不等的严重散浸( 散浸是指在坝体下游出现零星分布的多处浸水现象) 和局部的集中渗流。

推断解释

为了查明造成散浸的原因, 查明散浸点在坝体内的分布情况, 采用地质雷达方法对坝

体进行了全面的检测。在平行坝轴线在坝顶、前坡马道、后坡马道共布置5 条地质雷达测线。地质雷达工作频率为40 MHz, 时间窗口为900 ns, 64 次迭加, 天线间距1 m, 采样点距1 m。坝顶测线的雷达检测结果显示, K 0+ 060- K 0+ 120 及K0+ 240- K0+ 400 桩号的雷达图像中出现多处无规律地呈零星分布的强反射, 图1 为桩号K0+ 240- K0+ 400 的雷达测量剖面图。图中强反射区距坝顶埋深约10~ 12 m。由于该水坝是均质土坝, 雷达工作场地也没有其他干扰因素, 因此, 这种呈零星分布的强反射只能是坝体局部粘土受水浸润处于相对饱和状态, 与周围未受到水浸润的粘土形成明显的电性界面所形成。可见, 在带压力的水体作用下, 长期受浸泡的土体粘粒形成泥浆, 并向坝体下游逐渐渗出, 形成散浸。后期的钻探取心表明,桩号K0+ 235- K0+ 400 处坝顶11 m 以下的粘土含水量明显大于其它地段, 是发生散浸的严重区段。散浸现象在雷达图像上表现为断断续续的强反射,呈零星的条带状分布, 强反射处雷达波的视频率变低, 波形变宽, 并伴有较强的多次波出现。

参考文献

[1] 李大心. 探地雷达方法及应用[ M ] . 北京: 地质出版社, 1994.

[2] 陈军, 赵永辉, 万明浩.探地雷达在地下管线探测中的应用.( 同济大学海洋与地球科学学院)

[3]王正成1 ,谭巨刚2 ,孔祥春3 ,汪桂荣3 ,纪勇鹏3.探地雷达在隧道超前预报中的应用(11 中国地质大学(北京) ,北京100083 ; 21 湖南省地球物理地球化学勘查院,长沙410000 ;31 北京鑫衡运科贸有限责任公司,北京100029)

[4] 董延朋,孔祥春.影响探地雷达工作的因素分析. (1. 山东省水利科学研究院,山东济

南250013 ; 2. 北京鑫衡运科贸有限责任公司)

[5] 刘立春.岩溶隧道探地雷达超前预测预报技术.(中铁十三局集团有限公司, 吉林长春130033)

[6] 肖宏跃1,雷宛1,杨威2.探地雷达特征图像与典型地质现象的对应关系. (1. 成都理工大学信息工程学院,四川成都 610059;2. 中国水电顾问集团成都勘测设计研究院,四川成都610072)

[7] 李大洪.探地雷达的应用现状及发展前景.( 煤炭科学研究总院重庆分院630037)

[8] 常铮.探地雷达的工作原理及应用

戴前伟 ,吕绍林 ,肖彬.探地雷达的应用条件探讨. (1. 中南工业大学,长沙410083 ;

2. 深圳市勘察研究院,深圳518026)

[10] 薛建1, 王者江1, 曾昭发1, 田钢1, 董彦明2, 李连杰2, 宋克民2.地质雷达方法在水坝渗漏检测中的应用( 1. 吉林大学地球探测与信息技术学院, 吉林长春130026; 2. 吉林省水利水电勘察设计研究院, 吉林长春130012)

探地雷达在桩基检测中的应用

探地雷达在桩基检测中的应用 于涛 (中铁十九局集团第三工程有限公司) 摘要介绍了探地雷达工作原理与在桩基中的检测方法,探讨了探地雷达在桩基检测中的应用现状。关键词探地雷达桩基 桩基础属隐蔽工程,为了保证桩基础的安全可靠,桩基的质量检查至关重要。常规桩基工程的检测方法如静载荷试验、高应变、低应变等已经日趋完善,但是随着工程目的的多样化和质量要求的提高,许多建筑工程中的桩基设计和施工工艺较为特殊,使得建立在杆状模型的一维波动方程理论基础之上的常规检测手段无能为力[&]。基于以上情况,常使用地质雷达探测作为桩基常规检测方法的有力补充,这正好发挥了其高分辨率、高准确性的特点,同时可以数据处理和图像解释,有其独特的效果。 地质雷达是目前精度最高的物探仪器之一,广泛应用于工程地质、岩土工程、地基处理、道路桥梁、文物考古、混凝土结构探伤等领域[!]。探地雷达能探测#"’(")深度,一般能满足工程勘测的需要[#]。但对于以钢筋混凝土为主要材料的桩基,其电性性质与周围土体有明显差异,而且介质性质较均匀,探测深度可能会增加,另外雷达剖面会有较好的效果。 &探地雷达的基本原理 探地雷达是利用高频电磁波(&*+,’&-+,)以宽频带短脉冲的形式,在地面通过发射天线(!)将信号送入地下,经地层界面或目的体反射后回到地面,再由接收天线(")接收电磁波反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征信息的方法。 当发射天线向地下发射高频宽频带短脉冲电磁波时,遇到不同介电特性的介质就会有部分电磁波能量返回,接收天线接收反射回波并记录反射时间。电磁波在岩土介质中的传播速度为: !#$%" !. 式中:$为电磁波在真空中的传播速度,约为"/#)?01$&;".为相对介电常数。 电磁波在介质中传播时,其路径$波形将随所通过的介质的电性质及几何形态而变化,根据接收到波的旅行时间(亦即双程走时)、幅度、频率与波形变化资料,可以推断介质的内部结构以及目标的深度、形状等,利用电磁波在介质中的波速和旅行时间可以计算介面深度(&2’3(4!)。当发射天线沿欲探测物表面移动时就能得到其内部介质剖面图像,其工作原理见图& 。反射脉冲的信号强度,与界面的波反射系数和穿透介质的波吸收程度有关。 〔收稿日期〕!""#$"#$!%

探地雷达在公路检测中的应用

探地雷达在公路检测中的应用 发表时间:2018-09-17T15:24:06.533Z 来源:《基层建设》2018年第25期作者:朱学荣 [导读] 摘要:探地雷达是探测地下目标的无损探测技术,具有探测速度快、分辨率高、可连续探测、操作方面灵活、费用低等特点,在我国工程勘察中应用愈发广泛。 身份证号:62012119660228XXXX 摘要:探地雷达是探测地下目标的无损探测技术,具有探测速度快、分辨率高、可连续探测、操作方面灵活、费用低等特点,在我国工程勘察中应用愈发广泛。现就探地雷达勘探技术工作原理、测量参数以及探地雷达在公路检测中的应用展开总结性分析,以提升业内同行对探地雷达的应用认知。 关键词:探地雷达;公路检测;工作原理;测量参数;应用 交通是国民经济发展中的基础产业,所谓“交通带来经济”,不仅提升了国民生活水平,同时也加速了整个社会经济的发展。加强公路工程质量、运行状态的检测,是维持我国公路建设发展的重要内容,同时也是确保交通安全的重要途径[1]。探地雷达技术的研发在公路检测工作中起到了重要作用,保障了公路工程质量与公路工程的实时维修,减少了因质量引起的重大事故,现就探地雷达在公路检测中的应用展开分析,提出几点对该技术的认识,为业内同行提供参考。 一、探地雷达勘探技术的应用原理 探地雷达(Ground Penetrating Radar,GPR)又被称为探测雷达、地下雷达、地质雷达、脉冲雷达等,指的是面向地质勘探目标,借用高频脉冲电磁对地质目标内部结构的探测方法,具有高精度、高效率、无损等特点。探测中通常具备发射部分与接收部分,前者主要用于高频脉冲的产生与发射,而接收部分则由接收机、信号方法器、接收天线、信号处理等设备组成,主要借用电磁波对不同介质的折射、绕射、反射、散射、吸收等物理现象完成检测,其应用机理主要为:借助不同频率电磁波可随着不同介质传播速度差异性等特点,探地雷达通过向地下发射高频电磁波,以获得低些不同介质的反射波,并完成信息的分析,最终绘制出该区域雷达图形,以便于工程施工期间对地下介质实际情况的了解。 在公路工程检测期间,公路基层、面层、路基等材料介电常数均不同,这为探地雷达的实际应用创造了先决条件。电磁波在传播期间,在遇到差异性介电常数时可出现反射情况,介质的不同介电常数也不一致,如空气介电常数多为1,公路面层沥青、混凝土则分别在4~7左右,公路路基、基层则多数超过8[2]。此类明显的介电常数划分为探地雷达监测提供了重要技术支持。通过获悉电磁波反射时间、脉冲波形。、速度等测量,可准确获得公路各项基线参数,以此判定异常物位置,路基密实程度、路面材料厚度等。 二、探地雷达测量参数影响 1、地界面的回波 探地雷达检测中,界面回波信号是反应道路介质的主要参数,但由于公路原始波形相对复杂,如何区分路面与路基反射回波,是探地雷达技术的主要探究内容。事实上,目前绝大多数干扰波表现稳定,在实际勘探期间均有对应的措施进行干预,减少对反射波的影响。在探地雷达的使用中可对含界面反射波、非含界面反射波予以不同回波信号分析,以便确定底界面回波信号,获悉底界面回波时间,值得注意的是,操作中需充分应用已获得探测点进行探测参考,并比对探测图像中多个探测点,或利用已获得的反射波形展开区分、确定。 2、确定地面零点 如何确定地面零点是公路工程测量中重要内容,可对道路地面厚度检测结果造成直接影响。实际工作期间,主要借助金属板进行地面零点的确定,即:于天线下方置放金属板,以此在显示屏中获得全反射波形,通过比对雷达波与路面发射波,以确定地面零点情况。 3、标定介电常数值 路面介电常数值在很大程度上直接决定了路面厚度值的准确性,在探地雷达勘探中意义重大。但因路面材料结构、密实程度、潮湿度等因素差异,均会对路面介电常数值造成影响,以至于引起整个探地雷达勘探作业的正常开展。因此,在钻孔取样中应选在探测图像均匀的地方标定介电常数值,以确保检测结果的可靠。其次,特殊地段,如面层较厚与较薄的介电常数值同样存在差异性,因此在取样标定期间,需选择对应的介电常数值,以确保探测精度,不仅如此,在整个施工前,应综合考虑整体路面的结构变化与材料更换情况,以保证介电常数准确性。 4、正确选择天线频率 探地雷达在勘探期间,路面厚度的不同可对其天线频率造成影响,如高速路段的建设,其路面硬度要求为25.0cm,而普通路面厚度则仅需15.0cm即可,因此施工期间其具体数值应选择适宜的天线中心频率,以满足施工期间对接受天线的要求,保证反射波清晰与最佳探测效果。另外酌情考虑天线宽度与路面最小尺寸对天线频率造成的影响。 三、探地雷达勘探技术的应用 1、检测路面层厚 在整个公路工程质量的评估中,公路路面厚度是主要评价内容,采用探地雷达技术检测公路路面厚度具有必要性,是确保公路面层厚度符合工程设计的关键,同时利于公路后续的使用、维护、修复等工作的开展。在检测路面厚度中,探地雷达主要利用电磁波在曾界面反射时间、传播速度等因素综合考量,并随着探地雷达设备、仪器、技术等进步,为整个检测工作精确性提供了助力。探地雷达在使用中其无损性优势,在很大程度上避免了传统钻孔取芯的局限性,如减少对路面的损害、增加了施工工作量、降低了工作效率等。在有关数据调查中显示,我国探地雷达检测路面厚度误差率仅在3.0%左右,在保留检测客观性、准确性的基础上,减少了人力与经济的不必要浪费[3]。 2、总结路基病害 路基病害是造成整个公路质量的基础因素,广泛存在于现实工程中,不仅可导致面层;裂隙、层面脱空等路面变化,甚至引起面层二灰结石层、路床及其床下软弱,对整个公路造成更大危害性。探地雷达勘探利用电磁波探测,可发现路基沉降等引起的空洞、暗穴、坍塌等现象,并确定地基软弱层位置,了解其软弱层影像因素,制定有效的解决方案[4]。 3、检测维修质量 公路建设完成后,加强对公路质量的维修、维护是确保工程使用安全的保障,探地雷达勘探技术可实现地质的快速探测,了解公路病害有无针对性解决,加上探地雷达实时成像技术,在公路维修质量方面具有重要意义。

探地雷达操作规程

探地雷达操作规程 (文件编号:****-010) 共1页第1页版本/版次:D/ 0 生效日期:2016-01-01 1. 目的 为了使检测员更好地熟悉和掌握检测仪器的操作方法,保证检测数据的科学、公正和准确性,特制定本规程。 2. 适用范围 适用于探地雷达仪器 3 操作步骤 3.1测试前的安装准备 检查所有部件是否带齐,包括:电池、雷达主机、数据线、处理器电源线、信号线、工具箱、备件、固定用绑扎带、记录本; 3.2试验/检测的工作程序 (1)测试连接。将地质雷达天线通过支架安装。 (2)在扫描前调试主机并对主机进行参数设置。 (3)打开电源,控制天线移动的人员根据操作主机的人员口令,将天线紧贴待测界面上匀速移动。 (4)测试结束。按下stop结束测试点,保存文件并退出; (5)拆除信号线,拆除天线,支架。 3.3扫描之前的仪器调试和参数设置 (1)菜单系统—>设置—>调用,选择所用的天线。 (2)系统—>单位垂直刻度设为时间,单位为ns (3)测程:900M天线探测混凝土的量程约为15纳秒,为使所有有效信号完全显示,一般设置为20ns (4)采样点数:一般设为512或1024 采样点数越多,扫描曲线越光滑,垂直分辨率越好。但是采样点数增大,使得扫 描速率下降 (5)每秒扫描数:64 (6)增益点数:2 (7)垂向高通滤波器:225MHz

(8)垂向低通滤波器:2500MHz (9)数据位:16位 (10)发射率:100 KHz,发射功率越高,采集速度越快,但若采集过高,易损坏雷达系统 (11)信号位置设为手动 (12)表面设为0 (13)调出完整的直达波(首波),调整延时参数 若检测结构与上次相同,可不再次设置以上参数,系统默认上次检测参数。 (14)增益设置为自动,增益函数手动设置,可以改变增益点数多少、并且可以调整各增益点的函数大小,进而调整信号强度。增益函数调整过大,在探测资料中可能 人为造成假象。设置方法为先设为手动,再设为自动。 编制/日期:批准/日期:

路用探地雷达在公路病害探测中的应用

路用探地雷达在公路病害探测中的应用 路用探地雷达在公路病害探测中的应用路用探地雷达在公路病害探测中的应用 黄成1,王正2,俞先江2 (1.中国铁建港航局集团有限公司,广东珠海519020;2.中设设计集团股份有限公司,江苏南京210005) 摘要:在公路改扩建或常规性养护定期检测中,采取常规的手段比较难以发现路面 结构内部病害。文章结合数值模拟和理论分析,研究探地雷达在公路路面病害探测中的应用,分析了路面内部结构不同病害的典型频谱图和波形特征,并将研究成果应用于工程实 践中,取得了良好的效果。文章研究成果有助于更方便的应用探地雷达对路面病害进行探测,从而为公路的改扩建和常规养护提供参考和建议,同时对探地雷达在公路路面的广泛 应用也有一定的促进作用。 关键词:探地雷达;路面;病害;探测 探地雷达的发展伴随着高速公路的建设应运而生,探地雷达(Ground Penetrating Radar,简称GPR,又称地质雷达),是应用地球物理学的一个新的分支,从20世纪80年代后期开始应用于公路检测。探地雷达检测技术具有快速高效、无损、高精度、操作方便、检测内容丰富等优点,逐渐受到公路部门的重视,并在公路质量检测中得到越来越广泛的 应用。探地雷达除了常规的应用于路面结构层厚度检测外,还能够对路面内部结构的脱空、空洞、裂隙、沉陷和严重疏松等病害隐患进行探测,能够较全面的反映出路面内部结构技 术状况,具有实时连续、高精度、快速和无损等特点。 1 探地雷达检测原理 探地雷达是通过向地下发送一种高频宽带电磁波。电磁波在地下介质传播过程中,当 地下目标体的介质存在差异时,如脱空、空洞、富水、分界面,电磁波就会发生反射。在 对反射雷达波进行处理和解译的基础上,根据接收到的雷达波形、强度、介电常数、双程 走时等参数进而推断地下目标体的空间位置、结构及几何形态,进而对地下隐蔽目标物的 探测。 探地雷达由主机、天线、电缆以及打标器等组成,针对路面结构病害检测时,一般选 取400MHz、900MHz的天线,探测深度在1.5m以内,能够满足检测要求。 探地雷达探测示意图如图1所示。探地雷达进行地下目标体检测时,理论基础为反射 系数R,它依赖于介质波阻抗之间的差异性。 图1 探地雷达探测示意图

探地雷达在地下管线探测中的应用

探地雷达在地下管线探测中的应用 张进华,马广玲,姚成虎,缪建文 (南京市测绘勘察研究院,江苏南京 210005) 摘 要:探地雷达技术是如今适应快速、准确、无损地探测地下障碍物而迅速发展的电磁技术。本文通过结合工程实例来探讨探地雷达在地下管线探测中的广泛应用。 关键词:探地雷达;地下管线探测;异常反射 1 前 言 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标体或界面进行定位的电磁技术。探地雷达以其探测的高分辨率和高工作效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展以及工程实践的增多和经验的丰富积累,探地雷达技术进一步发展,仪器不断更新,应用范围逐步扩大,现已被广泛应用于工程地质勘察、建筑结构调查、无损检测、生态环境等众多领域。本文将以探地雷达在地下管线探测中的应用,说明探地雷达可以有效解决工程上的许多疑难问题,并总结了相关经验和应用效果。 2 探地雷达的原理及工作方法 探地雷达由地面上的发射天线将高频带短脉冲形式的高频电磁波定向送入地下,高频电磁波遇到存在电性差异的地下地层或目标体反射后返回地面,由接收天线接收。高频电磁波在传播时,其路径、电磁场强度与波形将随所通过介质的电性及几何形态而变化,故通过对时域波形的采集、处理与分析,可确定地下界面或地质体的空间位置及结构。 探地雷达通常以脉冲反射波的波形形式记录。波形的正负峰分别以黑白表示,或者以灰阶或彩色表示,这样同相轴或等灰线、等色线即可形象地表征出地下反射面或目标体。在波形图上各测点均以测线的铅垂反向记录波形,构成雷达剖面。根据雷达剖面图便可 收稿日期:2003-07-09判断地下不明障碍物。探地雷达在地下介质中的传播遵循波动方程理论。探地雷达的探测效果主要取决于地下目标体与周围介质的电磁性质差异、目标体的深度与介质对电磁波的吸收作用、目标体的几何形态及规模、干扰波的类型、强度及特点等因素。 探地雷达具有不同的野外工作方法,根据工作区的具体情况可选择剖面法、多次覆盖法以及宽角法等测量方式。实际工作中,测量参数(发射接收天线距、时窗、测点点距、天线中心频率、采样率等)可根据不同要求进行选择,从而得到不同分辨率及不同探测精度的雷达剖面。通常在进入工作区前,应有目的地进行类似场地条件的参数选择试验,以达到最佳探测效果。在进入工作区后应根据实际需要布置测线和测点,并让测线和测点尽量通过被测目的物。在不明显的目的物上进行探测时应尽量加密线距和点距,以利于后面的资料处理与解释。 3 探地雷达的数据资料解释处理及在地下管线探测中的应用效果 近几年来,我们采用加拿大生产的pulse EKKO-100A型探地雷达从事了数百次的地下管线探测工作,取得了丰富的探地雷达探测资料及很好的应用效果。 3.1 资料的处理及解释 探地雷达探测资料的解释包括数据处理和图像解释两部分内容。由于地下介质相当于一个复杂的滤波器,介质对电磁波的不同程度吸收及介质的不均匀性, 63城 市 勘 测2004年

探地雷达测量土壤水方法及其尺度特征

探地雷达测量土壤水方法及其尺度特征 摘要:土壤水的多尺度观测与模拟是当前国内外研究的热点问题。探地雷达作为一种测量土壤含水量的现代先进技术,填补了传统测量方法与遥感方法之间的尺度缺口,国内外大量研究表明:应用探地雷达测量土壤含水量的精度较高,测量速度快,无需破坏土壤结构,作为一种田间尺度的测量方法在测量中、小尺度土壤水空间分布特征等方面具有独特优势,通过不同频率的选定能够测量深度为0.05~50 m的土壤含水量。对探地雷达测量土壤水的主要方法、原理、精度及优缺点等进行详尽介绍,并讨论探地雷达的测量深度和尺度特征等问题。探地雷达在遥感反演土壤水模型率定与精度验证方面比TDR、烘干法更有优势,有潜力应用于遥感产品验证、土壤水模式时间稳定性分析等其他水文相关应用中,为相关研究和探地雷达测量土壤水方法的推广提供理论参考。 关键词:探地雷达;土壤水;测量深度;尺度特征;遥感 中图分类号:P641.7;S152 文献标识码:A 文章编号:1672-1683(2017)02-0037-08 土壤水,分布在地面以下、地下水面以上的土壤层中,

也被称作土壤中的非饱和带水分,是一种重要的水资源(在农田水利中也被称作土壤墒情或土壤湿度)。土壤水的时空 分布与变化对土壤一植被一大气间水分、能量平衡具有显著影响,准确测量土壤含水量,对研究区域水循环、观测干旱的发生及发展过程、指导当地农业生产实践、合理进行水资源调控等工作均具有重要意义。 随着科学技术的发展,出现了多种土壤含水量测量技术,按测量的空间尺度可大体划分为三种:一是点尺度,主要包括烘干称重法、中子法、时域反射仪法(TDR)、频域反射仪法(FDR)等,这些方法测定的数据能较准确地反映观测点 的土壤含水量,但都存在耗时费力并对土壤具有一定破坏性等问题;二是区域尺度,主要包括探地雷达(GPR)技术和 近地面环境宇宙射线中子法等,是无危害,非接触,不破坏土壤,不受土壤质地、密度、盐分等影响的土壤含水量测量方法,适合几十公顷等较大面积的土壤墒情观测,这些技术在快速发展;三是卫星像元尺度,卫星遥感反演土壤含水量是通过测量土壤表面反射或发射的电磁能量,建立遥感信息与土壤含水量之间的关系,从而反演出地表土壤含水量的过程,按遥感波段划分主要有可见光-近红外法(反射率法、植被指数法),热红外法(热惯量法、作物缺水指数法、温度 状态指数法)和微波遥感法(主动微波法、被动微波法)等,具有快速、覆盖范围大和定期重复观测等优势,但遥感方法

探地雷达

探地雷达原理及应用读书报告 班级:061094班姓名:洪旭程学号:20091001724 探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。 探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司( Geophysical Survey System Inc. ) 的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。 一、探地雷达的工作原理 探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) 。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。 图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示) 。

探地雷达的发展与现状

探地雷达的发展与现状 探地雷达的历史最早可追溯到20世纪初。1904年,德国人Hülsmeyer首次将电磁波信号应用于地下金属体的探测。1910年,Leimback和L?wy以专利形式提出将雷达原理用于探地,他们用埋设在一组钻孔中的偶极天线探测地下相对高导电性质的区域,正式提出了探地雷达的概念。1926年Hülsenbeck第一个提出应用脉冲技术确定地下结构的思路,他指出介电常数不同的介质交界面会产生电磁波反射。由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,之后二三十年尽管在美国出现过一些相关的专利,这项技术很少被运用到其它领域,直到50年代后期,探地雷达技术才慢慢重新被人们所重视。探地雷达在矿井(1960,J.C.Cook)、冰层厚度(1963,S.Evans)、地下粘土属性(1965,Barringer)、地下水位(1966,Lundien)的探测方面得到了应用。1967年,一个与stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年Procello将其于探测月球表面结构。同样在1972年,Rex Morcy和Art Drake开创了GSSI(Geophysical Survey Systems Inc.)公司,主要从事商业探地雷达的销售。随着电子技术的发展,数字磁带记录问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探地雷达的实际应用范围在70年代以后迅速扩大,其中有:石灰岩地区采石场的探测(1971,Takazi;1973,kithara;)、淡水和沙漠地区的探测(1974,R.M.Morey;1976,P.K.Kadaba)、工程地质探测(1976,A.P.Annan和J.L.Davis;1978,G.R.Olhoeft,L.T.Dolphin)、煤矿井探测(1975,J.C.Cook)、泥炭调查(1982,C.P.F.Ulriken)、放射性废弃物处理调查(1982,D.L.Wright;1985,O.Olsson)、以及地面和井中雷达用于地质构造填图(1997,M.Serzu )、水文地质调查(1996,A.Chanzy ;1997,Chieh-Hou Yang )、地基和道路下空洞及裂缝调查、埋设物探测、水坝的缺陷检测、隧道及堤岸探测等。 自70年代以来、许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国Geophysical Survey System Inc公司的SIR系统、Microwave Associates 的MK系列,加拿大Sensor & Software的Pulse Ekko系列,瑞典地质公司(SGAB)的RAMAC/GPR系列,日本应用地质株式会社OYO公司的GEORADAR系列及一些国内产品(电子工业部LTD系列,北京爱迪尔公司CR-20、CBS-900等)。这些雷达仪器的基本原理大同小异,主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,多态雷达系统,层析成像雷达系统等。 国内探地雷达的研究始于70年代初。当时,地矿部物探所、煤炭部煤科院,以及一些高校和其他研究部门均做过探地雷达设备研制和野外试验工作,但由于种种原因,这些研究未能正式用于实际。90年代以来,由于大量国外仪器的引进,探地雷达得到了广泛的应用与研究。1990-1993年,中国地质大学(武汉)在国家自然科学基金资助下,开展了大量的理论研究和工程实践,取得了不少成果。探地雷达主要应用领域有隧道(1998,隋景峰;2001,刘敦文等)、水利工程设施(1997,赵竹占等)、混凝土基桩(2000,李梁等)、煤矿(1998,刘传孝等)、公路(1996牛一雄等;1997,沈飚等);岩溶(1994,王传雷,祁明松;1995,李玮,梁晓园);工程地质(1994,胡晓光;1999,刘红军,贾永刚);钻孔雷达(1999,宋雷,黄家会)等。

国内外路用探地雷达性能概述

国内外路用探地雷达性能概述 摘要:本文调研了国内外主要道路用探地雷达(GPR)生产厂家及其检测能力,提出适宜路用雷达天线中心频率范围,为工程和研究人员合理选用探地雷达的提供参考。 关键词:道路工程探地雷达(GPR)天线性能 1 概述 探地雷达(GPR)检测路面和桥面板,可给出定性、定量的结果,用于快速、可靠的评定路面、桥面状况,是一种非常经济、高效的检测手段。随着科学技术的进步,特别是分析处理软件的进一步开发和完善,雷达必将在公路快速检测中应用越来越广。 2 ASTM和AASHTO雷达标准简介 由于国内目前尚没有专用的雷达路面桥面检测标准规范。大多依赖厂家的软件、资料和参照美国ASTM 和AASHTO等测试方法和标准。 1)ASTM D4748—98《使用短脉冲雷达测定组合路面层厚度测试方法标准》(Standard Test Method for determining the thickness of Bound Pavement Layers Using Short—Pulse Radar)。本规程包括使用短脉冲雷达进行组合路面层厚度无损检测。本方法的精确度和适应性取决于雷达系统的穿透性、分辨率和介电常数。 2) ASTM D6097—97el《使用地面探测雷达评定沥青铺层混凝土桥面板测试方法标准》,本规程包括可用于评定铺有沥青混凝土磨耗层的混凝土桥面板状况的步骤,尤其是判断是否存在剥离。最严重的损坏是由内部钢筋的锈蚀引起的。 3)ASTM 06432—99 《使用地表面探测雷达方法进行地下勘探标准指南》(Standard Guide for using the Surface Ground Penetrating Radar Method for Subsurface Investigation),本指南是脉冲雷达方法的概述,而不是理论、测试步骤和数据解释的详细资料,限于地表面雷达探测的一般用途。 4)AASHTO TP36《使用脉冲雷达评定沥青加铺层混凝土桥面板测试方法标准》(Standard Test Method for Evaluting Asphalt-Coverd Concrete Bridge Decks using pulse Radar),本标准基于SHRP成果2015,内容基本与ASTM6087相同。 3国内外雷达(GPR)生产厂家及路面雷达性能调查 3.1 加拿大Sensers&Software公司PULSE RODAR路面雷达系统 RODAR是Pulse雷达公司研制的专利产品,大范围的天线频率(50 MHz-3

试分析探地雷达在道路工程检测中的应用

试分析探地雷达在道路工程检测中的应用 发表时间:2017-08-24T11:48:57.053Z 来源:《基层建设》2017年第11期作者:刘超 [导读] 摘要:随着我国经济水平的增长,道路建造的速度开始加快,道路工程的技术水平也逐渐提高。探地雷达在道路工程检测中的应用大大提高了道路工程的施工质量。 广西路建工程集团有限公司 摘要:随着我国经济水平的增长,道路建造的速度开始加快,道路工程的技术水平也逐渐提高。探地雷达在道路工程检测中的应用大大提高了道路工程的施工质量。本文主要介绍了探地雷达的应用方法,希望可以为相关人员提供参考意见。 关键词:探地雷达;道路工程;检测;应用 引言 探地雷达主要是借助电磁波的作用,针对不同介质的分界面进行连续性扫描,以此种方法掌握介质内部结构形态以及位置,探地雷达技术属于一种电磁探测技术。电磁波能够在遇到电性差异的目标体时发生反射,然后被地面的天线所接收,雷达波被处理和分析之后可以得到有关地下目标体的位置、结构、电性以及几何形态等等信息,以此作为道路工程施工的依据。 1探地雷达检测原理 高频电磁波是探地雷达的一个核心,经由一体式电磁波发射接收天线装置向地下发射高频电磁波,并且能够将反射的信号最终送回到主机上面。介质影响电磁波的传播,会具体表现在不同路径、不同电磁场强度以及不同的波形上面。电磁波在介质中传播的时间可以称之为双程走时,所产生的幅度以及波形资料,一般都是经由雷达的主机进行记录,然后将记录所得的数据信息按照科学方法进行仔细处理,并进行图形合成,最终便得到了能够反映出地质剖面的雷达图像。 电磁波在地下介质中传播的时候,它自身所包含的能量会被介质所吸收,因此它的能量会被减少。尤其是电磁波在一些含水量和含盐量的岩石或者土壤中传播的时候,损耗程度更大。从电磁波的性质以及介质的性质可以看出,介质例如岩石和土壤,这两种介质的含水量、湿度以及电导率和密度都会对电磁波的传播效果产生影响,而且还会因为介质存在的矿物成分发生变化。如果存在两种介质,这两种介质之间的相对介电常数存在的差别非常大,那么所表现出来的电磁波信号就会呈现出强的状态。这当中关系到探地雷达的检测数据的是相对介电常数,它主要是影响了被测目标的深度。另外一个影响参数是介电常数,介质的介电常数与电磁波的反射特性之间的关系非常密切,可以根据两者之间的时间差求出介质分界的厚度,这样便可以获得检测厚度以及孔洞等数据信息。 2探地雷达的应用 2.1针对岩溶地质的初勘检测 探地雷达的测试原理是利用电磁波在不同的介质中所产生的反射信号作为依据,判断地层中存在的异常情况的。就一些现场测试数据可以看出,存在一些岩溶发育比较大的区域,这一部分区域中电磁波信号会被岩溶界面反射,然后回到地面上。通过探地雷达的理论知识可以知道,雷达图像上面的溶洞反映其实属于一种理想化的状态,比如形成拱形或者是形成近似拱形的图像。但是其实在实际的野外探测当中得到的雷达图像很不一样,具有很大的差距。观察物性差异比较小的单一岩层可以发现,雷达在这一类区域中的反射波信号相对要弱一些。当然在一些裂隙、溶洞以及破碎地带的区域就会出现雷达的反射波信号增强的情况。现场的地质雷达钻孔资料可以用作指导实践的依据,需要采用对比分析的方法,能够得到岩溶以及裂隙的具体位置。 通常情况下需要工作人员在分析数据之前,对比遥感检测结果。如果在某一区域显示其裂隙发育,那么就需要将钻孔的结果与雷达检测的结果进行对比。在某市的道路工程建设中,探地雷达检测出的是某一区域的岩溶层是浅灰色的,局域隐晶质结构,而且使薄层状构造。具体表现为坚硬的特点,能够判断出岩体是破碎的,而且存在发育的岩溶。雷达测试显示的异常情况几率比较多。因此在使用探地雷达的过程中,需要工作人员综合各个方面的信息,使其最终得出的数据信息是准确的,能够更好地指导实践。 2.2针对道路结构层厚度检测 一些道路工程在施工过程中会遇到一些路段基层表面破坏的情况,而且没有及时采取措施会发生恶化,一般都会发生纵横向裂缝,或者是沉陷和网裂现象。要查明发生这种情况的原因,需要从道路各个结构层的厚度着手,利用探地雷达探测水泥稳定层厚度。在这一过程中存在一些施工比较久的碎石层,而且通常会伴随着较大的含泥量,所以会影响到雷达信号的分辨,所以不会将这一些区域作为探测的对象。道路结构层厚度的走向可能会存在分布不够均匀的情况,而且通常伴随着较大的起伏度。结构层的厚度在横向方面、纵向方面都会存在不均匀的形象,这些因素恰好造成了路面结构力学相应的不均匀变化。通过探地雷达可以准确地发现这些问题,并将雷达获得数据信息进行分析作出解决的方案措施,尽量减少道路工程施工中存在的问题。由于以上提到的问题都是探地雷达能够检测出来的,所以为了能够提高道路工程施工的质量,要注意避免这些问题诱发基层表面的纵横向裂缝的发生,因为这些裂缝非常容易导致块状裂缝的形成。 2.3针对隧道掘进的超前预报 一些隧道的掘进过程中可能会存在一些地方涌现大量的水,那么这一区域的地质情况可以通过地质详勘报告进行判断。通常这一类区域都是属于岩溶发育比较大而且经常会存在地质交接的切向断层。所以针对道路施工安全方面的考虑,工作人员在挖掘隧道的过程中需要采用探地雷达进行操作。而且需要注意的是探地雷达的使用是定期的,主要的检测对象是隧道的掌子面以及两侧洞壁。另外应该引起重视的是探地雷达的天线频率需要控制在100兆赫兹,因为这一种频率的天线可以探测到二十五米以内的地质情况,针对超前预报的需求能够最大程度上满足。从实践研究结果可以看出,如果探地雷达在检测的过程中,所获得的反射信号比较强,而且存在信号同相轴但是却不连续的情况,就可以判断出这一区域的,即隧道掌子面前面存在一些比较破碎的岩体。如果遇到这样的情况,工作人员在施工的过程中需要格外注意施工安全,防止安全事故的发生。通常施工单位都会对隧道的掘进结果进行详细记录,这些记录的信息和数据可以为证明地质雷达探测信号与实际工况一致提供依据。通常如果确保了这两者之间一致的话,一般在隧道掘进过程中即便是发生了局部塌陷的情况,也会因为早已有所准备,安全事故的发生几率就会减少了。 道路工程施工的不同阶段,使用探地雷达检测的时候,会发现一些隧道内部存在比较发育的岩溶。因为探地雷达的检测获得了准确的数据信息,通过技术人员的分析就会得到一种具有预报性质的探测,所以能够作为信息反馈到施工部门。从某种程度上讲雷达检测确保了道路工程施工的安全性。应用探地雷达的技术可以达到检测路面结构层厚度以及岩溶探测和超前预报等方面的情况。不仅如此探地雷达还可以用到识别路面的缺陷,识别水泥混凝土面板脱空方面。探地雷达技术的发展速度相当快,市面上已经出现了不同种类的探地雷达。为

道路探地雷达检测方法

道路探地雷达检测方法 1 检测仪器及设备 1.1 探地雷达主机技术指标应符合下列规定: 1 系统增益应不低于120dB; 2 信噪比应不低于60dB; 3 模数转换应不低于12位; 4 信号迭加次数应可选择; 5 采样间隔宜不大于0.5ns; 6 实时滤波功能可选择; 7 应具有点测与连续测量功能; 8 应具有手动或自动位置标记功能; 9 应具有现场数据处理功能。 1.2 探地雷达天线可采用不同频率的天线组合,技术指标应符合下列规定: 1 应具有屏蔽功能; 2 最大探测深度应大于2m; 3 垂直分辨率应高于2cm。 1.3 探地雷达工作环境应符合下列规定: 1 工作环境温度-10℃~+40℃; 2 工作环境湿度<90%。 2 现场检测 2.1 检测前的准备应符合下列规定: 1 检测前应对被检工程进行现场调查,搜集设计、施工资料,了解工作条件及环境安全状况。 2 应调查施工过程中特殊施工段,记录结构物位置和影响检测工作障碍物和电磁干扰源的位置。 3 应调查已发病害,并记录其位置和类型。 4 检测前应正确连接雷达系统,并在检测前进行试运行。 5 检测前应准确标记检测里程桩号及测线位置。 6 测量轮连续采集时应保持测量轮随检测距离运转良好,计程准确。

7 在不间断通行道路检测时,检测仪器车后应跟保通警示车辆,检测车内应有专人负责安全。 2.2测线布置应符合下列规定: 1 测线布置应以纵向布线为主,横向布线为辅。 2 每车道应布设一条纵测线。应选取有代表特征部位布设部分横测线,对于重点病害异常区段宜进行加密测线,必要时应根据缺陷目标体形状布置横向测线。 3 测线每1km应有一个里程标记,标记应清晰。 2.3 介质参数标定应符合下列规定: 1 检测前应对道路结构层的介电常数或电磁波速做现场标定,每同类道路结构层宜不少于3处,取平均值为该类道路结构层的介电常数或电磁波速。当检测长度大于10km时应适当增加标定点数。 2 标定宜采用钻孔实测方法,标定记录中的界面反射信号应清晰、准确。 3 标定结果应按下列公式计算: (2.3-1) (2.3-2) 式中:ε—相对介电常数; v—电磁波速(m/s); t—双程旅行时间(ns); d—标定目标体厚度或距离(m)。 2.4现场参数应根据检测目标体特征而设定,检测参数应包括中心频率、时窗、采样率、测点点距等。现场检测参数设定应符合下列规定: 1 天线中心频率应按下列公式选定: (2.4-1) 式中:f —天线中心频率(MHz ); x—要求的空间分辨率; ε—相对介电常数。 2 时窗应按下列公式确定:

RAMAC探地雷达在地下管线探测中的应用

RAMAC探地雷达在地下管线探测中的应用 冯新,周晶 大连理工大学土木水利学院,大连,116024 摘要:应用RAMAC系列探地雷达进行了地下管线探测的研究。基于对城市地下管线周围介质环境的分析,设计了探地雷达的工作参数,对不同类型的地下管线进行了探测,并就典型的管线异常特征进行了分析。关键词:探地雷达,地下管线,应用 1.引言 地质雷达(Ground Penetrating Radar,简称CPR)是采用无线电波检测地下介质分布和对不可见目标体或地下界面进行扫描,以确定其内部结构形态或位置的电磁技术。其工作原理为:高频电磁波以宽频带脉冲形式通过发射天线发射,经目标体反射或透射,被接收天线所接收。高频电磁波在介质中传播时,其路径、电磁场强度和波形将随所通过介质的电性质及集合形态而变化,由此通过对时域波形的采集、处理和分析,可确定地下界面或目标体的空间位置或结构状态。地质雷达具有分辨率高、无损、操作简便、抗干扰能力强等特点,适用于各种环境条件。 只要地下管线目标与周围介质之间存在足够的物性差异就能被探地雷达发现。探地雷达的管线探测能力弥补了管线探测仪的探测缺陷, 因此在城市地下管线的探测中得到普遍应用。本文采用瑞典玛拉公司(MALA GEOSCIENCE)生产的RAMAC系列探地雷达,对大连市某场地的地下管线进行了探测,以确定地下管线的具体位置和走向。并且根据探测结果和实际开挖的对比研究,对典型的雷达测线平面异常特征进行了分析。 2.方法简介 城市地下管线铺设特点多为地面开槽和机械顶管等方式埋设, 一般埋深较浅, 在0.5m~ 5m 之间。管线周围介质为回填土、砂质土和粘土等, 管道上方铺有压实路面结构层, 如三合土、混凝土、沥青路面、方砖等,需探测的管道一般管径为0.1m~ 1.5m 之间, 管道内的介质为水、空气、可燃气体等, 管体材质为钢、铸铁、水泥、塑料等。 探地雷达应用的前提是,目标管线体与周围介质的介电常数和电磁波传播的波速存在明显差异。金属管线由于金属中电磁波波速为零, 不能传播, 电磁波在金属管道界面上几乎全部反射回来, 因此, 管线与周围介质存在明显的电磁性差异;非金属管线除管线本身材质与周围介质存在一定差异外, 更主要的是管道内介质如水、气体等与周围介质电磁性差异更大。这些性质通常能够满足探地雷达应用的前提条件。 对于管线探测,探地雷达的反射波组主要从两方面进行识别解释。第一, 反射波组的同相性形成同相轴是判别管线空间位置的重要标识, 在管线探测的横向剖面上, 管线作为孤立的埋设物, 其反射波的同相轴为: 当管线为圆形管道时, 为向下开口的抛物线呈伞形状; 当为沟道式或管块时, 同相轴为有限平板, 界面反射的中部为平板状, 两端各为半支下开口的抛物线。第二, 电磁波在介质中传播特性反映了地下界面上下介质的物性差异, 该差异越大, 反射波越强, 振幅越大; 上下介质中波速大小决定了反射波振幅方向, 当波从介电常数小波速大的介质进入到介电常数大、波速小的介质时, 反射系数为负, 即反射波振幅反向; 反之, 从波速小进入波速大的介质时反射系数为正, 反射波幅与入射波同向。地下目标管线一般存在四层介质界面, 即管线的内外各两层。以上层内界面为例, 非金属管线内上界面的反射波振幅较大, 当内介质为水时, 反射系数为负, 反射波为反向; 当内介质为气体时, 反射系数为正, 反射波为正向; 金属管线由于金属内波速近似为零, 反射波自然为反向, 而且反射振幅特别强, 同时反射信号以管线的外层界面为主, 其它

探地雷达作业指导书

浙江公路技师学院试验检测中心 作业指导书 (版本:第一版第0次修订) 文件编号:GLJX/ZD-32-2017 试验类别:探地雷达测路面厚度检测作业指导书 编写: 审核: 批准: 受控状态: 分发号: 20XX年XX月XX日发布20XX年XX月XX日实施浙江公路技师学院试验检测中心

目录 目录 (2) 1、目的与适用范围 (3) 1.1 (3) 1.2 (3) 2、依据标准 (3) 3、仪具与材料技术要求 (3) 3.1 (3) 3.2 (3) 4、方法与步骤 (4) 4.1 准备工作 (4) 4.2 测试步骤 (8) 5、数据导出 (8) 5.1 (8) 5.2 (8) 6、数据处理 (11) 6.1 (11) 6.2 (11) 7、报告 (11)

GSSI Sir30数据采集作业指导书 1、目的与适用范围 1.1本方法适用于采用短脉冲雷达检测沥青路面面层厚度,可供道路施工过程质量控制、质量评定及旧路调查使用。 1.2本方法不适用于潮湿路面或用富含铁矿渣集料等介电常数较高的材料铺筑的路面。 2、依据标准 《路基路面现场测试规程》JTG E60-2008 3、仪具与材料技术要求 3.1雷达测试系统由承载车、发射天线、接收天线和控制单元等组成。 3.2测试系统技术要求和参数 (1)距离标定误差:≤0.1%; (2)最小分辨层厚:≤40mm; (3)系统测量精度要求如下表: 测量精度技术要求

(4)天线:采用空气耦合方式,带宽能适应所选择的发射脉冲频率。 4、方法与步骤 4.1 准备工作 (1) 检测前应收集设计图纸、施工配合比等资料,以便合理确定标定路段。 (2) 给电池及笔记本电脑充满电,保证野外数据采集能够正常进行。 (3) 把主机、天线、大缆及其他配件列一个详细清单,出野外之前由专人照着清 单清点一遍,保证需要带的设备全部齐全。 (4) 先连接系统各个部件,笔记本电脑+主机+电缆+天线+标记杆+测距轮; 注:设备连接要求无电操作不能带电连接、插拔各个部件,电缆连接防止虚接。联机时注意电缆接口方向,电缆接头应与面板垂直,拧紧,与主机端旋转至红线处。天线端旋转至三个小卡槽露出,同时注意固定电缆。电缆与天线应用环行扣连接。 (5)数据采集---参数设置 双击采集软件图标,进入如下系统设置界面:

相关文档