文档库 最新最全的文档下载
当前位置:文档库 › boost反馈电路

boost反馈电路

boost反馈电路
boost反馈电路

Boost反馈控制器设计

专业:

学号:

姓名:

一、设计要求

设计Boost 反馈校正电路,使得输入10V ,输出15V ,并分析输出响应的快速性与静态误差。

二、原系统分析

Boost 电路闭环控制系统结构图如图1所示,其中电源Vin=10V ,Vo=15V ,电感1mH ,电容500uF ,电阻10Ω,开关频率10KHz 。

图1 Boost 电路闭环控制系统结构图

根据Boost 电路的小信号模型可知,其占空比到输出电压的传递函数如式

(1)所示。

2

220)s (v o 'D s R L LCs )R 'D sL 1(V 'D )s (d )s (v in ++-

== (1)

16

106.3108.1360101.89

410101010500)1094101(1532|)()(10,500,1153

11553252323630)('+?+?+?-=++???-??=Ω

======-=-------=s s s s s s s d s V R uF C mH L V

V V V V D s in V o O i O 代入得:

-40-2002040

60M a g n i t u d e (d B )

10

1010101090

180

270

360P h a s e (d e g )Bode Diagram

Gm = -27 dB (at 1.33e+003 rad/sec) , P m = -50.6 deg (at 5.81e+003 rad/sec)

Frequency (rad/sec)

图2 原始系统的波特图

可见该传递函数是一个非最小相位系统,其波特图如图2所示。

电路的幅值裕度:GM=-27dB ,相位裕度:-50.6deg

其稳定判据显示系统不稳定。

三、PI 控制器校正分析

经过之前分析,原系统不稳定,原因是原始回路中频以-40dB/dec 的斜率穿越0dB 线,此时对应最小相位系统相频图中相移为-180度,-20dB/dec 对应-90度,所以应使校正后的系统以-20dB/dec 的斜率穿越0dB 线,这样就会有较好的相位稳定性。

为使系统无静态误差,采用PI 校正(K(τs+1)/(τs)),这时即使比例系数较小,由于积分项的作用,仍能够消除静态误差。应该使PI 调节器的零点频率明显低1/原系统开环传递函数极点频率ω0,使得校正后的开环传递函数在相移1800时的频率不至于有太大的降低,否则截止频率将会更低。据此可选PI 调节器的零点频率1/τ=0.5ω0,即

τ

=1/(0.5ω0)

(2)

PI 调节器的零点频率确定以后,改变PI 调节器的比例系数K 即可改变校正后的开环传递函数的截止频率和相位稳定裕量。由图1中的幅频特性可知,原系统在极点频率处有约40db 的谐振峰值,因此设计PI 比例系数时必须考虑这个因数,否则可能在ω0附近由于开环增益大于零而使系统不稳定。PI 调节器的增益为-40db 时对应的频率为'c ω,且'c ω处于PI 调节器幅频特性的-20db/dec 段,则有20lg(K/(τ'c ω))+ A 0=0,A 0为原系统开环特性的谐振峰值(db )。取'c ω为PI 调节器零点频率的一半,即'c ω=0.5/τ,则有

K=τ'c ω10-A0/20=0.5*10-A0/20

(3)

据此可计算得到τ=1/(0.5*1000)=0.002,K=0.5*10-40/20=0.005。由此得到的PI 调节器的波特图、系统校正后的开环传递函数的波特图如图3中所示,

由图4可知,系统校正后的开环传递函幅频特性以-20db/dec 过零,相位稳定裕量为940,系统是稳定的。

M a g n i t

u d e (d B )10

10101010P h a s e (d e g )Bode Diagram

Gm = 9.68 dB (at 1.08e+003 rad/sec) , P m = 95 deg (at 56.8 rad/sec)

Frequency (rad/sec)

图3 采用PI 调节器时的波特图

Boost 变换器的负反馈控制系统传递函数图如图4所示,其中,G vd (s)为占空比至输出的传递函数,G m (s)为PWM 脉宽调制器的传递函数,G c (s)为PI 调节器的传递函数,H(s)表示反馈通路的传递函数。

图4 Boost 变换器的负反馈控制系统传递函数图

采用PI 调节时系统输出响应如图5所示,可以看出系统相应速度较快,且无静

态误差。

图5 R=10Ω,K=0.005时系统响应

改变比例系数,观察比例系数对系统的影响,如图6,图7所示。可见,比例系数越小,响应速度越慢。但比例系数越大,系统稳定性越差,甚至引起不稳定。

图6 R=10Ω,K=0.004时系统响应图7 R=10Ω,K=0.008时系统响应

可以看出在K=0.005时系统快速性较好,仿真在K=0.005时,不同功率时的输出响应。仿真结果,如图8、图9、图10所示。可以看出,功率越大,系统的响应速度越快,由于采用PI控制,均无稳态误差。

负反馈对电路的影响

负反馈对放大电路的影响 所谓负反馈放大电路的反馈组态,首先要清楚一个前提,那就是一定说得是交流反馈下的情况,在直流反馈中不会涉及组态的概念。而且大家还要注意一定要是负反馈放大电路才提这个组态的概念,正反馈电路中也没有这种提法。 对于(交流)负反馈放大电路来说,我们经常是分成四种反馈组态来进行分析:电压串联负反馈、电压并联负反馈、电流串联负反馈、电流并联负反馈。很多学生学习完这部分内容后并不能建立起一个清楚的思路,到底为什么要分出这四种组态?在设计电路时如何确定选择哪种反馈? 现将负反馈放大电路反馈组态的问题简单总结一下,希望对大家能有所帮助: 1.电压反馈的重要特点是可以维持输出电压基本趋于恒定,也就是说有一个基本稳定的输出电压。 2.电流反馈的重要特点是可以维持输出电流基本趋于恒定,即有一个基本稳定的输出电流。 3.串联反馈是在输入端一侧外来输入信号和反馈信号以电压形式求和,即要想是电路能很好的起到反馈调节作用,输入信号要是恒压源(或者近似恒压源性质的信号)。 4.并联反馈是在输入端一侧外来信号和反馈信号以电流形式求和,即要想使电路能很好的起到反馈调节作用,输入信号要是恒流源(或者近似恒流源性质的信号)。 故:具体在设计电路时选择哪一种反馈形式要看具体情况而定:如果你设计的电路是需要恒定的电压信号输出,就选电压反馈;若是需要恒定的电流信号输出,就选电流反馈;输入端要提供的是恒压性质的信号,就选串联反馈;若输入端要提供的是恒流性质的信号,就选电流反馈。 总结:负反馈对放大电路性能的影响 1)负反馈使放大电路增益减小,但更稳定,减小非线性失真,抑制反馈环内噪声,扩展频带 2)串联负反馈使输入电阻增大 3)并联负反馈使输入电阻减小 4)电压负反馈使输出电阻减小 5)电流负反馈使输出电阻增大 6)电压反馈的重要特点是可以维持输出电压基本趋于恒定 7)电流反馈的重要特点是可以维持输出电流基本趋于恒定 例如:电压串联负反馈的作用: 由于电压负反馈使输出电压更稳定,所以必定输出阻抗变小;由于是串联负反馈,输入阻抗增大。

BuckBoost电路建模及分析

题目:BuckdBoost电路建模及分析 摘要:作为研究开关电源的基础,DCTC开关变换器的建模分析对优化开关电源的性能和提高设计效率具有重要意义。而BucMoost电路作为DCTC开关变换器的其中一种电路拓扑形式,因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 为了达到全面而深入的研究效果,本文对Buck^oost电路进行了稳态分析和小信号分析。稳态分析中,首先介绍了电路工作原理,得出了两种工作模式下的电压转换关系式,并同时可知基于占空比怎样计算其输出电压以及最小最大电感电流和输出纹波电压计算公式;接着推导了状态空间模型,以在M ATLAB中进行仿真;而最后仿真得到的电感电流、输出电压的变化规律符合理论分析。小信号分析中,首先推导了输出与输入间的传递函数表达式,以了解低频交流小信号分量在电路中的传递过程;接着分析其零极点,且仿真绘制波特图进行了验证。 经过推导与研究,稳态分析和小信号分析下仿真得到的变化规律均与理论上的推导一致。 关键词:BuckHBoost;稳态分析;小信号分析;MATLAB仿真

1 ?概论 现代开关电源有两种:直流开关电源、交流开关电源。本课题主要介绍直流开关电源,其功能是将电能质量较差的原生态电源,如市电电源或蓄电池电源,转换为满足设备要求的质量较高的直流电源,即将“粗电”转换为“精电”。直流开关电源的核心是DC4)C变换器。 作为研究开关电源的基础,DCTC开关变换器的建模分析对开关电源的分析和设计具有重要意义。DCTC开关变换器最常见的三种电路拓扑形式为:降压(Buck)、升压(Boost)和降压THE (BuckdBoos 泌],如图1-1所示。其中BucMoost变换器因其输出电压极性与输入电压相反,而幅度既可比输入电压高,也可比输入电压低,且电路结构简单而流行。 (a) B uck型电路结构 (b) Boost型电路结构 (c) B uckHB oost型电路结构 图1-1 DCTC变换器的三种电路结构

负反馈电路

反馈电路,是控制论的基本概念,它是指将系统输出返回给输入并以某种方式更改输入从而影响系统功能的过程。反馈可分为负反馈和正反馈。前者使输出与输入起相反的作用,减少了系统输出与系统目标之间的误差,并且系统趋于稳定。后者使输出起到与输入相似的作用,使系统偏差连续增加,使系统振荡,并可以放大控制功能。负面反馈的研究是控制论的核心问题。此外,还有当前的负反馈理论。 系统的部分或全部输出信号以某种方式和路径作为输入信号的一部分发送回系统的输入端。此过程称为反馈。根据反馈信号的极性,反馈可分为正反馈和负反馈。 如果反馈信号的极性与输入信号的极性相同或变化方向同相,则由于这两个信号的混合,放大器的净输入信号将大于输出信号。该反馈称为正反馈。正反馈主要用于信号发生电路。相反,如果反馈信号的极性与输入信号的极性相反或变化方向相反(反相),则叠加结果将削弱净输入信号。这种反馈称为负反馈放大电路,自动控制系统通常采用负反馈技术来稳定系统的工作状态。 负反馈采样一般采用电流采样或电压采样。由于负反馈具有其独特的优势,因此已被广泛应用于实际放大器中,并改变了放大器的性能。负反馈使放大器的闭环增益趋于稳定,并消除了开环增益的影响。阻抗匹配是电子电路中的重要问题。负反馈也会影响放大器的输入和输

出阻抗。电压混合会增加输入阻抗,而电流混合会降低输入阻抗。电流采样会增加输出阻抗,而电压采样会降低输出阻抗。负反馈的使用还可以大大减少放大器在稳定状态下产生的失真,并且可以削弱放大器内部的各种干扰电平。负反馈也会使放大器的频带变宽,从而使放大器的幅频特性相对平坦。因此,负反馈可以极大地改善放大器的放大质量和许多性能指标,并且反馈越深,改善越大。但是,负反馈过深可能会导致放大器无法正常工作并引起自激,因此稳定的负反馈放大器通常不会超过三级。 说明: 1.振荡器的一部分输出以减小幅度的方式返回到输入。 2.受控部分发送的反馈信息会抑制或削弱受控部分的活动。 3.负反馈是指反馈信息与控制信息相反的反馈 4.如果反馈的作用是减弱反射中心对效应器的影响,则称为负反馈,反馈信息为负。在闭环系统中,控制部分的活动会在受控部分的反馈信号(S5)的影响下发生变化。如果S5为负,则为负反馈。其功能是当输出变量受到干扰时,系统可以及时响应并调整偏差信息(Sc),以使输出稳定在参考点(Si)。

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

反馈和负反馈放大电路典型例题

【例5-1】? 电路如图 (a)、(b)所示。 (1)判断图示电路的反馈极性及类型; (2)求出反馈电路的反馈系数。 图(a)??????????????????????? 图(b)? 【相关知识】 负反馈及负反馈放大电路。 【解题思路】 (1)根据瞬时极性法判断电路的反馈极性及类型。 (2)根据反馈网络求电路的反馈系数。

【解题过程】 (1)判断电路反馈极性及类型。 在图(a)中,电阻网络构成反馈网络,电阻两端的电压是反馈电压,输入电压与串联叠加后作用到放大电路的输入端(管的);当令=0时,=0,即正比与;当输入信号对地极性为?时,从输出端反馈回来的信号对地极性也为?,故本电路是电压串联负反馈电路。 在图(b)电路中,反馈网络的结构与图(a)相同,反馈信号与输入信号也时串联叠加,但反馈网络的输入量不是电路的输出电压而是电路输出电流(集电极电流),反馈极性与图(a)相同,故本电路是电流串联负反馈电路。 (2)为了分析问题方便,画出图(a) 、(b)的反馈网络分别如图(c)、(d)所示。 图(c)????????????????????? 图(d) 由于图(a)电路是电压负反馈,能稳定输出电压,即输出电压信号近似恒压源,内阻很小,计算反馈系数时,不起作用。由图(c)可知,反馈电压等于输出电压在电阻上的分压。即 故? 图(a)电路的反馈系数 ? 由图(d)可知反馈电压等于输出电流的分流在电阻上的压降。 故图(b)电路的反馈系数

【例5-2】在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。 (2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“?”,则引入的反馈一定是负反馈。 (3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。 (4)既然电压负反馈可以稳定输出电压,即负载上的电压,那么它也就稳定了负载电流。 (5)放大电路的净输入电压等于输入电压与反馈电压之差,说明电路引入了串联负反馈;净输入电流等于输入电流与反馈电流之差,说明电路引入了并联负反馈。 (6)将负反馈放大电路的反馈断开,就得到电路方框图中的基本放大电路。 (7)反馈网络是由影响反馈系数的所有的元件组成的网络。 (8)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后,越容易产生低频振荡。 【相关知识】 反馈的有关概念,包括什么是反馈、直流反馈和交流反馈、电压负反馈和电流负反馈、串联负反馈和并联负反馈、负反馈放大电路的方框图、放大电路的稳定性 【解题思路】 正确理解反馈的相关概念,根据这些概念判断各题的正误。 【解题过程】 (1)通常,称将输出量引回并影响净输入量的电流通路为反馈通路。反馈是指输出量通过一定的方式“回授”,影响净输入量。因而只要输出回路与输入回路之间有反馈通路,就说明电路引入了反馈,而反馈通路不一定将放大电路的输出端和输入端相连接。例如,在下图所示反馈放大电路中,R2构成反馈通路,但它并没有把输出端和输入端连接起来。故本题说法正确。

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

boost电路设计介绍

BOOST电路设计介绍 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC/DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC 升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boost拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。 2 Boost电路结构及特性分析 2.1 由UC3842作为控制的Boost电路结构 由UC3842控制的Boost拓扑结构及电路分别如图1和图2所示。

#基于boost电路的光伏充电系统

摘要: 本文章着重介绍了如何用实现MPPT(最大功率点跟踪),Boost电路详细的工作原理,其中涉及到multisim的主电路仿真和matlab建模的具体实施的过程,对参数的选择和系统的优化做了详细的描述,在实际测试中更加验证了方案的合理性及实用性。 关键词: MPPT Boost电路 multisim仿真 matlab 数据处理 前言: 随着能源的消耗,可再生能源的发展被放到了越来越重要的位置,在可再生能源资源中,太阳能由于其普遍性,丰富性和可持续性,成为了最基本的、必备的可持续资源,太阳能电池是一种有效的利用太阳光来发电的装置。 太阳能电池的工作电压随着温度升高而下降,而蓄电池的充放电电压随充电电流升高而增加,在太阳电池组件中为保证夏天高温天气能对蓄电池正常充电,组件的标准峰值工作电压一般比较大,从而使太阳电池通常有较大一段区间没有真正工作在最大功率点,造成太阳电池以及蓄电池配置容量增加,增大了光伏系统的成本。这里我们引入一个概念 MPPT (最大功率点跟踪),在一般的光伏系统中都没有没置MPPT 电路,而由太阳能电池直接给蓄电池充电,把MPFF控制技术运用在温差变化较大的场合,特别是对于冬、夏以及全日温差较大的地区有明显的技术意义,MPPT跟踪能有效提高太阳电池的输出。 最大功率跟踪(MPPT)是一个电路动态负载匹配的过程,一般都是在太阳能电池与负载之间接一个DC/DC 变换电路,当外界条件变化引起最大功率点发生变动时,调节与负载电阻并联的 mos管的占空比使得外部的等效电阻始终等于太阳能电池的内阻,实现动态的负载匹配,继而得到了太阳能电池的最大功率输出。 太阳能电池系统的机械结构:

各种负反馈电路的作用

各种负反馈的作用 1. 电压负反馈 电压负反馈是指从放大器输出端取出输出信号电压的一部分(或全部)作为负反馈信号,也就说负反馈信号VF与输出电压VO成正比。 电压负反馈的特点是: 电压负反馈能够稳定放大器的输出信号电压。 由于电压负反馈元件是并联在放大器输出端与地之间的,所以能够降低放大器的输出电压 2. 电流负反馈 电流负反馈是指从放大器输出端取出输出信号电流的一部分作为负反馈信号,换句话说:反馈信号VF与输出电流IO成正比。 电流负反馈的特点是: 电流负反馈能够定放大器的输出信号电流。 由于电压负反馈元件是串联在放大器输出回路中的,所以提高了放大器的输出电阻。 3. 串联负反馈 电压和电流负反馈都是针对放大器输出端而言的,指负反馈信号从放大器输出端的取出方式。串联和并联负反馈则是针对放大器输入端而言的,指负反馈信号加到放大器输入端的方式。 串联负反馈网络取出的负反馈信号VF,同放大器的输入信号Vi以串联形式加到放大器的输入回路中的,这样的负反馈称为串联负反馈。 串联负反馈的特点是: 串联负反馈右以降低放大器的电压放大倍数,稳定放大器的电压增益。 由于串联负反馈元件是串联在放大器输入回路中的,所以这种负反馈可以提高放大器的输入电阻。 4. 并联负反馈 并联负反馈是指负反馈网络取出的负反馈信号VF,同放大大器的输入信号Vi以并联形式加到放大器的输入回路中,这样的负反馈称为并联负反馈。 并联负反馈的特点是: 并联负反馈降低放大器的电流放大倍数,稳定放大器的电流增益。 由于并联负反馈元件是与放大器输入电阻相并联的,所以这种负反馈降低了放大器的输入电阻。 5. 负反馈电路种类

DCDC电流反馈

DCDC电流反馈 电流模式最常见的方法就是采样Nmos管的正向压降,(或者用一个采样电阻和他串联),这个采样电压经过电流采样放大器后就得到电压斜坡,即电压越大,斜坡越大;电压越小,斜坡越小;(这个怎么有点类似于电压前馈的作用)。PWM比较器的另一个引脚接误差放大器的输出; 注意上面是一个锯齿波,因此从P管才电流,只有D的时间导通,所以是锯齿波不是三角波。另外还要在加上Vramp,这个会改变,电压变化的斜率。保持稳定。 当斜坡电压达到控制电压是,PWM比较器输出低电平;从而将上管关闭,进而减小上管导通的时间,从而减小电流流过的大小; 从这个上面的过程可以看到,这个过程中LC二阶网络不参与整个环路,因此电感L并不存在于二阶滤波网络中,就已发挥控制作用了。所以这个电流反馈的网络控制形式和电压反馈还是有区别的,特别是在电流环路中,没有了LC二阶的谐振点; 电感/开关管的斜坡电流和PWM比较器的输入电压斜坡成比例,因此电压和电流可以相互转换; 次谐波不稳定的发生条件:占空比接近或者大于50%,变换器工作在CCM模式,通常在最小输入电压时,尽力排除发生次谐波不稳定的可能性; 增益图中有个莫名的尖峰,这就是次谐波不稳定所导致的。这一点远大于穿越频率。 从电路上分析:那么需要引入的就是foundamentals of power eclectrics chapter 11.

那么之所以选择上面的电流模式分解, 第一步是说明在电流连续模式,且稳定的模式下,是怎么的情况,得到斜率和占空比的关系;第二步是说明在电流连续的模式,且不稳定的模式下,是怎么情况,由于电流反馈是在电流不稳定有扰动的情况下,那么就是在第二种情况下,所以要求D小于0.5; 所以从这个地方可以看出来,如果在电压输输出高的情况下,比如1.6V的时候,可能出现 不稳定的情况,通常电压都是在低压的情况0.9,1.8v,一般不会出现这种情况。

boost升压电路

开关直流升压电路(即所谓的boost或者step-up电路)原理 2007-09-29 13:28 the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。 基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。 下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。

放电过程 如图,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。 如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充 1 AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗

(含电感上). 1.电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之 十. 3 开关管,关键在这儿了,放大量要足够进饱和,导通压降一定要小,是成功的关键.总共才一伏,管子上耗多了就没电出来了,因些管压降应选最大电流时不超过0.2--0.3V,单只做不到就多只并联....... 4 最大电流有多大呢?我们简单点就算1A吧,其实是不止的.由于效率低会超过1.5A,这是平均值,半周供电时为3A,实际电流波形为0至6A.所以咱建议要用两只号称5A实际3A的管子并起来才能勉强对付. 5 现成的芯片都没有集成上述那么大电流的管子,所以咱建议用土电路就够对付洋电路了. 以上是书本上没有直说的知识,但与书本知识可对照印证. 开关管导通时,电源经由电感-开关管形成回路,电流在电感中转化为磁能贮存;开关管关断时,电感中的磁能转化为电能在电感端左负右正,此电压叠加在电源正端,经由二极管-负载形成回路,完成升压功能。既然如此,提高转换效率就要从三个方面着手:1.尽可能降低开关管导通时回路的阻抗,使电能尽可能多的转化为磁能;2.尽可能降低负载回路的阻抗,使磁能尽可能多的转化为电能,同时回路的损耗最低;3.尽可能降低控制电路的消耗,因为对于转换来说,控制电路的消耗某种意义上是浪费掉的,不能转化为负载上的能量。

反馈电路详解

第六章反馈放大电路 第一节反馈的概念和分类 1. 反馈的基本概念 2. 负反馈放大电路的类型 1.1 反馈的基本概念基本概念反馈是指把输出电压或输出电流的一部分或全部通过反馈网络,用一定的方式送回到放大电路的输入回路,以影响输入电量的过程。 1.2 反馈的基本类型反馈的分类: ( 1)反馈产生的途径:内部反馈和外部反馈。 2)反馈信号:直流反馈和交流反馈 反馈信号中只含有直流分量的称为直流反馈,反馈信号中只含有交流分量的称为交流反馈。 3)反馈的作用效果:负反馈与正反馈 反馈信号X F送回到输入回路与原输入信号X I 共同作用后,使净输入信号X ID比没有引入反馈时减小,有X ID=X I -X F, 称这种反馈为负反馈;另一种是使净输入信号X ID比没有引入反馈时增加了,有 X ID=X I- X F,称这种反馈为正反馈。 反馈极性的判定——瞬时极性法, 步骤: (1)首先在基本放大器输入端设定一个递增( 或递减) 的净输入信号, (2)在上述设定下, 推演出反馈信号的变化极性。 (3)判定在反馈信号的影响下, 净输入信号的变化极性。若该极性与前面设定的变化极性相反则为负反馈;若相同, 则为正反馈。 (4)反馈的信号取样的方式:电压反馈与电流反馈 (a) 电压反馈反馈信号是输出电压的一部分或全部,即反馈信号与输出电压成正比,称为电压反馈, (b) 电流反馈如果反馈信号是输出电流的一部分或全部,即反馈信号与输出电流成正比,称为电流反馈,。 (c) 判断是电压反馈还是电流反馈的方法判断是电压反馈还是电流反馈时,常用“输出短路法”,即假设负载短路 ( R L=0),使输出电压 v o=0,看反馈信号是否还反馈信号还存在。若存在,则说明反馈信号与输出电压成比例,是电压反馈;若反馈信号不存在了,则说明反馈信号不是与输出电压成比例,而是和输出电流成比例,是电流反馈。 判定方法之二——按电路结构判定:在交流通路中, 若放大器的输出端和反馈网络的取样端处在同一个放大器件的同一个电极上, 则为电压反馈;否则是电流反馈。

boost电路分析

图一 boost升压电路,开关直流升压电路(即所谓的boost或者step-up电路)原理2007-09-29 13:28the boost converter,或者叫step-up converter,是一种开关直流升压电路,它可以是输出电压比输入电压高。基本电路图见图一。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路 充电过程 在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。这时,输入电压流过电感。二极管防止电容对地放电。由于输入是直流电,所以电感上的电流以一定的比率

线性增加,这个比率跟电感大小有关。随着电感电流增加,电感里储存了一些能量。 放电过程 图三 如图三,这是当开关断开(三极管截止)时的等效电路。当开关断开(三极管截止)时,由于电感的电流保持特性,流经电感的电流不会马上变为0,而是缓慢的由充电完毕时的值变为0。而原来的电路已断开,于是电感只能通过新电路放电,即电感开始给电容充电,电容两端电压升高,此时电压已经高于输入电压了。升压完毕。 说起来升压过程就是一个电感的能量传递过程。充电时,电感吸收能量,放电时电感放出能量。如果电容量足够大,那么在输出端就可以在放电过程中保持一个持续的电流。 如果这个通断的过程不断重复,就可以在电容两端得到高于输入电压的电压。 一些补充:AA电压低,反激升压电路制约功率和效率的瓶颈在开关管,整流管,及其他损耗(含电感上). 1 电感不能用磁体太小的(无法存应有的能量),线径太细的(脉冲电流大,会有线损大). 2 整流管大都用肖特基,大家一样,无特色,在输出3.3V时,整流损耗约百分之十.

各种负反馈电路的作用说课材料

各种负反馈电路的作 用

各种负反馈的作用 1. 电压负反馈 电压负反馈是指从放大器输出端取出输出信号电压的一部分(或全部)作为负反馈信号,也就说负反馈信号VF与输出电压VO成正比。 电压负反馈的特点是: 电压负反馈能够稳定放大器的输出信号电压。 由于电压负反馈元件是并联在放大器输出端与地之间的,所以能够降低放大器的输出电压 2. 电流负反馈 电流负反馈是指从放大器输出端取出输出信号电流的一部分作为负反馈信号,换句话说:反馈信号VF与输出电流IO成正比。 电流负反馈的特点是: 电流负反馈能够定放大器的输出信号电流。 由于电压负反馈元件是串联在放大器输出回路中的,所以提高了放大器的输出电阻。3. 串联负反馈

电压和电流负反馈都是针对放大器输出端而言的,指负反馈信号从放大器输出端的取出方式。串联和并联负反馈则是针对放大器输入端而言的,指负反馈信号加到放大器输入端的方式。 串联负反馈网络取出的负反馈信号VF,同放大器的输入信号Vi以串联形式加到放大器的输入回路中的,这样的负反馈称为串联负反馈。 串联负反馈的特点是: 串联负反馈右以降低放大器的电压放大倍数,稳定放大器的电压增益。 由于串联负反馈元件是串联在放大器输入回路中的,所以这种负反馈可以提高放大器的输入电阻。 4. 并联负反馈 并联负反馈是指负反馈网络取出的负反馈信号VF,同放大大器的输入信号Vi以并联形式加到放大器的输入回路中,这样的负反馈称为并联负反馈。 并联负反馈的特点是: 并联负反馈降低放大器的电流放大倍数,稳定放大器的电流增益。 由于并联负反馈元件是与放大器输入电阻相并联的,所以这种负反馈降低了放大器的输入电阻。 5. 负反馈电路种类

Boost电路的结构及工作原理_Boost的应用电路

Boost电路的结构及工作原理_Boost的应用电路 Boost电路定义Boost升压电路的英文名称为theboostconverter,或者叫step-upconverter,是一种开关直流升压电路,它能够将直流电变为另一固定电压或可调电压的直流电,也称为直流直流变换器(DC/DCConverter)。 直流直流变换器通过对电力电子器件的通断控制,将直流电压断续地加到负载上,通过改变占空比改变输出电压平均值。 假定那个开关(三极管或者mos管)已经断开了很长时间,所有的元件都处于理想状态,那么电容电压等于输入电压。 开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许Dy=1的状态下工作。电感Lf在输入侧,成为升压电感。 Boost电路结构下面以UC3842的Boost电路为例介绍Boost电路的结构。 图中输入电压Vi=16~20V,既供给芯片,又供给升压变换。 开关管以UC3842设定的频率周期开闭,使电感L储存能量并释放能量。 当开关管导通时,电感以Vi/L的速度充电,把能量储存在L中。当开关截止时,L产生反向感应电压,通过二极管D把储存的电能以(V o-Vi)/L的速度释放到输出电容器C2中。输出电压由传递的能量多少来控制,而传递能量的多少通过电感电流的峰值来控制。整个稳压过程由二个闭环来控制,即: 闭环1输出电压通过取样后反馈给误差放大器,用于同放大器内部的2.5V基准电压比较后产生误差电压,误差放大器控制由于负载变化造成的输出电压的变化。 闭环2Rs为开关管源极到公共端间的电流检测电阻,开关管导通期间流经电感L的电流在Rs上产生的电压送至PwM比较器同相输入端,与误差电压进行比较后控制调制脉冲的脉宽,从而保持稳定的输出电压。误差信号实际控制着峰值电感电流。 Boost电路的工作原理Boost电路的工作原理分为充电和放电两个部分来说明。 充电过程

一种非常实用的Boost升压电路原理详解

一种实用的BOOST电路 0 引言 在实际应用中经常会涉及到升压电路的设计,对于较大的功率输出,如70W以上的DC /DC升压电路,由于专用升压芯片内部开关管的限制,难于做到大功率升压变换,而且芯片的价格昂贵,在实际应用时受到很大限制。考虑到Boost升压结构外接开关管选择余地很大,选择合适的控制芯片,便可设计出大功率输出的DC/DC升压电路。 UC3S42是一种电流型脉宽调制电源芯片,价格低廉,广泛应用于电子信息设备的电源电路设计,常用作隔离回扫式开关电源的控制电路,根据UC3842的功能特点,结合Boos t拓扑结构,完全可设计成电流型控制的升压DC/DC电路,且外接元器件少,控制灵活,成本低,输出功率容易做到100W以上,具有其他专用芯片难以实现的功能。 1 UC3842芯片的特点 UC3842工作电压为16~30V,工作电流约15mA。芯片内有一个频率可设置的振荡器;一个能够源出和吸入大电流的图腾式输出结构,特别适用于MoSFET的驱动;一个固定温度补偿的基准电压和高增益误差放大器、电流传感器;具有锁存功能的逻辑电路和能提供逐个脉冲限流控制的PWM比较器,最大占空比可达100%。另外,具有内部保护功能,如滞后式欠压锁定、可控制的输出死区时间等。 由UC3842设计的DC/DC升压电路属于电流型控制,电路中直接用误差信号控制电感峰值电流,然后间接地控制PWM脉冲宽度。这种电流型控制电路的主要特点是: 1)输入电压的变化引起电感电流斜坡的变化,电感电流自动调整而不需要误差放大器输出变化,改善了瞬态电压调整率; 2)电流型控制检测电感电流和开关电流,并在逐个脉冲的基础上同误差放大器的输出比较,控制PWM脉宽,由于电感电流随误差信号的变化而变化,从而更容易设置控制环路,改善了线性调整率; 3)简化了限流电路,在保证电源工作可靠性的同时,电流限制使电感和开关管更有效地工作; 4)电流型控制电路中需要对电感电流的斜坡进行补偿,因为,平均电感电流大小是决定输出大小的因素,在占空比不同的情况下,峰值电感电流的变化不能与平均电感电流变化相对应,特别是占空比,50%的不稳定性,存在难以校正的峰值电流与平均电流的误差,即使占空比<50%,也可能发生高频次谐波振荡,因而需要斜坡补偿,使峰值电感电流与平均电感电流变化相一致,但是,同步不失真的斜坡补偿技术实现上有一定的难度。

电压双象限Buck-Boost电路拓扑及分析

电压双象限Buck-Boost电路拓扑及分析 2007年06月09日星期六 18:43 在直流变换中不产生电能形式变化,只产生直流电参数的变化。DC/DC变换器具有成本低、重量轻、可靠性高、结构简单等特点,因此,在工业领域和实验室得到了广泛应用。单象限直流电压变换器电路的特点是输出电压平均值Uo跟随占空比D值而变,但不管D为何值,Uo的极性则始终不变,这对于直流开关稳压电源一类的应用场所是能够满足要求的。但对于直流调速电源,负载为直流电动机时,上述性能便不能满足要求,因而发展了多象限直流电压变换电路。 双象限电路分为输出电流平均值Io极性可变的电路与输出电压平均值Uo极性可变的电路两类,通常前一种电路称为电流双象限电路,后一种电路称为电压双象限电路。电流双象限电路是指输出电流平均值Io的幅值和极性均随控制信号us而变化,但输出电压平均值Uo的极性却始终为正,即电路可运行于第一和第二象限。电压双象限电路是指输出电压平均值Uo的幅值和极性均随控制信号us而变化,但输出电流平均值Io却始终为正,即电路可运行于第一和第四象限。本文将对电压双象限Buck Boost电路进行分析。 1 Buck电路 1.1 电路结构 主电路如图1所示。用电感、内阻和等效电压串联电路表示有源负载,桥的直流输入端并联滤波电容。这是一个全桥电路结构,桥的每臂用全控型器件(S1,S2)和不控型器件(D1,D2)组成。S1及S2的控制采用PWM控制,这样可以调节D值,并且及时检测负载的运行状况,由此控制开关的关断和开通。此电路的元器件、电源、负载均假设为理想的。输出滤波电感足够大,可保证负载电流连

续,且线性升降。 1.2 工作原理 1.2.1 运行于第一象限

运动控制系统仿真实验报告——转速电流反馈控制直流调速系统的仿真

运动控制系统仿真实验报告 ——转速、电流反馈控制直流调速系统的仿真

双闭环直流调速系统仿真 对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。额定转速时的给定电压(U n * )N =10V,调节器ASR ,ACR 饱和输出电压U im * =8V,U cm =7.2V 。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。 (5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。 (6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。

第五章 反馈和负反馈放大电路典型例题

第五章反馈和负反馈放大电路 反馈的基本概念 例5-1例5-2例5-3例5-4例5-5例5-6负反馈对电路性能的影响 例5-7 负反馈方框图及一般表示式 例5-8例5-9 : 负反馈的引入 例5-10例5-11例5-12 负反馈电路的自激振荡 例5-13例5-14 正反馈 例5-15 【例5-1】电路如图(a)、(b)所示。 (1)判断图示电路的反馈极性及类型; (2)求出反馈电路的反馈系数。 图(a) 图(b)

- 【相关知识】 负反馈及负反馈放大电路。 【解题思路】 (1)根据瞬时极性法判断电路的反馈极性及类型。 (2)根据反馈网络求电路的反馈系数。 【解题过程】 (1)判断电路反馈极性及类型。 在图(a)中,电阻网络构成反馈网络,电阻两端的电压是反馈电压,输入电压与串联叠加后作用到放大电路的输入端(管的);当令=0时,=0,即正比与;当输入信号对地极性为?时,从输出端反馈回来的信号对地极性也为?,故本电路是电压串联负反馈电路。 在图(b)电路中,反馈网络的结构与图(a)相同,反馈信号与输入信号也时串联叠加,但反馈网络的输入量不是电路的输出电压而是电路输出电流(集电极电流),反馈极性与图(a)相同,故本电路是电流串联负反馈电路。 (2)为了分析问题方便,画出图(a) 、(b)的反馈网络分别如图(c)、(d)所示。 图(c) 图(d)

由于图(a)电路是电压负反馈,能稳定输出电压,即输出电压信号近似恒压源,内阻很小,计算反馈系数时,不起作用。由图(c)可知,反馈电压等于输出电压在电阻上的分压。即 故图(a)电路的反馈系数 由图(d)可知反馈电压等于输出电流的分流在电阻上的压降。 \ 故图(b)电路的反馈系数 【例5-2】在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。 (2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“?”,则引入的反馈一定是负反馈。 (3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。

反馈电路概念

反馈的概念和作用 1.什么是反馈? 答:所谓反馈,就是指将放大电路的输出量(电压或电流信号)的部分或全部,通过一定方式(元件或网络)返送到输入回路的过程,完成输出量向输入端回送的电路称为反馈元件或反馈网络,具有反馈元件的放大电路称为反馈放大电路。 2.反馈有哪些类型?它们各有何用途? 答:反馈按极性分有正反馈和负反馈;按其与放大器输出端的连接方式分有电压反馈和电流反馈;按反馈信号与放大器输入信号的连接方式分有并联反馈和串联反馈。在放大电路中,引入反馈使放大器的放大倍数减小为负反馈。反之,使放大器的放大倍数增大为正反馈。正反馈虽然能提高放大倍数,但会使放大器的性能变坏,在放大电路中应用很少,一般只在振荡脉冲电路中采用。而负反馈虽然使放大倍数有所下降,但它却能改善放大器的性能,因此应用比较广泛。在放大电路中,引入电压负反馈,将使输出电压保持稳定,其效果是减小了电路的输出电阻;而电流负反馈将使输出电流保持稳定,因而增大了输出电阻。在放大电路中,引入并联负反馈可使放大电路中输入电阻减小,并联负反馈是把反馈电流与输入电流并联起来,其作用是削弱输入电流;而串联负反馈可使放大电路中输入电阻增大及把反馈电压与输入电压串联起来,其作用是对输入信号电压起削弱作用。 3.为什么在放大电路中常采用负反馈而不采用正反馈? 答:在放大电路中采用负反馈可以改善放大电路的性能,稳定工作点,提高放大倍数,能扩展频带,减小非线性失真和抑制干扰,改变输入电阻和输出电阻。而正反馈虽然能提高放大器的放大倍数,但会使放大电路性能下降。所以,在放大电路中常采用负反馈而不采用正反馈。什么是直流负反馈?什么是交流负反馈?它们在反馈电路中各起什么作用? 答:根据反馈信号本身的交直流性质,可将其分为交流反馈与直流反馈。如果反馈信号只包含直流成分,称为直流反馈;如果反馈信号只包含交流成分,则称为交流反馈。直流负反馈在电路中的主要作用是稳定静态工作点,而交流负反馈的主要作用是改善放大器的性能。 4.如何判断是正反馈还是负反馈? 答:通常采用瞬时极性法来判别正、负反馈。其步骤为: (1)假设在原输入信号作用下,晶体管的基极电位在某一瞬时的极性。瞬时极性为“+”,指电位升高;瞬时极性为“-”,则指电位在降低。

相关文档