文档库 最新最全的文档下载
当前位置:文档库 › 甲胺工艺流程设计

甲胺工艺流程设计

甲胺工艺流程设计
甲胺工艺流程设计

甲胺工艺流程设计

一、产品概述

一甲胺:

CSC编号:0178

CAS号:74-89-5

化学式:CH3NH2

相对分子质量:31.10

性状:无色液化气体,有特殊气味(商品:40%水溶液)沸点:-6.8℃

熔点:-93.5℃

相对密度:0.66(水=1);1.09(空气=1)

蒸气压:202.65KPa(25℃)

溶解度:易溶于水,溶于乙醇、乙醚等

闪点:-10℃

自然温度:430℃

爆炸极限:爆炸下限4.9(V%);爆炸上限20.8(V%)油水分配系数:-0.173

二甲胺:

CAS 号:124-40-3

分子式:C2H7N

分子量:45.08

外观与性状:无色气体或液体,高浓度的带有氨味,低浓度的有烂鱼味。

熔点(℃):-92.2

沸点(℃):6.9

相对密度(水=1):0.68

相对蒸气密度(空气=1): 1.55

饱和蒸气压(kPa):202.65(10℃)

燃烧热(kJ/mol):1741.8

临界温度(℃):164.5

临界压力(MPa):5.31

辛醇/水分配系数的对数值:-0.38

闪点(℃):-17.8

引燃温度(℃):400

爆炸上限%(V/V):14.4

爆炸下限%(V/V): 2.8

溶解性:易溶于水,溶于乙醇、乙醚。

三甲胺:

常温下为无色气体,有鱼腥恶臭,溶于水,乙醇,乙醚,易燃,有毒,相对密度(水=1)0.66(-5℃)、(空气=1)2.09。分子式为C3H9N

国标编号21045

CAS号75-50-3

分子量59.11

闪点-17.78

熔点-117.1℃

沸点24℃

甲胺是一类重要的基本精细有机化工原料,在化学工业领域有着广泛用途,是业内人士建议的100种重点发展的精细化工产品之一。1996年全球甲胺需求为42.8万吨,其中国内需求量在6万吨左右,尽管缺乏最近的统计数据,但仍可预计未来较长一段时期内甲胺消费量将呈缓慢而稳定的增长趋势。甲胺的3 种产品一甲胺、二甲胺和三甲胺各有其独特的用途,但随着社会经济的发展和科技进步,市场对3 种甲胺产品的需求比例与传统的甲胺产品结构的矛盾越来越尖锐了。近年来,在世界范围内对水处理剂二甲基甲酞胺(DMF) 的用量持续上扬,直接拉动了对该产品主要原料二甲胺需求的稳步增长,此外,二甲胺还是生产二甲基乙酞胺的重要原料,据专家分析,“十二五”期间,由于其终端应用领域的需求前景看好( 水处理化学、农业化学、表面处理剂和溶剂等) 。使得对二甲胺的需求将进一步增加。总之,市场变化改变了对3 种甲胺产品的需求比例。自甲胺工业化生产以来,有过多种工艺技术路线,目前工业上多采用甲醇与氨催化胺化法合成甲胺,使用的是具有脱水功能的酸性催化剂,如γ-Al2O3、Si-Al2O3、MgO 、ThO2等。这类催化剂均属于平衡型催化剂,产品分布受热力学平衡控制,产物中三甲胺所占比例明显偏高,如400℃,N/C=1(mass ),甲醇转化率为99% 时,其产物的重量平衡组

成为:M/D/T= 27/ 23/50,而目前全球市场需求比例大致为M/D/T = 21/61/18,见表1[1]。日本市场更达10/80 /10。可见目前甲胺产品分布与市场需求处于脱节状态,尽管这种状况因时因地在程度上有所差异,但总的来说,三甲胺相对过剩了。为了尽可能多产二甲胺,人们采取了许多措施调整工艺操作条件,如提高反应温度、增大进料N / C 比、三甲胺返料等,在一定程度上提高了二甲胺的收率,但实际效果有限且同时带来种种弊端:如增加了物、能耗、需要庞大的精制分离系统等。为此,开发高效、高选择性的甲胺催化剂以提高二甲胺的产量,就成了各国学者和工程技术人员研究的热点课题之一。

表1 近年世界主要地区甲胺需求%

自20世纪70年代以来,人们广泛开展了对选择性合成甲胺催化剂的研究,人们发现,具有独特规整孔道结构的沸石分子筛有可能解决现存的大部分问题。沸石催化剂不但可获得理想的二甲胺选择性,而且具有比传统催化剂更高的转化率。在对多种天然或合成沸石分子筛如镁碱沸石、毛沸石、菱沸石、丝光沸石、ZSM-5、T沸石、HZK-5、RHO等的研究中, 取得了许多重要的理论成果。但由于种种原因,大

多数研究未能走出实验室进人工业应用。

目前国内外甲胺生产工艺技术开发的重点是高效择形型甲胺催化剂,它简化工艺流程并使3种甲胺的比例能任意调节。在选择性合成甲胺研究方面处于领先水平的是APCI (空气产品和化学品公司)、Du Pont、Mobil、日东化学和三井东压等美日几家大公司。其中美国主要集中于小孔沸石如HZSM-5、HZK-5、RHO等的研究上,而日本则重点致力于丝光沸石的改性上,并取得了工业化成果。

此外,还有一种采用CO 或CO2为碳源,以CO/H2 (H2O) /NH3或CO2 /H2(H2O) /NH3的混合物经费——托合成催化剂或甲醇催化剂催合成甲胺的路线被提出。该路线制甲胺当采用低浓度氨时,产物以TMA 为主,高氨时以MMA 为主,无H2时催化剂严重失活。这是一个与传统制法截然不同的路径,但该路线目前尚无实质性突破,预计在一个较长时期内甲胺制造的方法不可能发生根本的改变,而开发新型甲胺催化剂及其配套工艺是较具有现实意义的。

二、设计基础

1.甲醇和氨气相催化法生产原理:

1.1反应方程式

甲胺和氨气相催化法,是利用甲醇和液氨为原料,按一定比例,在一定温度和压力下,通过触媒经气相催化反应而得到一、二、三甲胺,同时发生一系列主、副反应,其主要反应式如下:

主反应:1 CH3OH+NH3≒CH3NH2+H2O+4960卡/克分子

2 2CH3OH + NH3≒(CH3)2NH+2H2O +14560卡/克分子

3 3CH3OH +NH3≒(CH3)3N+3H2O +27360卡/克分子

4 2CH3NH2≒(CH3)2NH+NH3+4700卡/克分子

5 2(CH3)2NH≒CH3NH2+(CH3)3N-3150卡/克分子

6 (CH3)3N+NH3≒CH3NH2+(CH3)2NH-7850卡/克分子

7 CH3OH+CH3NH2≒(CH3)2NH+H2O+9600卡/克分子

8 CH3OH+(CH3)2NH≒(CH3)3N+H2O+12800卡/克分子

次反应:1 2CH3OH≒CH3OCH3+H2O

2 CH3OCH3+NH3≒CH3NH2 +CH3OH

3 CH3OCH3+CH3NH2≒(CH3)2NH+CH3OH

4 CH3OCH3+(CH3)2NH≒(CH3)3N+CH3OH

5 CH3OCH3+NH3≒(CH3)2NH +H2O

6 CH3OCH3 + CH3NH2≒(CH3)3N +H2O

副反应:1 CH3OH≒CO +2H2

2 2NH3≒N2 +3H2

3 (CH3)3N≒CH3N=CH2 +CH4

4 CH3OH +NH3≒(CH3)2NH +CO2+ H2O

副反应的发生,不仅增加了甲醇的消耗,而且生成的碳酸盐类(胺,氨的碳酸盐)易于结晶,会堵塞设备和管道,故必须避免副反应的发生。如给予适当的条件,副反应基本上是可以抑制的。

1.2合成反应机理

由上述反应式可知,甲醇氨化反应制造甲胺的主反应实际上为催化脱水作用。对于该反应的机理,曾有人进行了研究,但说法不一。

以r-Al2O3为例,概括有两种说法:

吸附理论:

该理论认为,r-Al2O3在催化脱水过程中具有相当的活性。在275℃以上时,水不要与氧化铝重新化合,而单是被吸附。在整个催化历程中,水被认为是具有重要作用的,由于水生成单分子层,将氧化铝粒子包上一层薄膜,水在薄膜内离解为OH-和H+离子。由于合成引力之故,使薄膜具有高度的稳定性,而薄膜即形成催化中心。CH3OH和NH3在薄膜具上被吸附,NH3被OH-离子,CH3OH被H+离子吸附,从而发生张力状态,CH3+(甲基)和NH2-(氨基)就化合成甲胺而引起一分子水的损失,但当温度到600℃以上时,氧化铝由于网状结构变化,品格收缩,引起吸附力减弱而活性破坏。

游离基理论:

该理论认为:甲醇和氨的气相混合物通过触媒r-Al2O3表面,被

r-Al2O3吸附引起游离基而发生反应。当r-Al2O3之温度高于其活性温度(>600℃)时,其晶格结构变化,活性减弱。当高于1000℃时,使晶格变成完整无缺,而成为r-Al2O3,至使游离基消失而成为非活性物质,则不再起催化作用。因此对于r-Al2O3触媒,在使用过程中,必须进行认真的活化处理和活性保护。

1.3 化学反应的平衡和速度

甲胺的合成反应是一个比较复杂的可逆反应。所谓可逆反应,就是反应可以向正方向(从反应物向生产物的方向)进行,同时也可以向反方向(从产物向原来的反应物的方向)进行。以主反应(1)为例:

CH3OH+NH3≒CH3NH2+H2O

反应既可以由反应物CH3OH、NH3向生成CH3NH2、H2O的方向进行,同时,已生成的CH3NH2、H2O也可以反应生成原来的反应物CH3OH、NH3。反应一开始,系统中只有CH3OH和NH3反应很快地向生成CH3NH2和H2O的方向进行。当系统中出现CH3NH2和H2O时,反方向的反应也同时发生了。随着系统中CH3OH和NH3浓度逐渐减少,正方向的反应速度逐渐减慢,而随着系统中CH3NH2和H2O的浓度逐渐增加,反方向的反应速度逐渐加快,当正、反方向的反应速度相等时,系统中的CH3OH、NH3和CH3NH2、H2O的浓度不再改变,反应达到了平衡。但是在系统中正、反方向的反应仍不停地进行,所以反应的平衡实质上是一动态平衡。同时,在工业生产中,使化学反应达到平衡状态,必须在有足够的反应速度的前提下,才是实际意义。例如氦的合成反应如果在300℃下进行,达到平衡状态需要几年甚至几千年的时间,平衡产率虽然很高,但没有什么实际意义。因此,对于一个化学反应的进行,通常希望既有利于反应平衡,又有利于反应速度,方能在单位时间内获得较多的产物。

从化学热力学可知,任何可逆反应皆有一个限度,即达到平衡状态。这种限度(平衡)与反应所处的条件(温度、压力、成份等)有关,条件改变时,这个限度(平衡)也就改变。这种外界条件对反应平衡的影响,是符合质量作用定律和平衡转移定律的。

质量作用定律告诉我们:在一定温度下,反应的速度与各反应物浓度的乘积成正比,并且每种反应物的浓度的方次等于反应式中各反

应物的系数。根据质量作用定律,要使反应不断向正方向进行,就要增加系统中反应物的浓度,或减少系统中生成物的浓度。

平衡转移定律告诉我们:要改变决定化学平衡的任一因素,则平衡向着反抗这种变化的方向移动。例如:增高温度可使平衡向吸热反应的方向移动,反之,降低温度可使平衡向放热反应方向移动。增加压力可使反应方向体积减小的反应方向移动,反之,降低压力可使平衡向体积增大的反应向移动。同理,增加反应物的浓度或降低生成物的浓度,可使平衡向增加生成物浓度的反应方向移动,相反,减少反应物的浓度或增加生成物的浓度,可使平衡向增加反应物浓度的方向移动。

根据上面简单介绍的原理,我们就可以选择一些合适的条件(温度、压力、配比、空速等)使反应以最快的速度接近于平衡状态,以满足产量,工艺流程和设备构造简单,操作方便,安全可靠以及原材料动力消耗定额低等要求。同时还要能够根据需要控制三种甲胺的生产比例。在生产过程中,也可据以正确地牚握和分析这些条件对反应的影响,从而创造有利的生产条件,使化学反应进行的得又快又完全。

三、合成工艺设计

1.催化剂:

A6型催化剂为改进的平衡型甲胺催化剂,适用于甲醇与氨气相胺生产一甲胺、二甲胺和三甲胺工艺,反应产物胺分布接近热力学平衡组成,但与常规的平衡型甲胺催化剂相比,二甲胺产量高,三甲胺产量低。

2.催化剂技术指标

物理性能指标:

形状与外观白色或略带红色条形颗粒

尺寸mm Ф3.5×5-20

径向抗压碎力,N≥60

松装堆积密度,g/ml0.65±0.05

物相组成氧化铝+丝光沸石

推荐工业应用条件

反应温度,℃360-450

反应压力,Mpa 1.5-4.0

N/C,mol/mol 1.2-3.0

液体空速,h 1.5-3.5

主要技术指标

甲醇转化率,% 97.0(98.0)

催化剂寿命,月12(18)

A6催化剂在装置上反应500小时平均结果

转化率, % 97.52

选择性mol, % MMA 22.46

DMA 27.52

TMA 50.O2

胺分布wt, % MMA 30.47

DMA 26.86

TMA 42.67

3.工艺流程:采用连续进料甲胺合成工艺流程

甲醇、液氨、共沸物和混胺四种原料分别从各自贮槽经过滤器后,分别进入各自的输送泵,将甲醇、液氨、共沸物和混胺升压到合成系统压力3.0MpaG,按一定配料比要求,分别以一定流量进入混合槽(V-706),充分混合后直接进入低温换热器(E-701)。原料混合液40℃进入低温换热器(E-701),经与合成气进行热交换后温度升至125℃左右,再进入开工汽化器(E-702)与Ⅲ塔(T-731)釜液进行换热,使温度提高140℃左右,此时原料混合液完全气化,然后进入三台串连的高温换热器(E-703a、b、c),与反应器(R-701)出来的反应气体进行换热,将温度提高到320℃左右后进入电加热炉(E-704),再将其加热到380℃~385℃,便进入合成塔(R-701)。

原料气体在合成塔内催化剂层进行气相胺化反应,反应温度为420℃,反应压力为3.0MpaG。反应生成的粗胺产品气体从反应器底部引出,随即进入三台串连的高温换热器(E-703a、b、c)和低温换热器(E-701)与原料气(液)进行充分换热后,反应气体温度由进入高温换热器(E-703a、b、c)时的400℃~420℃,降至低温换热器(E-701)出口的90℃左右,此时反应气体已全部冷凝为液体。反应液再进入过冷器(E-705),用水冷却至76℃后。经调节阀从3.0MpaG 减压到1.9MpaG直接进入Ⅰ塔(T-711)进行蒸馏。

合成系统开车时,原料液应先进入开工汽化器(E-702)温度为

165℃,再经电加热炉(E-704)加热到380℃~385℃后进入反应器进行反应。当系统热量逐渐建立平衡,关闭加热蒸汽,转入上段叙述的正常操作条件运转。 合成塔

高温换热器

C 高温换热器B 高温换热器A 开工汽化器低温换热

器混

槽过冷器

电加热炉

在该连续配料合成工艺中原料按比例定量直接进入合成系统,使配料和合成合并为一个工序,简化了流程,充分利用了热量,减少了能量消耗,而且配比调整方便,同时减轻了劳动强度。

四、生产条件

1.压力

由主反应方程式可见,反应前的分子数等于反应后的分子数。从热力学的观点,增加压力对主反应没有影响。但从副反应方程式来看,反应后的分子数是增加的,增加压力可以抑制副反应的发生,提高甲醇的有效转化率,减少堵塞阀门和管道的碳酸盐结晶的产生,这点在试验及生产中已得到证明。同时,从化学动力学的观点,对气相反应,提高压力,就提高了气体的浓度,从而增加了分子间碰撞的机会,使

反应加速。在相同的空速下,提高压力等于延长接触时间,因而能得到较在的单位时间单位空间的产量。

由上述分析可知,甲胺合成反应在较高的压力下有利于简化后工序加压蒸馏的操作。但过高的压力,会提高对设备的材料要求,给设备制造带来困难,增加基建投资,对工艺的好处却不明显。所以操作压力的选择要根据设备制造水平和经济程度而定。我国几个甲胺厂生产实践证明,采用50公斤/平方厘米压力合成比较合适。

压力的控制:合成系统的压力保持稳定,乃是合成能否正常操作的因素之一。如果合成超压太高,也可能带来安全事故,影响压力的因素有:

①、合成泵:如果合成泵运转不良,机械机构失灵,则打不上料,会使压力上不去,另外合成泵进口压力不足,预热不够,则会发生气塞现象,泵也会打不上料,压力也上不去。

②、汽化器运转不正常:某些厂低温换热器设计较小,原料绝大部分靠汽化器加热汽化,汽化器运转是否正常则是影响压力波动的因素之一,这往往有下述几情况:

一种情况是加热蒸汽过低,使物料在50表压下不能汽化,此时操作者往往降低流量,加大电炉功率,企图用电加热达到物料汽化预热之目的,但由于液体物料民在汽化器上积聚了一部分,而当蒸汽压力突然回升时,则物料大量汽化,在合成塔内大量反应,造成压力、温度同时回升(有一次压力高达60公斤/平方厘米以上,温度470℃以上)。

另一种情况是,汽化器的疏水器失灵,蒸汽冷凝水积聚在汽化器中,减小了加热面积,使物料不能汽化,操作者打开旁路放水,此瞬间积聚物料突然汽化,大量反应,也会造成上述超温超压现象(有一次触媒层升至450℃,系统压力升高至60公斤/平方厘米)。

因此,操作中必须保证汽化器的正常工作,要注意维持蒸汽压力稳定,疏水器动作良好,还要特别注意汽化器测温点的温度的变化。

③、减压调节阀失灵:减压调节阀发生堵塞,则会发生系统压力升高,减压阀芯立因冲触而损坏,不起调节作用或动作失灵,则可能造成不起减压作用,此时表现出阀前50公斤/平方厘米,系统压力下降,而阀后压力上升(尤其是减压口径较大时)。

④、冷却水的影响:当低温换热器面积较小时,合成气冷却主要靠水冷凝,则冷凝器中的冷却水量显著地影响着合成系统的压力,在此情况下,冷却水最好是自动调节,水量不足,气相物料冷不下来,系统压力升高,水量过大,发生过冷现象,则会造成系统压力波动。

⑤、惰性气体的影响:由于合成副反应的发生,会产生CH4、N2、H3CO等惰性气体,如不注意放空,造成惰性气体积聚于系统中,使换热器换热效果不好,造成压力升高,因此,生产中要适当注意惰性气体的排放。

2.温度

甲胺的合成,主反应多为放热反应。由平衡转移定律知道,降低温度能促使反应向生成甲胺的方向进行。但在一般情况下,提高温度总是使反应速度加快。这是因为提高温度可使分子运动加速,分子间

碰撞次数增加,又能使化合时分子克服阻力的能力增大,增加有效结合的机会有资料报道,合成温度由375℃上升到425℃,甲醇转化率由93%提高到98%以上。在370℃左右反应时,既使原料配比中氨大大过量,产物中仍有3.5%甲醇没有反应,而在400℃以上反应时,产物中含甲醇量下降到0.5%以下。但是温度过高,则造成甲醇大量分解,致使触媒严重积炭而活性降低,同时产物中不凝气体显著增加。生产实践证明。

必须指出,反应温度不但影响甲醇的转化率,而且影响产物中三种甲胺的生成比率。温度升高,可以增加产物中一、二甲胺的生成率,而减少三甲胺的生成率,温度低,则情况相反。

当然,温度和空速、压力以及触媒的使用时间有关,一般来说,空速增加,温度应适当提高,触媒使用一段时间,活性慢慢下来,温度也应适当提高,但这些,对甲醇氨化反应来说,均不太显著。

温度的控制:一般情况下,调节电加热炉的加热功率借以控制予热温度的高低,可以达到控制合成塔触媒层热点温度之目的,但当温度急剧升高时(尤其是生成三甲胺的反应加速时)应打开进入合成塔的冷气副线阀门借调节冷气量来控制反应温度则更为灵敏。

影响合成反应温度的因素主要是:

①、流量的影响:合成进料量不稳,忽高忽低,而电加炉预热之调节往往滞后,以致使预热温度过高或不足,使反应温度发生变化,因此操作中应使进料流量稳定。

②、原料组成的影响:甲醇氨化反应的温度对原料组成特别敏感,

这是因为生成甲胺的反应是放热反应,而三甲胺的生成放热量最大,三甲胺的氨解又是吸热反应,因此,三甲胺生成量的变化显著地影响着反应温度。

③、预热温度的影响:进合成塔原料的温度高低对合成反应也有影响,一般而言,预热温度偏高,有利于反应的进行,反应温度也相应增高,反之,预热温度偏低,反应是逐步进行,合成塔温度偏低,在控制预热温度时,要注意以下两方面:

一方面,是当汽化器加热蒸汽压力过低时,物料汽化不完全,电炉的加热负荷相应加大,使预热温度不足,造成合成塔温度偏低,当蒸汽压力突然回升,则预热温度也突然升高(此时电炉功率已加大了),引起反应相应加速,温度也急剧升高。因此,操作者应时刻注意加热蒸汽压力的变化。

另一方面,是当电炉加热功率的调节采用手动时,尤其是采用有级调节情况下,加热功率的突然变化,直接影响到合成塔温度的波动,也是合成参数发生共振的起始因素之一。因此,电炉操作时加减功率不可幅度太大,最理想的方法是根据合成塔中心温度自动无级调节电炉加热功率。

3.空间速度(空速)

空速是指在单位时间内通过单位体积催化剂的原料量。

习惯表示为:标准M3(原料液)/ M3(触媒)·小时。

空速是触媒活性的指标,是确定合成塔生产能力的主要因素。一般地说,为提高单位时间内通过单位空间的产量,总希望空速越高越

好,但是空速过大,使气体与触媒接触时间减少,会使反应不完全,降低甲醇转化率,试验证明将空速从2.5提高到10甲醇转化率从98%降至95%。空速过低容易造成甲醇的分解(当温度较高时),又会使副反应增加,使三甲胺的生成率增加。

同时,空速的确定既取决于触媒的活性又和反应压力有关,反应压力高,气体密度大,在反应器停留时间长,因此空速可适当提高,但并不与反应压力成正比关系。压力采用2.5~3.5为宜,特别在不采出三甲胺的情况下,采用较高空速尤为有利。

影响空速的因素有:

①、流量计量的误差以及旁路阀门的内漏;

②、合成进料泵动作不正常,发生气塞、泄漏等,送不上料;

③、配料槽换槽时,如果先关空槽后开满槽,会使流量瞬间波动(在连续进料中不会发生此现象);

④、合成系统的参数共振现象

由上述讨论可知,影响合成反应在压力、温度、空速的因素下,也不可忽操作因素、机械因素和事故因素等,压力、温度、空速固然有各自的影响因素,但他们之间并非孤立的变化,而是有机地联系着,互相影响。其中之一发生波动,其余诸参数随之波动,有时呈现周期性的波动,这种现象称为参数的共振现象,这种现象在合成进料泵有回路的流量时更易发生,泵送出的流量往往大于需要的流量,一般是装回流管使多余的物料返回进料入口,回流管的阀门往往是固定开度,等于回路的阻力基本上固定(在流量不大的情况下),这样如果

系统压力升高,必须返回泵入口此时流量增加,因而减少了系统的流量,反之系统压力降低,进料量会相应增加,而流量的变化又会引起温度的变化,反应温度之波动也引起压力的波动,就这样互相影响,造成共振,而起始因素很多。在生产中,会发现当蒸汽压力发生周期波动时,引起系统压力、流量以及反应温度有规律的周期波动,当电加热炉功率突变时会引起温度、系统压力及流量的波动。实际操作证明,一旦发生共振现象,就不容易很快消除,要认真分析引起共振的起始因素,抓住主要矛盾逐步减小共振现象,如果欲速,则往往不达。

4配料比(配比)

配料比是指配料中氨和甲醇的分子比。在工业生产中,往往采用循环投料,原料中除氨和甲醇外,还有返回的一部分甲胺,所以严格地说配比应是N/C分子比。

可以表示:

N/C=N A+N M+N D+N T / N me+N M+2N D+3N T

我们习惯上采用:

N A+N M / N me+N M来计算配料比。

式中:N A―氨的公斤分子,N M―一甲胺公斤分子

N D―二甲胺公的分子,N me―甲醇公斤分子

N T―三甲胺公斤分子,

根据质量作用定律,高的配比,有利于生成一甲胺,低的配比,有利于生成三甲胺,而二甲在适当配比时有一最高平衡浓度。(对于分子量以公斤为单位来表示物质的量叫做1公斤分子的重量,简称公

斤分子)

N/C对甲胺分配比例的影响

由此可知,N/C对合成产物中三种甲胺的比例有影响。但是,从表2-1可以发现,增加N/C会降低甲胺总的产量。换言之,由于N/C 过大,使氨大大过剩,大量的氨在系统中循环,其作用恰好冲淡了触媒表面参加反应的活性基团的密度,而使反应器的生产能力大大降低。随之也造成整个系统(包括蒸馏)设备尺寸的加大和能量消耗的增加。这也就是恒沸流程的缺点。

N/C对甲胺总产量的影响

同时我们还应该注意到,降低N/C虽然为提高单位时间空间产量,但由于降低N/C导致一、二甲胺的产率下降,而高产率的三甲胺又往往是工业上不大量需要的产品,加上N/C过低,会使原料甲醇相

对过剩而造成很多副反应,增加原料的消耗定额,所以工业生产中一般很少采用过低的N/C。

总之,根据对产品的分配和平衡,原料及动力消耗、设备投资情况,确定合适的配比来根据生产任务不同随时改变是很重要的。

常用的几种配比(N/C)

氯甲烷的生产

一、氯甲烷的性质和用途 1、氯甲烷的性质和用途 氯甲烷是甲烷分子中的氢原子被氯原子取代的产物,包括四种化合物:一氯甲烷,二氯甲烷,三氯甲烷(氯仿),四氯化碳。它们的物理性质见表10-1。 表10-1 氯甲烷物理性质 氯甲烷应用较广的是氯仿和四氯化碳,氯仿是一种不燃的优良溶剂,还广泛用于有机化工生 产的原料。氯仿曾作过手术麻醉剂,但它对肝脏有毒,且有其它副作用,现已不在使用。四 氯化碳受热蒸发时,其蒸汽可把燃烧物覆盖,隔绝空气而灭火,是常用的灭火剂。四氯化碳 主要用作溶剂、有机物氯化剂,纤维脱脂剂、谷物熏蒸消毒剂、药物萃取剂等,并用于制造 氟里昂和织物干洗剂,医药上用作杀钩虫剂。 2.二氯甲烷的生产方法

氯甲烷的生产方法有甲烷氯化法和甲醇氢氯化法。四氯化碳则还可以由二硫化碳氯化制取。本节主要介绍甲醇氢氯化法和甲烷氯化法。 二、甲醇氢氯化法生产氯甲烷 1、生产原理 甲醇氢氯化制一氯甲烷有液相法和气相法。 (1)液相法 液相法是甲醇与盐酸反应,反应式如下: CH3OH + HCl??→CH3Cl + H2O 反应过程中有少量二甲醚生成: CH3OH??→(CH3)2O + H2O 一氯甲烷可制得二氯甲烷、三氯甲烷和四氯化碳,即: CH3Cl + Cl2??→CH2Cl2 + HCl CH2Cl2 + Cl2??→CHCl3 + HCl CHCl3 + Cl2??→CCl4 + HCl (2)气相法 气相法是气化后的甲醇与氢气在氯化器中反应,反应式为: CH3OH + Cl2 + H2??→CH3Cl + H2O + HCl 一氯甲烷再与氯气反应制二氯甲烷、三氯甲烷及四氯化碳。 采用液相法,其操作温度约为130~150℃;而气相法的操作温度大约300~350℃。气相法比液相法具有较高的设备生产能力。液相法通常是HCl和甲醇气态鼓泡通过液体催化剂,由于接触时间短,生产能力受到限制。工业生产中,液相法和气相法都被采用。这两种方法,除了反应器外,其它过程非常相似。 液相法催化剂是以氯化铁、氧化锌一类的金属氯化物的水溶液。气相法的催化剂通常是氯化锌、氯化铜和铝,沉积在硅胶等载体上。 2.工艺流程 甲醇氢氯化制甲烷流程如图10-5所示。

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

油气集输课程设计

重庆科技学院 《油气集输工程》 课程设计报告 学院:__石油与天然气工程学院_ 专业班级:油气储运工程09-3 学生姓名:刘畅学号: 2009441727____ 设计地点(单位)_ 石油与安全科技大楼K706____设计题目:_某分子筛吸附脱水工艺设计——工艺流程及平面布置设计 完成日期:2012-6-19 指导教师评语:_______________________________________________________________ _______________________________________________________________________________________ _______________________________________________________________________________________ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 本设计中原料气压力为3MPa,温度40℃,设计规模为15万方/天,要求脱水到1ppm 以下。根据同组同学分离器设计、吸附塔设计、再生气换热器设计以及管道设计设计并绘制双塔吸附脱水工艺流程图。其中分离器采用立式重力型分离器,吸附塔采用4A型分子筛,换热器使用套管式塔设备。依据工艺流程设计,考虑天然气走向及当地风向,参考《GB50350-2005 油气集输设计规范》以及当地地势等相关条件,设计出符合《石油与天然气防火规范》、《建筑设计防火规范》、《工业企业噪声控制规范》等有关规定的平面布置图。 关键词:分子筛吸附塔平面布置工艺流程

氯甲烷的合成

编号:No.40 课题:甲醇氢氯化法和甲烷氯化法生产氯甲烷 授课内容: ●甲醇氢氯化法和甲烷氯化法生产氯甲烷反应原理 ●甲醇氢氯化法和甲烷氯化法生产氯甲烷工艺流程 知识目标: ●了解氯甲烷物理及化学性质、生产方法及用途 ●了解甲醇为原料生产产品新技术 ●掌握甲醇氢氯化法和甲烷氯化法生产氯甲烷反应原理 ●掌握甲醇氢氯化法和甲烷氯化法生产氯甲烷工艺流程 能力目标: ●对比甲醇氢氯化法和甲烷氯化法生产氯甲烷特点 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●影响甲醇氢氯化法和甲烷氯化法生产氯甲烷主要因素有哪些? ●绘出甲醇氢氯化法和甲烷氯化法生产氯甲烷工艺流程图 授课班级: 授课时间:年月日

第二节氯甲烷的生产 一、概述 1.氯甲烷的性质和用途 氯甲烷是甲烷分子中的氢原子被氯原子取代的产物,包括四种化合物:一氯甲烷,二氯甲烷,三氯甲烷(氯仿),四氯化碳。它们的物理性质见表10-1。 表 10-1 氯甲烷物理性质 氯甲烷应用较广的是氯仿和四氯化碳,氯仿是一种不燃的优良溶剂,还广泛用于有机化工生产的原料。氯仿曾作过手术麻醉剂,但它对肝脏有毒,且有其它副作用,现已不在使用。四氯化碳受热蒸发时,其蒸汽可把燃烧物覆盖,隔绝空气而灭火,是常用的灭火剂。四氯化碳主要用作溶剂、有机物氯化剂,纤维脱脂剂、谷物熏蒸消毒剂、药物萃取剂等,并用于制造氟里

昂和织物干洗剂,医药上用作杀钩虫剂。 2.氯甲烷的生产方法 氯甲烷的生产方法有甲烷氯化法和甲醇氢氯化法。四氯化碳则还可以由二硫化碳氯化制取。本节主要介绍甲醇氢氯化法和甲烷氯化法。 二、甲醇氢氯化法生产氯甲烷 1、生产原理 甲醇氢氯化制一氯甲烷有液相法和气相法。 (1)液相法 液相法是甲醇与盐酸反应,反应式如下: CH3OH + HCl??→CH3Cl + H2O 反应过程中有少量二甲醚生成: CH3OH??→(CH3)2O + H2O 一氯甲烷可制得二氯甲烷、三氯甲烷和四氯化碳,即: CH3Cl + Cl2??→CH2Cl2 + HCl CH2Cl2 + Cl2??→CHCl3 + HCl CHCl3 + Cl2??→CCl4 + HCl (2)气相法 气相法是气化后的甲醇与氢气在氯化器中反应,反应式为: CH3OH + Cl2 + H2??→CH3Cl + H2O + HCl 一氯甲烷再与氯气反应制二氯甲烷、三氯甲烷及四氯化碳。 采用液相法,其操作温度约为130~150℃;而气相法的操作温度大约300~350℃。气相法比液相法具有较高的设备生产能力。液相法通常是HCl和甲醇气态鼓泡通过液体催化剂,由于接触时间短,生产能力受到限制。工业生产中,液相法和气相法都被采用。这两种方法,除了反应器外,其它过程非常相似。 液相法催化剂是以氯化铁、氧化锌一类的金属氯化物的水溶液。气相法的催化剂通常是氯化锌、氯化铜和铝,沉积在硅胶等载体上。 2.工艺流程

硝基苯废水处理工艺设计方案

目录

第一章处理工艺的文献综述 1.1含硝基苯废水对环境的危害 硝基苯,分子式为C5H6NO2,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用N5O3—苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

水厂工艺流程设计

水质工程学(一)课程设计说明书 学院:程学院系名: 专业:给水排水姓名: 学号:班级: 指导教师:指导教师: 2012年 6月 15 日

目录 第一章设计基本资料和设计任务 (2) 设计基本资料 (2) 设计任务 (3) 第二章水厂设计规模的确定 (4) 第三章水厂工艺方案的确定 (6) 第四章水厂各个构筑物的设计计算 (8) 一级泵站 (8) 混凝剂的选择和投加 (8) 管式静态混合器 (11) 机械搅拌澄清池 (11) V型滤池 (17) 消毒 (23) 清水池 (24) 二级泵站 (25) 附属构筑物 (26) 第五章水厂平面和高程布置 (27) 平面布置 (27) 高程布置 (27) 附:参考文献 (29)

第一章设计基本资料和设计任务 设计基本资料 设计水量 水厂设计流量根据本人学号确定: 一班同学的设计水量:(学号后两位数值)m3万/d 二班同学的设计水量:(学号后两位数值+)m3万/d 原水水质及水文地质资料 (1)原水水质情况 (2)水文地质及气象资料 a.河流水文特征 位于厂址北侧的河流作为取水水源,河流洪水位:,最河流枯水位: m,常年水位: m b.气象资料 最热月平均气温:°C,最冷月平均气温:°C 风向:冬季主导风向为西北风,夏季主导风向为西南风。

c.地形地质 水厂规划用地面积满足水厂用地指标要求,用地形状自定,地形图如下: 出厂水质、水压要求 出水达到国家生活饮用水卫生标准(GB5749-2006),二泵站出水扬程要求为28米。 设计任务 1.方案选择:根据原水水质水量和处理后水质要求选择并确定给水厂工艺流程。 2.通过经济技术比较选择并确定各水处理构筑物类型。 3.对水厂构筑物进行设计计算,并附有必要的单线草图。 4.确定辅助构筑物尺寸和位置,进行水厂平面布置并绘制水厂 平面布置图 5.计算各净水构筑物和连接管忠的水头损失,考虑水厂地形,确定各净水构筑物的标高,绘制水厂高程布置图。 第二章水厂设计规模的确定 1.近期规模 设计规模为 (29+=万m3 /d( m3/s),制水能力Q=×=万m3 /d=13152m3 /h,其中水厂自用水5%~10%,取7%。 近期规模万m3 /d.水处理构筑物按照近期处理规模进行设计.水厂的主要构筑物分为8组,每组构筑物类型相同,每组处理规模为万m3 /d(1644m3 /h)。

油气集输课程设计工艺流程与平面布置

重庆科技学院 课程设计报告 院(系):_石油与天然气工程学院专业班级:油储07 学生姓名: xxxx 学号: 2007440xxx 设计地点(单位)___ 人文社科大楼G304_____ _ __ 设计题目:_ 广安2#低温集气站工艺设计 ——工艺流程与平面布置 完成日期:2010 年 7 月 1 日 指导教师评语: _______________________________________ ___________________________________________________________________________ ___________________________________________________________________________ ___________________________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 通过广安2#低温集气站的基础资料以及数据,分析得到该集气站的天然气中含有凝析油和硫,因而需要对其进行脱硫和凝析油的稳定处理。除此之外,还需要有天然气的分离设备抑制剂注入器以及计量装置由此得到该低温集气站相应的工艺流程。画出该集气站的工艺流程图,根据相关的要求和根据画出平面布置图。并对流程图以及其平面布置图做出设计说明和阐述。分析各类设备的选型和选择理由,以及平面布置图的安全规范说明。 关键词:工艺流程平面布置分离计量抑制剂节流阀

生产工艺流程简述

生产工艺流程简述 清棉工序 1.主要任务:(1)将紧压的原纤维松解成较小的纤维块或纤维束,以利混合、除杂作用的顺利进行;(2)清除原纤维中的大部分杂质、疵点及不宜纺纱的短纤维。(3)将不同批次的纤维进行充分而均匀地混和,以利棉纱质量的稳定。(4)成卷:制成一定重量、长度、厚薄均匀、外形良好的棉纤维卷。 梳棉工序 1.主要任务 (1)分梳:将纤维分解成单纤维状态,改善纤维伸直平行状态。(2)混合:使纤维进一步充分均匀混合。(4)成条:制成符合要求的棉条。 精梳工序 主要任务: 1.除杂:清除纤维中细小的纤维疵点。 2.梳理:进一步分离纤维,排除一定长度以下的短纤维,提高纤维的长度整齐度和伸直度。 3.牵伸:将棉条拉细到一定粗细,并提高纤维平行伸直度。 4.成条:制成符合要求的棉条。

并条工序 主要任务 1.并合:一般用6-8根纤维条进行并合,改善棉条长片段不匀。2.牵伸:把纤维条拉长抽细到规定重量,并进一步提高纤维的伸直平行程度。3.混合:利用并合与牵扯伸,使纤维进一步均匀混合,不同唛头、不同工艺处理的纤维条,在并条机上进行混和。4.成条:做成圈条成型良好的熟条,有规则地盘放在棉条桶内,供后工序使用。 粗纱工序 主要任务: 1.牵伸:将熟条均匀地拉长抽细,并使纤维进一步伸直平行。2.加捻:将牵伸后的须条加以适当的捻回,使纱条具有一定的强力,以利粗纱卷绕和细纱机上的退绕。 细纱工序 主要任务: 1.牵伸:将粗纱拉细到所需细度,使纤维伸直平行。 2.加捻:将须条加以捻回,成为具有一定捻度、一定强力的细纱。3.卷绕:将加捻后的细纱卷绕在筒管上。4.成型:制成一定大小和形状的管纱,便于搬运及后工序加工。

制造流程及工艺方案设计

目录 摘要 (3) 引言 (4) 1.任务与分析 (5) 1.1确定生产纲领 (5) 1.2确定生产类型 (5) 2.设计的目的、要求和内容 (6) 2.1设计目的 (6) 2.2设计要求 (7) 2.3设计内容 (7) 3.工艺分析 (8) 3.1技术要求 (8) 3.2零件特点 (8) 4.毛坯的选择 (9) 4.1毛坯的选择 (9) 4.2轴类零件的毛坯和材料 (9) 4.3轴类零件加工工艺规程注意点 (10) 4.4轴类零件加工的技术要求 (10) 5.基准的选择 (11)

5.1粗基准的选择原则 (11) 5.2选择精基准 (11) 6.加工余量、工序尺寸和公差的确定 (12) 6.1加工余量概述 (12) 6.2影响加工余量的因素 (12) 6.3加工余量的确定 (12) 6.4零件图的加工余量、工序尺寸和公差的确定 (12) 7.切削用量的确定 (16) 7.1粗车 (16) 7.2半精车 (16) 7.3精车 (16) 8.机床及工艺装备的确定 (17) 8.1机床的选择 (17) 8.2工艺装备的确定 (17) 9.拟定机械加工工艺路线 (17) 9.1选择定位基准 (17) 9.2表面加工方法的选择 (17) 9.3拟定工艺路线 (18) 结论 (20) 致谢 (20) 参考文献 (20)

摘要 车削加工是在车床上利用工件相对于刀具旋转对工件进行切削加工的方法。车削是最基本、最常见的切削加工方法,在生产中占有十分重要的地位车削适于加工回转表面,大部分具有回转表面的工件都可以用车削方法加工,如加工轴类零件的内外圆柱面、内外圆锥面、端面、沟槽、螺纹和回转成形面等,所用刀具主要是车刀。 在各类金属切削机床中,车床是应用最广泛的一类,约占机床总数的50%。车床既可用车刀对工件进行车削加工,又可用钻头、铰刀、丝锥和滚花刀进行钻孔、铰孔、攻螺纹和滚花等操作。按工艺特点、布局形式和结构特性等的不同,车床可以分为卧式车床、落地车床、立式车床、转塔车床以及仿形车床等,其中大部分为卧式车床。 在各种机械产品中,带有螺纹的轴类零件应用很广泛。螺纹切削是加工螺纹件效率最高、经济性最好的加工方法,用车削方法加工螺纹是机械制造业目前常用的加工方法。 在车床上车削螺纹轴可采用成形车刀或螺纹梳刀(见螺纹加工工具)。用成形车刀车削螺纹,由于刀具结构简单,是单件和小批生产螺纹工件的常用方法;用螺纹梳刀车削螺纹,生产效率高,但刀具结构复杂,只适于中、大批量生产中车削细牙的短螺纹工件。普通车床车削梯形螺纹的螺距精度一般只能达到8~9级。在专门化的螺纹车床上加工螺纹,生产率或精度可显著提高。 关键词:车削加工卧式车床螺纹轴工艺

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

印刷工艺课程设计说明书

题目:《2014-2015学年工作校历》手册的 印版制作工艺 学生姓名:尹秉政 学院:轻工与纺织学院 系别:印刷工程系 专业:印刷工程 班级:印刷2011级2班5组 指导教师:穆东明、郭丽娜 2014 年7 月10 日

目录 第一章课程设计的主要内容 (1) 第二章设计作品的印制工艺流程 (1) 2.1 原稿的设计流程 (1) 2.1.1 图像扫描 (1) 2.1.2印前图文制作处理 (2) 2.1.3 拼版,组版 (2) 2.1.4 打样输出 (2) 2.2 胶片输出流程 (2) 2.2.1 RIP处理 (2) 2.2.2 激光照排机曝光与冲洗机定影 (2) 2.3 印版的制作流程 (2) 2.4 印刷流程 (2) 2.4.1 印前准备 (2) 2.4.2 装版试印 (2) 2.4.3 正式印刷 (3) 2.4.4 印后处理 (3) 2.5 印后加工流程 (3) 第三章设计作品的印版制作工艺 (3) 3.1印版制作工艺要求 (3) 3.2 工艺内容 (3) 3.3 工艺过程 (4) 3.4 主要工艺参数 (4) 第四章印版制作工艺中的质量检测与故障排除 (4) 4.1 印版外观质量的检查 (4) 4.2 版式规格的检查 (5) 4.3 图文内容的检查 (5) 4.4 胶印印版色别的区别和检查 (5) 4.5 印版图文和非图文部分的检查 (5) 总结 (5) 参考文献 (6)

第一章课程设计的主要内容 本课程设计针对学生己经掌握的印刷工艺课程的专业理论知识和基本技能,进行 一次综合应用的训练。课程设计中学生要能够完成规定印刷活件的印前制作与处理过程,完成胶片的发排、冲洗显影,制作相应的胶印PS版,并使用该印版进行胶版印刷,完成印刷品的折页、装订及裁切等印后加工工序,最终获得印刷成品。在此过程中使学生更加深入地了解和掌握印前制作、输出、制版、印刷的工作内容、工艺特点和技术处理方法。 课程设计的主要内容的设计工作校历手册,工作校历的成品规格为185X260mm,大度8开单色双面印刷,正度16开骑马钉装钉。我的任务主要内容是印版的制作,总共26张胶片,所准备的印版至少26张未曝光,版面平整,没有折痕,大度8开,470X400mm的阳图光分解型预涂感光板,印版制作前的工艺为胶片输出,对此环节的要求是胶片平整,表面无折痕,如果不符合此要求的胶片将无法晒版在完成印版的制作后将是印刷过程。将印版交于印刷小组。事实上印版制作和印刷是分不开的,所以我们既要制作印版又要印刷,一旦印刷中出现印版损毁,那就重 新制作印版。 第二章设计作品的印制工艺流程 2.1 原稿的设计流程 2.1.1 图像扫描 图像扫描是通过平面扫描仪获取图像的方式。 平面扫描仪获取图像的方式是先将光线照射在扫描的材料上,光线反射回来后由CCD光敏元件接收并实现光电转换(图1). 为:放置原稿——预扫——参数设置——正式扫描。 滚筒扫描仪操作步骤:扫描操作步骤主要分为: 放置原稿——预扫——参数设置——正式扫描。 图1 扫描仪 2.1.2印前图文制作处理 数字印前图文图像制作处理以Photoshop图像处理软件为主。 Photoshop软件是印刷印前处理的主要软件,可以用于色彩管理进行颜色设置, 设置工作空间和色彩管理方案,也可以用于改变图像色彩模式便于印刷输出。 Photoshop是一个功能丰富、性能强大的软件,可以根据需要对图像进行处理。例如:改变色阶、调整明度饱和度、色彩平衡、亮度饱和度等。该软件自带了很多预设的滤

油气集输处理工艺及工艺流程

油气集输处理工艺及工艺流程 学院:延安职业技术学院 系部:石油工程系 专业:油田化学3班 姓名:王华乔 学号:52

油气集输处理工艺及工艺流程 摘要:油气集输工程要根据油田开发设计、油气物性、产品方案和自然条 件等进行设计和建设。油气集输工艺流程要求做到:①合理利用油井压力,尽量减少接转增压次数,减少能耗;②综合考虑各工艺环节的热力条件,减少重复加热次数,进行热平衡,降低燃料消耗;③流程密闭,减少油气损耗;④充分收集和利用油气资源,生产合格产品,净化原油,净化油田气、液化气、天然汽油和净化污水(符合回注油层或排放要求);⑤技术先进,经济合理,安全适用。 油气集输,作为油田生产油气整体过程中的一个环节,在整体操作过程中,有着 极其重要的作用。油气集输主要负责的任务有四个方面:(1)将开采出来的石 油气、液混合物传输到处理站,将油气进行分离以及脱水,使原油达到国家要求 标准;(2)将合格的原油通过管道输送到原油储存库进行储存;(3)将分离出 来的天然气输送到再加工车间,进行进一步的脱水,脱酸,脱氢等处理;(4) 分别把经过处理,可以使用的原油和天然气输送给客户。由于油气集输涉及到整 个油田的各户钻井,因此相较于其它环节,油气集输铺设范围广,注意部位多等 诸多相关难题,因此,一个油田油气集输环节技术水平的高低,可能会直接波及 到整个油田的整体开发水平和能力。下面笔者对油气集输进行相关介绍,希望对 读者有所帮助。 一、油气收集包括集输管网设置、油井产物计量、气液分离、接转增压和油罐烃蒸气回收等,全过程密闭进行。 1、集输管网用钢管、管件和阀件连接油井井口至各种集输油气站的站外 管网系统(图1)。管线一般敷设在地下,并经防腐蚀处理。 油田油气集输集输管网系统的布局须根据油田面积和形状,油田地面的地形和地物,油井的产品和产能等条件。一般面积大的油田,可分片建立若干个既独立而又有联系的系统;面积小的油田,建立一个系统。系统内从各油井井口到计量站为出油管线;从若干座计量站到接转站为集油管线。在这两种管线中,油、气、水三相介质在同一管线内混相输送。在接转站,气、液经分离后,油水混合物密闭地泵送到原油脱水站,或集中处理站。脱水原油继续输送到矿场油库或外输站。从接转站经原油脱水站(或集中处理站)到矿场油库(或外输站)的原油输送管线为输油管线。利用接转站上分离缓冲罐的压力,把油田气输送到集中处理站或压气

以盐酸为原料合成一氯甲烷(150kta)工艺设计

毕业设计(论文)任务书 题目:以盐酸为原料合成一氯甲烷(150kt/a)工艺设计 学生姓名:班级:学号: 题目类型:工程设计指导教师:崔孝玲 一、设计原始资料 1、原料:有机硅副产质量浓度为30%的盐酸甲醇液体,纯度99.9% 含小于0.5%(质量)水蒸汽。 2、重点设计:浓盐酸提馏制氯化氢和一氯甲烷合成系统 3、生产时间:8000小时 4、设计基本数据 氯化氢提馏过程: (1)提馏塔操作压力0.16MPa(绝压,以下同); (2)原料酸常温进料,进料温度20'C; (3)原料酸质量浓度30%,稀盐酸产品质量浓度21%; (4)年操作时间8000小时。 一氯甲烷合成系统给定的工艺数据为: (1)反应器温度1500C,压力0.14MPa(绝压,以下同); (2)一、二级冷凝器压力0.13MPa; (3)甲醇进料温度20℃,压力0.15MPa; (4)氯化氢进料温度20℃,压力。.15MPa; (5)甲醇汽体过热温度120 ℃,压力0.15MPa; (6)返回反应器的循环液压力0.15MPa; (7)离开二级冷凝器的气体温度40 ℃; (8)甲醇的总转化率90%(摩尔); (9)进料甲醇和氯化氢的摩尔比1;1.1; 5、建厂地点:兰州 二、设计工作内容(建议): 第一部分前言 第二部分文献概述 第三部分设计的内容及要求 3.1设计范围及技术方案的确定 3.2设计内容及深度要求 3.2.1浓盐酸提馏制氯化氢系统 3.2.2一氯甲烷合成系统 第四部分氯化氢提馏工艺设计计算 4.1提馏系统工艺设计计算 4.1.1计算模型 4.1.2计算步骤

4.1.3计算结果 4.2提馏系统主要设备设计计算 4.2.1填料提馏塔 4.2.2一级冷凝器 4.2.3二级冷凝器 4.2.4塔底再沸器 4.2.5浓酸预热器 4.3提馏塔内件设计计算 4.3.1.进料液体分布器 第五部分氯甲烷合成系统设计计算 5.1合成系统工艺设计计算 5.2合成系统主要设备设计计算 第六部分主要参考资料 第七部分外文文献翻译(2篇) 三、绘制设计图 1. 机绘带主要控制点的氯化氢提馏工艺流程图一张(A1); 2. 手绘以盐酸为原料合成一氯甲烷的物料平衡图一张(A2); 3. 机绘提馏塔的工艺尺寸图一张(A2)。 四、设计进程 五、主要参考文献 [1] 汤月明.新建甲烷氯化物装置简介.中国氯碱.2001 [2] 方源福.甲醇氢氯化技术.中国氯碱通讯1989 [3] 乐晓兵.Stauffer化学公司甲烷氯化物技术.中国氯碱.1996 [4]俞潭洋.甲醇液氯法联产氯代甲烷的工艺特点及其发展前景.上海化工.1998 [5] 艾米.日本有机硅工业发展动向.化工新型材料.1990 [6]黄立道.我国有机硅单体产业发展形势分析.中国化工信息.2000 [7] 郑建军.我国三大有机硅单体生产装置发展概述.化工新型材料.1999 [8] 幸松民.加速我国的有机硅单体工业.中国化工.1997 [9] 北京石油化工工程公司.氯碱工业理化常数手册[M].化学工业出版社, 1989. [10] Gustin J L. Safety of chlorine production and chlorination processes[J]. Chemical Health and Safety, 2005, 12(1):5-16

苯硝化生产硝基苯工艺过程与防范对策

苯硝化生产硝基苯工艺过程与防范对策 摘要 本文对硝基苯的生产工艺进行了简要阐述,分析了生产工艺危险性,并列举案例分析,最后针对硝基苯的安全生产,提出了安全预防措施,这对硝基苯的生产能长期、稳定、安全运行具有重要意义。 关键词:硝基苯工艺危险性预防措施 引言 硝基苯是一种重要的化工原料和中间体,用于生产苯胺、联苯胺、二硝基苯等多种医药和染料行业,也可用作于农药、炸药及橡胶硫化促进剂的原料,其中主要用途是制取苯胺和聚氨酯泡沫塑料,目前,90%以上的硝基苯用于生产苯胺[1-3]。工业上硝基苯生产工艺过程主要包括苯硝化反应、硝基苯洗涤、硝基苯精馏等单元过程,生产过程中使用了大量易燃易爆、有毒有害、强腐蚀、强氧化的化学危险品。由于苯硝化反应中副反应生成的杂质(主要是硝基酚盐类)爆炸危险性很高,而且极易积累在精馏塔釜等受热部位,监测和处理不及时就容易发生爆炸,使其生产过程中安全事故具有突发性、灾害性的特点。因此对苯硝化生产硝基苯工艺过程进行危险性定量分析及对爆炸事故的安全研究,并提出具体的预防措施意义重大。 1 硝基苯生产工艺 1.1硝基苯简介 硝基苯,有机化合物,又名密斑油、苦杏仁油,无色或微黄色具有苦杏仁味的油状液体[4]。化学式为C6H5NO2,难溶于水,密度比水大,相对密度1.205,熔点6℃,沸点210~211℃,闪点为87.8℃,爆炸下限为1.8%(93.3℃)。易溶于乙醇、乙醚、苯和油。遇明火、高热会燃烧、爆炸。与硝酸反应剧烈。低毒,半数致死量(大鼠,经口640mg/kg),硝基苯由苯经硝酸和硫酸混合硝化而得。实验室制硝基苯由于溶有硝酸分解产生的二氧化氮而有颜色,除杂方式:加氢氧化钠溶液,分液。 1.2硝基苯的应用 硝基苯是重要的基本有机化工原料,用于生产染料、香料、炸药等有机合成工业,经催化加氢或铁粉还原可得苯胺,这是硝基苯的最主要用途,由苯胺进而生产各种有机

工艺流程说明书

工艺说明书 工艺流程说明 由空气压缩工序、反应工序、蒸汽发生工序和甲醛吸收工序组成。 1)压缩工序 新鲜空气通过空气过滤器进入罗茨鼓风机升压,风机出口气与吸收二塔(碱洗水洗2塔)顶部循环尾气混合后送到反应工序。 2)反应工序 从罐区来的原料甲醇先送到甲醇贮罐,再通过甲醇泵进入甲醇蒸发器,在此与甲醛循环泵送来的吸收二塔的甲醛循环溶液进行热交换,甲醇吸热而汽化,同时与风机来的气体相混合形成原料气体。原料气体再经过甲醇过热器过热后,进入主反应器。 原料气在这个固定床反应器的铁钼催化剂上发生反应后,生成甲醛反应气。该气体首先经过甲醇蒸发器管间,通过与原料混合气换热而自身冷却,然后进入吸收工序。 3)蒸汽发生工序 当甲醇、空气和水蒸气的原料混合进入反应器,在银催化剂上发生催化剂作用而生成甲醛时,其主要反应是氧化,脱氢反应。 甲醇氧化反应在200℃左右开始进行,因此经预热进入反应器的原料混合器,必须用电热器点火燃烧,当催化床温度升至200℃左右,反应开始缓慢进行,它是一个放热反应,放出的热量使催化床随着温度的升高至使氧化反应不断加快,所以,点火后催化床的温度升高非常迅速。甲醇脱氢反应在低温时几乎不进行,当催化床温度达600℃左右,反应成为生成醛的主要反应之一。脱氢反应是一个强吸热反应,故有反应的发生。对控制催化床的温度升高是有利的。脱氢反应是一个可逆反应,所谓可逆反应就是甲醇脱氢生成醛的同时,甲醛与氢也可向生成甲醇的方向进行,这类反应在化学反应中可用可逆符号来代替的。当原料混合气中的氧与脱氢反应生成的氢化合为水时,可使脱氢反应不断向生成甲醛的方向移动,从而提高了甲醇的转化率。

反应放出的热量,除抵消脱氢所需的热量,反应气体升温和反应器向周围环境的散去热量外,还有剩余。因此生产上不仅不需要外界供热,而且还必须在原料混合气中引进水蒸汽,利用水蒸汽的升温带热作用,将多余的热量从反应系统中移去,使反应能正常进行下去。此外,在反应器中还发生下列副反应。 4)甲醛吸收工序 来自甲醛蒸发器被冷凝的气进入吸收一塔,吸收一塔顶部出来的未被吸收气体进入吸收二塔。工艺水由管网供入,从吸收二塔顶部进入,与气相逆流接触进行甲醛吸收。吸收二塔底部出来的液体由甲醛循环泵经甲醛预热器和甲醛循环冷却器冷却后进入吸收一塔上段及中段,该甲醛液与甲醇蒸发器换热冷却后的甲醛反应气逆流接触得到甲醛溶液,并用甲醛循环泵在该塔下段循环,同时从甲醛循环泵采出一股甲醛溶液经冷却后作为产品送至甲醛装置的中间罐区甲醛溶液贮槽。 吸收二塔顶出来的尾气,一股返回风机入口,另一股进入尾气锅系统处理,处理过的尾气,完全能达到环境保护的要求,由烟囱在高处排放。

一氯甲烷生产工艺设计.doc

广西工业职业技术学院一氯甲烷生产工艺设计 系部:石油与化学工程系 专业:应用化工技术 班级:化工1032 学号:G201040232 姓名:

前言 甲烷氯化物包括一氯甲烷、二氯甲烷、三氯甲烷和四氯化碳,是一类常用的化学制剂,在化工、建材等多个领域有广泛的应用。其中一氯甲烷还常常作为中间体或者是反应组分应用于多个技术领域,它的重要性和应用的广泛型正在日益的扩大。作为合成甲基氯硅烷的基础原料,氯甲烷成本占甲基氯硅烷成本的40%,氯甲烷生产的经济模化一直是制约我国有机硅行业发展的关键性技术之一,国内外的生产现状表明我们存在的距离。随着我国加入WTO,国内有机硅的生产与发展已经面临更加激烈的国际竞争。如何提高氯甲烷的生产技术水平,尤其是有机硅单体生产企业利用有机硅单体副产盐酸合成氯甲烷进一步提高其工艺技术及装备水平的研究,其意义十分重大。一氯甲烷的生产方法主要有两种:甲醇氢氯化法和甲烷氯化法。本设计经过对比国内外各使用的生产方法、经济技术上的分析及根据国内综合情况,最终选择了甲醇氢氯化法的生产方法。

目录第一章一氯甲烷相关介绍 第一节一氯甲烷的基本性质 第二节一氯甲烷的应用 第三节国内外甲烷氯化物的发展概况 1.3.1国内 1.3. 2国外 第二章生产工艺设计 第一节生产方法的选择 2.1.1气—液相非催化法 2.1.2 气—液相催化法 2.1.3气—固相催化法 第二节甲醇氢氯化法生产原理 第三节物料衡算 第四节热量衡算 2.4.1.进料口 2.4.2塔顶 2.4.3塔釜

第一章一氯甲烷相关介绍 第一节一氯甲烷的基本性质 外观与性状:无色气体,具有醚样的微甜气味。 主要用途:用作致冷剂、甲基化剂,还用于有机合成。 熔点: -97.7 3 沸点: -24.2 相对密度(水=1): 0.92 相对密度(空气=1): 1.78 密度 0.9159g/cm3 18C时溶解度280ml/水 饱和蒸汽压(kPa): 506.62/22℃ 溶解性:易溶于水、氯仿、丙酮 , 能溶于乙醇等。 临界温度(℃): 143.8 临界压力(MPa): 6.68 燃烧热(kj/mol): 685.5 燃烧爆炸危险性避免接触的条件:接触潮气可分解。 燃烧性:易燃 建规火险分级:甲 闪点(℃): <-50 自燃温度(℃): 632 爆炸下限(V%): 7.0 爆炸上限(V%): 19.0

年生产12000吨二硝基苯工艺设计书

年产12000吨二硝基苯工艺设计书 1.1设计的目的,意义及要求 设计的目的及意义 化工课程设计是高等工业学校各专业教学计划的重要组成部分,是学生在毕业前进行的、全面运用所学的专业知识的综合训练,是培养学生综合素质和解决工程实际问题能力的一个重要的实践性教学环节。该过程是学生在校期间所学知识、理论及各种能力的综合应用与升华,是创新潜能得到激发的过程,是对各专业教学目标、教学过程、教学管理和教学效果的全面检验。 化工课程设计教学环节的教学目的是对学生从事科学研究的基本训练,是在教师指导下,通过毕业论文的教学过程,培养学生探求未知、探求真理的科学精神,以及优良的科学品质与科学素养,培养学生开展科学研究的方法。使学生了解本学科的发展动态和最新科学技术,检验学生综合运用基础理论、基本知识和基本技能,解决科学与技术领域有关问题的能力,检验科研基本训练的实际效果。 工程设计是工程师工作实践中最富创造性的容。设计能力不同于理论分析能力、表达能力和动手能力,它是一种如何将思维形式的知识转化为客观上尚未存在而可以实现的物质实体的创造能力,即不仅是认识客观、表现客观而且是创造客观的能力。因此设计能力的培养对工科学生尤为重要。 具体来讲化工课程设计有如下目的、意义: (1)通过课程设计的训练,使学生进一步巩固加深所学的基础理论、基本技能和专业知识,使之系统化、综合化。 (2)在课程设计中着重培养学生独立工作、独立思考并运用已学的知识解决实际工程技术问题的能力,结合课题的需要更应注意培养学生独立的获取新知识的能力。 (3)通过化工课程设计加强对学生计算、绘图、实验方法、数据处理、编辑设计文件、使用规化手册等最基本的工作实践能力的培养。 (4)通过化工课程设计的训练,使学生树立起具有符合国情和生产实际的正确的设计思 想和观点;树立起严谨、负责、实事、刻苦钻研、勇于探索并具有创新意识及与

新生产工艺管理流程图与文字说明

生产工艺管理流程 生产技术部接到产品开发需求后,进行产品开发策划并起草设计开发任务书,经公司领导审批后,业务部门根据产品设计开发任务书准备纸、油墨、印版、烫金等生产材料及生产工艺设备的准备工作,材料、设备准备完成后,安排在印刷车间进行上机打样;打样过程中,由生产技术部组织业务、品质、车间等部门对打样结果进行评审,打样评审通过后,由生产技术部进行送样、签样工作(送中烟技术中心材料部),若签样不合格,需重新进行打样准备;签样完成后,生产技术部根据打样情况形成临时技术标准,品质部形成检验标准,印刷车间根据临时技术标准进生试机生产,生产产品由生产技术部送烟厂进行上机包装测试(若包装测试不通过,生产技术部需重新调整临时技术标准重新试机生产),包装测试通过后,生产技术部根据试机生产时情况形成技术标准。当月生产需求时,生产技术部按生产组织程序进行组织生产,并同时下达技术标准,印刷车间根据生产技术标准,进行工艺首检,确认各项工艺指标正确无误,进行材料及设备的准备工作,各项工作准备完成后按技术标准要求进行工艺控制,生产技术部对整个生产运行过程进行监督,当工艺运行不符合要求时,通知生产技术部进行工艺调整。生产结束后,进入剥盒、选盒工序,经过挑选的烟标合格的按成品入库程序进行入库,不合格的产品按不合格程序进行处理。

产品工艺管理流程图 业务部生产技术部印刷车间品质部输出记录 接到设计 更改需求 段 阶 } 改 更 计 设 { 发 开 吕 产 不通过 不通过 通过 接到设计 开发需求 产品开发策划 打样准备 送样、签样 通过 不通过 形成技术标 准(临时) 审批不通过 上机打样 形成检验标准 设计开发项目组成立 通知 产品开发任务书 段 阶 制 控 艺 工 产 生 送客户包装测试■试生产 ■ 形成技术标准 <接到生 产需求 组织生产 下达工艺标准工艺首检 材料准备设备准备 工艺监督过程质量监督 工艺改进不通过运行判定 成品质量监督 是合格 成品入库 结束 不合格 控制程序 过程检验记录 工艺检查记录表, 匚工艺记录表 工艺运行控制 剥盒、选盒 烟用材料试验评价 报告 印刷作业指导书 生产工作单 换版通知单 生产操作记录表 工艺更改通知单 成品检验记录

硝基苯废水处理工艺设计方案

目录 第一章处理工艺的文献综述2 1.1含硝基苯废水对环境的危害2 1.2处理硝基苯的技术方法现状2 1.2.1 物理法2 1.2.2 化学法2 1.2.3 生物法3 第二章工程设计资料与依据4 2.1 废水水量4 2.2 设计进水水质4 2.3 设计出水水质4 2.4 设计依据5 2.5 设计原则与指导思想5 第三章工艺流程的确定5 3.1 废水的处理工艺流程5 3.2 工艺流程说明6 3.3 工艺各构筑物去除率说明7 第四章构筑物设计计算7 4.1 设计水量的确定7 4.2 调节池7 4.3 微电解塔8 4.4 FENTON氧化池 10 4.5 中和反应池11 4.6 沉淀池12 4.7 生活污水格栅14 4.8 生活污水调节池16 4.9 生化处理系统17 4.10 二沉池19 4.11 污泥浓缩池20 第五章构筑物及设备一览表22 5.1 主要构筑物一览表 22 5.2 主要设备一览表23 第六章管道水力计算及高程布置23 6.1 平面布置及管道的水力计算23 6.2 泵的水力计算及选型26 6.3 高程布置和计算28 第七章参考文献31

第一章处理工艺的文献综述1.1含硝基苯废水对环境的危害 硝基苯,分子式为C 5H 6 NO 2 ,相对分子量为123,相对密度(水=1)1.20,熔点在5.7℃,沸 点是210.9℃。硝基苯是淡黄色透明油状液体,有苦杏仁味,不溶于水,溶于乙醉、乙醚、苯等多数有机溶剂。用于溶剂,制造苯胺、染料等。环境中的硝基苯主要来自化工厂、染料厂的废水废气,尤其是苯胺染料厂排出的污水中含有大量硝基苯。 硝基苯在水中具有极高的稳定性,由于其密度大于水,进入水体后会沉入水底,长时间保持不变。又由于其在水中有一定的溶解度,所以造成的水体污染会持续相当长的时间。硝基苯类化合物化学性能稳定,苯环较难开环降解,常规的废水处理方法很难使之净化。因此,研究硝基苯类污染物的治理方法和技术十分必要。 1.2处理硝基苯的技术方法现状 1.2.1 物理法 对含高浓度硝基苯的工业废水,采用物理手段处理既可降低硝基苯的浓度,改善废水的可生化性,又可以回收部分硝基苯,实现资源利用最大化。主要的物理处理方法有:吸附法、萃取法和汽提法。 对于吸附法,硝基苯废水处理研究中颗粒状活性炭、炉渣、有机膨润土等都是应用较多的吸附剂。赵钰等[1]在用活性炭吸附法处理含芳香族硝基化合物的染料废水的工程试运行中,COD平均值由209mg/L下降至119mg/L。 对于萃取法,目前一般采用多级萃取法或萃取法与其他方法协同处理。林中祥等人[2]用 N 5O 3 —苯做萃取剂对硝基苯生产废水进行处理,萃取两次可使硝基苯含量达国家一级排放标 准。 对于汽提法,用于处理高浓度硝基苯废水,工艺上较为可行。于桂珍等[3]利用汽提—吸附法处理硝基苯废水,实验表明,硝基苯的去除率可达90%以上,汽提后的废水经碳黑吸附,废水中硝基苯含量可降至10mg/L以下,效果较好 1.2.2 化学法 针对于处理硝基苯的化学法主要有电化学法和高级氧化法。电化学氧化的基本原理有两

相关文档