文档库 最新最全的文档下载
当前位置:文档库 › 全固态薄膜锂电池及其阴极薄膜材料制备技术

全固态薄膜锂电池及其阴极薄膜材料制备技术

全固态薄膜锂电池及其阴极薄膜材料制备技术[产品研发]
梁 科 约5631字
摘要:电子产品小型化、微型化、集成化成为当今技术发展的大趋势,从而需要电池的微型化。微电池在未来便携式电子设备、国防装备及微电子机械系统 (MEMS)等方面有着广泛的应用前景, 受到人们的重视。文章介绍了全固态薄膜锂电池的原理和结构,以及阴极薄膜的制备技术,展望了全固态薄膜锂电池的应用前景。
关键词:微电池;全固态薄膜锂电池;阴极薄膜;溅射法;脉冲激光沉积法;电子束蒸发法
中图分类号:TM911文献标识码:A文章编号:1009-2374 (2010)12-0043-03
电子产品小型化、微型化、集成化成为当今技术发展的大趋势,从而需要电池的微型化。微电池在未来便携式电子设备、国防装备及微电子机械系统 (MEMS) 等方面有着广泛的应用前景, 受到人们的重视。目前,国内外积极开展研究的微电池系列有:锂电池、锌镍电池、太阳能电池、燃料电池等。其中全固态薄膜锂电池由于具有重量轻、体积小、循环寿命长、能量密度高、使用温度范围宽和安全性能好等优点已成为目前研究的热点。
全固态薄膜锂电池主要由阴极膜、阳极膜和电解质膜构成,其电池性能的主要决定于阴极材料的性能,所以薄膜锂电池的性能也取决于阴极薄膜的性能。近年来,如何成功获得性能优良的阴极材料成为热门前沿课题之一,美国、日本、韩国、英国、欧共体等一些大公司和研究机构纷纷致力于阴极膜研究和开发。本文旨在介绍全固态薄膜锂电池结构和原理,并总结阴极薄膜的制备技术,以期为全固态薄膜锂电池的研究提供参考。
一、全固态薄膜锂电池的结构和原理
电池的结构也极大地影响着电池的性能,它密切关系到电池的容量和Li+ 离子的传输速率。最优化的构件方式是组成高性能薄膜锂电池的重要条件。图1给出了典型的薄膜锂电池的结构型,主要部分是阴极模、固体电解质膜和阳极膜。可以通过某种基底(如单晶硅片)上依次沉积阴极电流收集极、阴极膜、固体电解质膜、阳极膜、阳极电流收集极构成简单的薄膜锂电池。除了电流收集端(通常用导电金属附着在基片表面制备)以外,全固态薄膜锂电池的阴极、阳极、电解质都是以固态薄膜的形式依次参差附着,并且外部以绝缘的保护层包裹。
锂电池原理上是一种锂离子浓差电池,固态薄膜锂电池的正、负两极通常由两种锂离子嵌入化合物或聚合物组成。充电时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到负极,放电时则相反。如图2所示:
 

 在锂电池的充、放电过程中,锂离子处于从正极→负极→正极的运动状态。锂电池中的就像一把摇椅,摇椅的两端为电池的两极,两极的锂浓度随着一极的升高而另一极降低,而锂离子就像运动员一样在摇椅间来回奔跑,类似一种摇椅式机制。所以锂电池又叫摇椅式电池,其原理又被称为摇椅式原理。
二、阴极薄膜材料的制备技术
制备阴极薄膜材料主要有两种沉积工艺,即物理方法和化学方法。其中物理气相沉积法又包括:磁控溅射 (Magnetron sputtermg)、电子束蒸发沉积、脉冲激光沉积 (PLD)等。化学方法主要是溶胶凝胶方法。本文就目前制备阴极薄膜材料常用的4种方法做简单介绍:
(一)溅射法
1.溅射技术是利用高能离子轰击靶材形成溅射物流,在衬底表面沉积形成薄膜的一种镀膜技术。溅射技术包括射频磁控溅射、反应溅射、多元靶溅射及离子束溅射。其中,磁控溅射由于沉积速率可以比其他溅射方法大很多,是目前应用最为广泛的一种薄膜沉积方法。由于优良的结构稳定性和循环性能,氧化钴锂被广泛应用在商品化的锂离子电池中。在薄膜锂离子电池研究中也经常使用其薄膜作为阴极材料。Jang 等采用射频磁控溅射法得到LiCoO2薄膜,研究得出薄膜中颗粒变小可以提高电压循环稳定性从而提高容量和能量密度。
2.H. Y. Park等在不同偏压下采用射频磁控溅射法沉积LiCoO2了阴极薄膜,循环伏安和充放电测试表明沉积过程中采取不同基体偏压对其结构和电化学性能有着明显影响。采用这种方法可不需要后续退火过程,而直接用于薄膜电池的阴极材料。
3.刘文元等采用射频磁控溅射技术制备了非晶态和不同取向的多晶LiCoO2薄膜,利用XRD和SEM研究了不同温度退火后LiCoO2薄膜的结构和形貌。以具有不同结构的LiCoO2薄膜为阴极、含氮磷酸锂薄膜为电解质以及金属锂薄膜为阳极,成功地制备了电化学性能不同的全固态薄膜锂电池。由电化学研究结果表明, LiCoO2薄膜的结构和多晶取向决定了薄膜电池的电化学性能。采用具有一定取向的多晶LiCoO2薄膜制备的全固态薄膜锂电池具有最佳的性能,稳定放电容量达到55.4μAh/cm2·μm,充放电循环次数超过450次。
4.LiNiO2理论容量较高,比LiCoO2价格便宜,对环境污染也较小,所以有希望成为取代LiCoO2的电极材料。H.K.Kim等以LiNiO2为靶材,O2/(Ar+O2)比为0.1气氛下,采用射频磁控溅射法沉积得到非晶态LiNiO2薄膜,在700℃氧气气氛下快速热退火10分钟后得到结晶的LiNiO2薄膜。采用经快速热退火处理的LiNiO2薄膜阴极(厚1.13μm)组装的全固态薄膜电池显示出稳定的循环性能。作者指出,经快速热退火处理的LiNiO2薄膜阴极是制备高

性能全固态薄膜电池很有希望的阴极材料。
5.A.Urbano等人用射频磁控溅射的方法制备了LixNiOy薄膜,为LixNiOy阴极膜的溅射提供了部分依据。Duksu Kim等人首先用射频磁控溅射的方法制备了有良好电化学活性的LiNixCo12xO2阴极膜,实验对两种不同摩尔比合成靶材溅射的LiNixCo12xO2阴极膜作了对比研究,指出在氩气和氧气(摩尔比为2∶1)混合压为1.33Pa、溅射功率密度1.23W/cm2条件下,LiNO3、NiCO3和Co(NO3 )2·6H2O按摩尔比1.05∶0.5∶0.5合成粉末靶,在Pt(50nm)/SiO2/Si(100)衬底上溅射的LiNixCo12xO2膜,经过快速退火处理,有良好的容量保持性能。随着循环次数的增加,容量只有很少的降低。Cheng L L等讨论了在不同条件下制备的LiCoO2薄膜的性能,结果表明在250℃条件下以Si基板为衬底,氧气分压在0.665~1.33Pa范围内,可以制得纳米晶型的LiCoO2薄膜,当氧气分压高于1.33Pa或低于0.665 Pa时,会有Co3O4杂相产生,这说明氧气分压在制备过程中起很重要的作用。同时还讨论了退火温度对LiCoO2的电化学性能的影响,当退火温度分别为500℃、600℃、700℃时,电池的放电容量分别为41.77、50.62和61.16Ah/(cm2·μm) 。
6.Dudney研究发现由于在溅射过程中难以控制和优化锂锰氧计量比,LiMn2O4晶态薄膜电极的循环性能和内阻表现出的再生能力比LiCoO2差。
(二)脉冲激光沉积法
1.PLD最早出现于20世纪60年代,一开始由于气相镀膜方式占据了制膜方法的统治地位和PLD方法本身的发展不够,并没有受到重视。1987年PLD因成功制备YBCO高温超导薄膜而发展起来,近些年来,更是在制备铁电薄膜中得到广泛应用。它的基本过程是将一束高功率脉冲激光聚焦到符合化学计量比的陶瓷烧结靶表面上,靶表面瞬时局部温度可达103℃~104℃,蒸发出含有靶材成分的等离子体羽辉,羽辉中包含处于基态和激发态的原子、分子、团簇和高能电子,这些粒子以较高的能量到达加热的基片表面而成膜。使用该方法制得的膜的主要优点是:污染小;薄膜与靶材的成份保持一致;逸出粒子具有较大的能量,沿衬底表面的扩散较为激烈,沉积速率高;另外,在制膜的过程中,脉冲重复频率低,原子在两次脉冲蒸发间有足够的时间扩散到吉布斯自由能最低位置,这样有利于薄膜生长,提高薄膜质量。Sriehe等用248nm激光制备了LiCoO2和LiMn2O4薄膜。复旦大学化学系激光化学研究所薛明喆等采用脉冲激光沉积结合高温退火的方法在不锈钢基片上制备了LiFePO4薄膜电极,充放电测试表明,LiFePO4薄膜具有3.45~3.40V的充放电平台,与LiFePO4粉体材料相当,首次放电容量为27mAh/g。


相关文档