文档库 最新最全的文档下载
当前位置:文档库 › Cd对AZ31镁合金铸态组织和力学性能的影响

Cd对AZ31镁合金铸态组织和力学性能的影响

Cd对AZ31镁合金铸态组织和力学性能的影响
Cd对AZ31镁合金铸态组织和力学性能的影响

??

镁合金是目前可应用的最轻的结构材料,具有铝和钢不可替代的性能,如高比强度、高比弹性模量、高阻尼减振性、高导热性、高静电屏蔽性、高机械加工性和低的密度,而被广泛应用。然而,镁合金密排六方的晶体结构决定了其塑性变形能力较差。近年来,一些研究者在AZ31变形镁合金材料改性上开展了不少工作,通过微量元素合金化和复合合金化的方法来提高AZ31变形镁合金的性能。已有的研究表明[1-4]:在

AZ31合金中添加Y、Ce、Sb和Sr等合金元素可以使镁

合金的组织细化,改善力学性能。通常变形镁合金的变形能力(韧塑性指标)、力学性能、变形温度和合金化之间有着密切联系。加入合金元素除产生固溶强化、晶粒细化外,通常会在基体组织中出现高硬度、高熔点、塑韧性差的二次相,在提高变形镁合金力学性能的同时降低了合金的变形能力,如要保持合金原有的变形能力,则必须提高变形温度以利于二次相的溶入,来改善合金的变形性能并在室温时获得提高合金力学性能的目的。本试验采用国内鲜见报道的Cd元素,达到提高AZ31镁合金变形能力,又不降低合金力学性能

的目的,为Cd在变形镁合金中的应用提供可以借鉴的依据。

1试验材料和试验方法

试验材料选用纯镁、铝、锌和试剂Cd。试验设备:

TH160里氏硬度计,JB-300B冲击试验机;冲击韧性试

样规格为10mm×10mm×100mm的无缺口试样。4XC双目金相显微镜观察金相组织;HITACHIS-3000N型扫描电镜上观察合金的组织形貌,OXFORD-250型能谱仪测表面成分。Rigakud/max-2500型X衍射仪对合金中的相组成进行分析(CuKα靶)。ZSX100e型荧光分析仪分析试验后合金实际成分。合金试验成分设计为

Mg-Cd二元合金及AZ31-xCd合金两组,1-4号为Mg-Cd

二元合金,观察Cd对镁基二元合金组织及性能的影响,

A-D为AZ31-xCd的多元合金,分析Cd对AZ31镁合金组

织及性能的影响。试验合金的化学成分如表1所示。试验合金在5kW的SG-5-12型井式坩埚电阻炉里进行熔炼,采用熔剂保护。熔炼工艺为:装炉料→升温至720℃→加入合金元素→升温至740℃→变质处理→调温度至

收稿日期:2008-04-16收到初稿,2008-07-11收修订稿。

作者简介:夏兰廷(1950-),男,山东泰安人,教授,研究方向为铸造合金及腐蚀与防护。E-mail:xlanting@126.com

夏兰廷,李宏战,高

珊,师素粉

(太原科技大学,山西太原030024)

摘要:研究了Cd对镁及AZ31镁合金铸态组织和力学性能的影响。在AZ31镁合金中加入微量Cd能够明显地细化基体组

织,加入0.7%Cd后,其组织由富Al的α-Mg基体和均匀、弥散分布的析出相β-Mg17Al12组成,Cd固溶于基体不形成化合

物相;使合金的冲击韧性提高了68.6%,布氏硬度提高了10.3%,抗拉强度提高了9%,伸长率提高了35%。

关键词:Cd;AZ31镁合金;显微组织;力学性能中图分类号:TG146.2+2

文献标识码:A

文章编号:1001-4977(2008)10-1068-04

XIALan-ting,LIHong-zhan,GAOShan,SHISu-fen

(TaiyuanUniversityofScienceandTechnology,Taiyuan030024,Shanxi,China)

Abstract:TheinvestigationwascarriedoutoneffectsofCdontheas-castmicrostructureandmechanicalpropertiesofAZ31magnesiumalloy.Theresultsindicatethattheas-castmicrostructureoftheAZ31magnesiumalloyisrefinedobviouslybyaddingtraceCd.When0.7%Cdisadded,itismadeupofAl-richα-Mgmatrixanduniformlydistributedofβ-Mg17Al12.CddissolvedintothematrixofAZ31alloyandnonewphaseisformed,whichcontributestotheincreaseoftheimpacttoughness,Brinellhardness,tensionstrengthandelongationoftheexperimentalalloyby68.6%,10.3%,9%and35%,respectively.

Keywords:cadmium;AZ31magnesiumalloy;microstructure;mechanicalproperties

Cd对AZ31镁合金铸态组织和力学性能的影响

EffectsofCdAdditionsonAs-CastMicrostructureandMechanical

PropertiesofAZ31MagnesiumAlloy

Oct.2008Vol.57

No.10

造FOUNDRY

1068

??

720℃→精炼处理→升温至760℃→保温静置20min→

降温至720℃→浇注试样。试样用金属型浇注,金属模具为100mm×100mm×20mm的45号钢模具。力学性能的取样部位为片状试样中部。在ZDM-30型万能试验机上进行拉伸试验,拉伸速率为1mm/min。拉伸试样按国标GB/T6397—1986加工成直径为10mm的试样。

2试验结果

图1显示了不同Cd含量的Mg-Cd二元合金铸态显微

组织。图2为AZ31和不同Cd含量的AZ31-xCd合金铸态显微组织。图3为Mg+0.7%Cd二元合金扫描电镜背散射扫描图及能谱,图4为Mg+0.7%Cd二元合金的XRD衍射图,图5为AZ31+0.7%Cd镁合金的XRD衍射图。图6为Mg-Cd二元合金及AZ31-xCd合金的冲击韧性值,图7为Mg-Cd二元合金及AZ31-xCd合金的布氏硬度值。表3为两种合金的力学性能。

试样编号

ABCD

表2

试验合金检测的化学成分

Table2DetectingcompositionofexperimentalalloyswB(%)

Mg96.0895.8895.5695.46

Al2.942.892.912.90

Zn0.980.940.940.97

Cd-0.290.470.67

表1

试验合金的化学成分

Table1ChemicalcompositionofexperimentalalloyswB(%)

Mg余量余量余量余量余量余量余量余量

编号

1234ABCD

Al----3.03.03.03.0

Zn----1.01.01.01.0

Cd-0.30.50.7-0.30.50.7

铸造

夏兰廷等:Cd对AZ31

镁合金铸态组织和力学性能的影响

1069

??表3

AZ31、AZ31+0.7Cd合金的力学性能

Table3MechanicalpropertiesofAZ31andAZ31+0.7Cdalloys

αK/(

J?cm-2)3559

合金牌号

AZ31AZ31+0.7Cd

Rm/MPa153167

(%)8.511.5

HB6875

3试验结果分析

从图1、图4可以看到Mg及Mg-Cd二元合金的基体

组织为α-Mg相,在不含Cd的1号试样中α-Mg相呈不均匀的粗大块状分布,随着Cd含量的提高α-Mg相逐渐细化,形成均匀细小的晶粒分布。Mg、Cd均为密排六方晶体结构,由Mg-Cd二元相图分析[5],Mg与Cd形成匀晶转变,在液态固态均无限互溶形成单相α-Mg固溶体。Mg-Cd二元合金的晶粒大小除受结晶过程温度梯度影响外,更重要的是受成分过冷的影响,在结晶过

程中液固界面处形成Cd的浓度梯度,产生Cd的偏析,

偏析作用导致晶粒生长的液固界面产生成分过冷区,该过冷区随Cd含量的增加而增大,从而阻碍了α-Mg相的晶粒长大细化了α-Mg相,获得晶界强化并随Cd含量的增加细化作用增强。由Mg-0.7%Cd试样扫描电镜背散射图和线扫描能谱图(图3)

可以看到在试样合金

α-Mg基固溶体中的Cd在晶界及其附近处大量富集,形

成Cd的偏析产生较强的成分过冷,阻碍了α-Mg相的晶粒生长,从而细化了合金组织。经XRD检测(图4),

Cd含量为0.7%的Mg-Cd二元合金中并无新相产生,这说

明Cd在Mg中全部固溶。由于Cd的固溶强化和晶粒细化作用,其对Mg-Cd二元合金的性能产生有利影响。由图

6、图7中的数据可见,Cd不但使合金的硬度由42HB提

高到了47HB,提高11.9%;更难得的是使合金的韧性由17J/cm2大幅提高到了26J/cm2,提高了52.9%。

从图2和图5中可以看到不同Cd含量的AZ31及

AZ31+Cd合金组织由白色的α-Mg基体和黑色的

FOUNDRYOct.2008

Vol.57No.10

1070

??

(2)随着浇注温度升高,合金的密度、拉伸强度

和塑性呈先升高再降低趋势。在研究的浇注温度范围内,合金的拉伸试样断口特征变化不大。

参考文献:

[1]李魁盛.铸造工艺及原理[M].北京:机械工业出版社,1993:

253-353.

[2]张津,章宗和,等.镁合金及应用[M].北京:化学工业出版社,

2004:85-98.

[3]

宋佩维,郭学锋,井晓天,等.Sb对Mg-4Al-2Si合金显微组织和力学性能的影响[J].特种铸造及有色合金,2007,27(2):88-

91.

[4]刘萍.浇注温度对Mg2Si增强过共晶Al-Si合金组织与性能的影响[J].特种铸造及有色合金,2006,26(5

):272-278.(编辑:张允华,zyh@foundryworld.com)

(上接第1067页)

β-Mg17Al12相组成。在AZ31合金中随Cd含量的提高对α-Mg相产生良好的细化作用,由于Cd产生的成分过冷

使β-Mg17Al12相的析出和形核受到抑制,从而细化了β相。图2中不含Cd的A号试样看到,在粗大的α-Mg基体上分布着数量较少、颗粒粗大的β相;随Cd的加入量提高(B、C试样),α-Mg被细化的同时,β相也得到了良好细化,形成细小均匀分布的粒状组织;尤其是当Cd含量为0.7%时,合金组织中的β相弥散分布状况和均匀程度最好。由于晶粒细小的α-Mg相晶界的比表面积大,使合金的强度提高,细小弥散分布的β相使其对合金塑韧性的不利影响大为减弱,并产生了弥散强化效果[6]

。由图6、图7及表3中的数据可知,含0.7%

Cd时,AZ31合金D试样比A试样的冲击韧性提高了68.6%,硬度提高了10.3%;抗拉强度由153MPa提高

到167MPa,提高了9%;伸长率由8.5%提高到11.5%,提高了35%。塑性的提高,表明合金可经受变形的能力加强,提高了变形度,使合金能够进行更多次的变形加工,有效提高合金的力学性能。以上数据表明,

Cd在提高AZ31合金力学性能的同时,改善了合金的变

形能力。经XRD分析(图5),AZ31及AZ31加不同Cd含量的合金中第二相都为Mg17Al12,说明Cd的加入并没有引起合金组织中相的改变,没有新相产生。

4结论

(1)Cd完全固溶于AZ31合金中,不形成新相也不

以单质形式存在;Cd产生成分过冷可以有效的细化合金中的α-Mg和β

相。(2)随AZ31合金中Cd含量的提高,合金的强韧性提高;含0.7%Cd的AZ31合金,抗拉强度提高了9%、硬度提高了10.3%、伸长率提高了34%、冲击韧性提高了68.6%,表明Cd在提高合金力学性能的同时还保证了合金的变形能力。

参考文献:

[1]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造,2002,51(12):767-771.

[2]杨明波,潘复生,李忠盛,等.Sr对Mg-3Al-1Zn镁合金铸态组织的影响[J].重庆工学院学报(自然科学版

),2007,21(3):10-12.[3]袁广银,曾小勤,吕宜振,等.锑合金化对镁铝基合金力学性能的改善作用[J].材料工程,2001(4):10-15.

[4]高洪吾,胡晓菊,李长茂,等.RE元素Y和Nd对Mg-6Al合金显微组织的影响[J].特种铸造及有色合金,2004(12):29-31.[5]长崎诚三,平林真.二元合金状态图集[M].刘安生,译.北京:冶金工业出版社,2002.

[6]

余永宁.金属学原理[M].北京:冶金工业出版社,2000.

(编辑:张允华,zyh@foundryworld.com)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

铸造

夏兰廷等:Cd对

AZ31

镁合金铸态组织和力学性能的影响

1071

AZ31镁合金应力应变关系的测定与四维描述

增刊3刘祖岩等:Az31镁合金应力-应变关系的测定与四维描述?305. 具体方法是,在本实验结果的基础上.引用其他参考文献【2~8】中的数据,互相比较和佐证,再采用线性插值的方法,计算出不同温度,应变速率,应变条件下的应力值,从而得到比较完整的数据。这里,在线性插值之前,需要对应变速率的值取对数。 经过整理和扩充后的数据涵盖了温度范围20400℃,应变速率范围001埘0,s,应变范围O屯。 图2是应变为0.2时,温度对退火态和挤压态Az3l镁合金变形应力的影响。虽然应力随着温度的增高而降低。但在不同应变速率下,其下降的速度是有所不同的。低应变速率时,在10¨300℃范围内,应力下降较快,高应变速率时,在30肚400℃范围内,应力下降快,这样约在300℃时,不同应变速率对应的应力范围较大。 1bmwmtIlr“℃ 图2不同应变速率下,温度对不同组织形杏Az3l镁台金变形应力的影响 Fig2Theinnucnccof蛔唧ergh腓onthcs虮ssofa皿eakd粕d“虮ldedAZ3】atdj丘b雎Df砌j珊眦bnaj丑n2) 以上是应力-应变关系的二维表现形式,比较直观,易于理解。考虑到二维图形中的一条曲线只能描述应力与一个变量的对应关系,若用一组曲线还可以考虑到另外一个因素的影响。这样的话,用二维空间全面地描述材料的应力一应变关系,就需要6个二维图形,或是6组二维曲线来表示。 当然若用三维空间来全面地描述应力应变关系, 就只需要3个三维图形。图3是不同温度时,挤压态Az3l镁合金的一组应力.应变.应变速率三维曲面。还可以画出不同应变时的一组应力.应变速率.温度三维曲面和不同应变速率的一组应力.应变.温度三维曲面。这些曲面园应力数值不同,配以不同颜色,也是比较清晰明了的。从中可以分析出各种因素对应力的影响规律。若用某一等值平面与这些曲面相交割,相交处得到一组组平面曲线,他们实质上就是上面提到 的二维空间中的6组曲线。可见三维图形中包含了全部二维的信息,比二维空间的信息量更大。 实际上,对这3组三维空间曲面中的任意l组来讲,由上下2个曲面和四周4个平面围成的不规则的空间就完全代表了材料在这一范围内的应力.应变关系。可见材料的应力一应变关系可以有3种不同的,也是不规则的三维表现形式。 图3不同温度时,挤压态AZ3】镁合金应力—应变.应变速率三雏曲面 Fig3Three—dLm即slonsmfhcesof1hen∞ss-stra血.s妇inra把∞l砒lonshipofextmdedAZ3l砒di丘b仲nt钯mp啪mns 3应力一应变关系的四维描述 按照上面的思路,进一步考虑应用四维的空间来描述材料的应力一应变关系,即用应变,应变速率,温度组成一个三维的空间,在此空间中,用颜色来描述应力值,从而构成了一个,仅仅一个四维的应力.应变关系模型。 四维模型可以用MATLAB软件来实现,见圈4。这一模型同上述的三维空间~样,包含了材料应力.应变关系的全部信息,而且形状非常规则,可称为应力应变彩砖模型。利用MATLAB命令,可以对这一模型进行各种各样的描述,分析和说明,从中得到任意的等值线、等值面,以及各种平面、曲面与之相交的结果等,为材料性能研究提供强有力的工具。 实际上,四维模型算是三维模型的一个变种,反之亦然。两者所含的信息量是一样的。在三维模型描述中.应力值的大小既用坐标高度值表示,又用颜色表示.重复了。如果只用颜色表示应力值,而用坐标高度值表示另外一个变量,那就是这个四维模型。可以这样想像:将三维模型中的一组曲面沿应力坐标方向投影到某一平面上,得到一组平面,颜色不变。将应力坐标改变为某一变量坐标,再将这一组平面沿着

镁合金热处理过程中组织与相的变化

镁合金热处理过程中组织 与相的变化 Prepared on 24 November 2020

镁合金热处理过程中组织与相的变化摘要:本文研究了AZ91D等温热处理过程中的溶质扩散、晶界熔化、晶粒合并以及相变等对枝晶球化过程的影响。结果表明:随着热处理时间的延长,晶粒逐渐球化,而且发生合并现象;同时在界面能降低的驱使下,通过溶质原子的扩散,晶粒内部包裹小液滴;半固态部分重熔过程中经历以下相变:β→α,α +β→L,α→L。 关键词:AZ91D镁合金;等温处理;相变 The Research of Organization and Phase Change of Magnesium Alloy during Isothermal Heat Treatment Abstract: The effect of solute diffusion and the grain boundary melting and grain merger and phase transitions on dendrite spheroidzing process is researched during the isothermal heat treatment. The results show that the grains gradually spheroidize and appear the merger phenomenon with extending the heat treatment the same time, owing to decreasing interfacial energy; the packed small liquid drop form intra - grain by the diffusion of solute atoms, There is the following phase transition: β→α,α+β→L,α→L during The semi-solid remelting. Key words:AZ91D magnesium alloy; isothermal treatment; phase transition 1、概述 镁合金是现代金属结构材料中最轻的一种,以其密度低、比强度和比刚度高、尺寸稳定性好、电磁屏蔽好及价格稳定等优点,近年来在航空航天、仪器制造、国防和电子工业等领域,尤其是汽车工业中获得日益广泛的应用[1]。 镁合金半固态成具有成形温度低、凝固收缩小、缺陷和偏析减少、晶粒尺寸细小、模具寿命延长等优点,被专家学者誉为21世纪新一代新兴金属加工方法。但是,要实现镁合金的半固态成型,首先必须制备初生相为颗粒的非枝晶组织合金。国内外研究者常用的枝晶粒化方法为机械搅拌法或电磁搅拌法。由于机械搅拌法的工艺参数难以控制、搅拌设备易磨损和腐蚀、不适应与高熔点合金和易氧化合金,因此该法很难在工业上推广应

az31镁合金

2.2 刚粘塑性有限元法基本力学方程 刚粘塑性有限元法一般是从刚粘塑性材料的变分原理或上限定理出发,按有限元模式把能耗率泛函表示为节点速度的非线性函数,利用数学上的最优化理论获得满足极值条件的最优解,即总能耗率取最小值的动可容速度场,进一步利用塑性力学的基本方程求出变形速度场、应力场、应变场以及其他变形参数。与弹塑性/弹粘塑性方法相比,这类有限元法在求解过程没有应力的累积误差,也不存在单元的逐步屈服问题,因而具有计算工作量小、精度高的优点,是求解超塑成形等大变形问题进而实现数值模拟的一种有效方法[42-44]。金属塑性变形过程复杂,在对成形过程进行有限元数值模拟时必须做出必要的假设和近似,以便于简化数学处理过程,提高计算效率[45]。采用刚塑性/刚粘塑性有限元法分析大变形问题时,通常对材料的变形特点和物理性能作如下假设: (1)材料弹性变形可忽略不计; (2) 材料体积不可压缩,变形过程体积不变; (3) 材料均质且各向同性; (4) 不计体积力和惯性力; (5) 材料变形流动符合 Levy-Mises 屈服条件。 所以可近似认 n=0,则流动状态方程为: εκ σm = (2-1)

式中:K 为与材料有关的常数;m 为应变速率敏感性指数。本构方程中系数由单向拉伸实验得到。 刚粘塑性材料发生塑性变形时,必须满足以下塑性力学的基本方程: (1) 平衡方程 0,=σj ij (2-2) 几何方程 ()u u i j j i ij ,,21 +=ε (2-3) (3) 体积不可压缩方程 0==δεενij ij (2-4) (4) 屈服准则 23' '=σσσij ij (2-5) 式中:σ 为等效应力。对于刚塑性材料有: )(εσσ= (2-6) 对于刚粘塑性材料有: ),(εεσσ= (2-7) (5)Levy-Mises 关系

镁合金作为生物医用材料的潜在优势、存在的问题及解决思路

镁合金作为生物医用材料的潜在优势、存在的问题及解决思路 摘要 近几十年来,镁及其合金在医疗领域的价值正飞速提升,应用也日益广泛,其作为硬组织植入材料与现有的各种临床金属植入材料相比有许多突出的优点[1]。然而,镁合金当然也不完美,也存在缺点,令其应用受到限制[1]。那么,这些优势和缺陷究竟是什么?如何让其性能更完善呢?本文就这些问题进行了简要论述。然而由于笔者才疏学浅,加之时间仓促,文中疏漏之处在所难免,尚有待进一步修改和完善,同时敬请各位读者多多批评指正。 关键词:镁合金,医用材料,植入体,腐蚀 一、引言 目前的生物医用材料主要有部分金属材料、无机非金属材料、高分子材料、复合材料及仿生材料等[1]。医用金属材料与高分子材料和无机非金属材料相比,具有较高的强度、韧性和加工性能,因此应用最为广泛[2]。目前,临床应用的医用金属主要有不锈钢、钴基合金、钛合金、形状记忆合金、贵金属以及纯金属钽、铌、镐等。但临床应用表明,以上材料均存在弊端[3],如: 1.某些金属植入体含Al元素[4]。该元素可对器官造成损伤,且能导致骨软化、贫血[5][6]、老年痴呆 及神经紊乱等多种病症[5][6]; 2.某些材料会在体内释放出毒性金属离子[1],引起受体发炎和排异反应[7]; 3.部分不锈钢植入体在生理系统环境中会发生缝隙腐蚀、摩擦腐蚀与疲劳腐蚀破裂等状况[8][9],并 因此释放出Ni2+、Cr3+及Cr5+等离子,同时造成假体松动,最终引起植入体失效[10]; 4.相当一部分材料的弹性模量与人骨不够相近,例如:不锈钢的弹性模量约为200GPa,钛合金约 100GPa[4],而人骨仅10~40GPa。这必然会导致应力遮挡效应,进而减少对新生骨组织生长和重塑的诱导作用[1],并最终造成植入体的不稳定、组织愈合迟缓甚至植入失败等后果[1][11]。 5.不锈钢、钴基合金和钛基合金皆为生物惰性材料,在人体中不发生或仅发生微弱的化学反应,因而 在生物环境中相当稳定[4],无法自行降解[1]。故病人完全康复后必须再次通过手术将其取出[2],徒增了患者的痛苦及医疗费用[1]。 然而近年来,镁及其合金的横空出世和飞速发展使这些问题的解决成为了可能。那么,这种金属到底有什么优点,能克服这么多棘手的困难呢?接下来的一段将回答这个问题。 二、镁合金作为生物医用材料的潜在优势 近几十年来,国内外研究发现[3][12][13][14][15]:镁合金作为硬组织植入材料,与现有的各种临床金属植入材料相比有许多突出的优点: 1.Mg是人体必需的微量元素之一[1],在动物体内含量仅次于钙、钠、钾,且在细胞内仅次于钾[4], 与神经、肌肉及心脏功能密切相关[16],对维持细胞膜结构和调节细胞的生长具有重要作用[17],是能量传输、贮存和利用的关键元素,还是新陈代谢过程中各种酶系统的重要活化剂,并参与人体内几乎所有的新陈代谢过程,如骨细胞的形成、蛋白质的合成等。另外,镁具有诱导骨生长的作用,能加速骨愈合,还可以调节DNA和RNA结构,降低癌症发病率,增强心血管的抗病毒能力[1],减少血液中胆固醇的含量,从而防止高血压、动脉硬化和心肌梗塞等疾病[16]。而以镁作为医用植

AZ80镁合金组织性能及其成型的关键技术

AZ80镁合金组织性能及其成型的关键技术 引言 金属镁始于1808年为人所知,直到1886年德国才开始将其用于工业领域。镁有广泛的用途,主要包括烟火制造、冶金,化学、电化学和结构件的应用。由于镁合金具有重量轻、比强度高、阻尼减振性好等优点,因而将其作为结构件被广泛地应用于航空航天、3C电子产品及交通运输等领域。目前,这些结构件都以铸造件特别是压铸件的应用为主,高性能的变形镁合金材料还处于研发和推广阶段。 在变形镁合金中。AZ80镁合金表现出最为优良的力学性能,通过合理改善其形变及热处理工艺能进一步提高其强度。本文主要介绍镁合金、AZ80镁合金的组织性能和关特征及其成型的关键技术。 1 镁合金及AZ80镁合金的组织性能 1.1 镁合金的特点 镁合金和铝合金的合金化原理几乎相同,都是通过加入合金元素,产生固溶强化、时效强化、细晶强化及过剩强化作用,以提高合金的机械性能、抗腐蚀性能和耐热性能。镁合金中常加入的合金元素有Al、Zn、Mn、Zr及稀土元素等。Al在Mg中即可产生固溶强化作用,又可析出沉淀强化相Mg,Al有助于提高合金强度;Zn在Mg中除固溶强化作用外,也可产生时效强化相MgZn,但效果不如Al显著,一般需与其他合金元素同时加入;Mn加入Mg中主要为提高合金的耐热性和抗蚀性,改善合金的焊接性能;Mg中加入的少量Zr,除细化晶粒外,还从合金的成分来看,目前工业中应用的镁合金主要集中于Mg—Al—Zn、Mg—Zn—Zr、Mg—Re—Zn 和Mg一Re—Zr等几个合金系,其中前两个是发展高强镁合金的基础。从生产工艺和性能的特点,上述镁合金分为变形镁合金和铸造镁合金两大类,其编号采用汉语拼音字母加序号。同一系列的镁合金既有可以作为变形合金,又有可以作为铸造合金:其中既可能含Zr又可能不含Zr。因此,对于不同的镁合金,它的性质特点也会不相同。 金属镁及其合金是迄今在工程上应用的最轻的结构材料,具有其它金属材料不可替代的优越性,镁合金具有以下几个特点: (1)镁合金的比重小,是目前最轻的结构材料,其密度在1.75~1.859/cm3之间,约为铝合合密度的1/3~l/2,约为钛合金的1/3,不到钢密度的1/4。这一特点对于现代一些便携类

镁合金力学性能的研究

Mg-Zn-RE-Zr合金的拉伸力学性能和微观结构的发展文章中将成分为Mg-5.3Zn-1.13Nd-0.51La-0.28Pr-0.79Zr的铸件进行热挤压,并且对挤压比和温度对显微组织和力学性能的影响进行了研究。结果表明当挤压比从0提高到9的时候铸态合金晶粒变粗大,共晶成分沿着挤出方向拉长。然而,进一步提高挤压比率对晶粒细化和改善合金的力学性能的影响不大。动态再结晶是热挤压过程中晶粒细化的主要机制,提高挤压温度导致出现等轴晶粒。与此同时,力学性能随挤压温度的升高而降低。

目录 第1章介绍 (3) 第2章试验方法 (4) 第3章实验结果 (5) 3.1铸态合金显微组织 (5) 3.2挤压合金的微观组织演变 (9) 3.2.1改变挤压比和温度对微观组织的影响 (9) 3.2.2挤压比和挤压温度对力学性能的影响 (12) 第4章讨论 (16) 第5章.结论 (18) 第6章致谢 (20)

第1章介绍 镁合金因其低密度、高特定的刚度和良好的阻尼能力在汽车和航空工业上吸引了人们的注意[1]。镁合金可以大致分为含铝合金和无铝合金[2]。广泛使用镁合金属于Mg-Al系列,比如AZ91和AM60,它们具有良好的铸造性能和较低的成本[3]。然而,因为他们的机械性能和热稳定性差,这些合金的应用受到了限制[4]。与Mg-Al系列相比,Mg-Zn系列的合金,比如ZK60系列合金,是具有很大发展潜力的低成本高强度镁合金[5]。 在所有的镁合金中,AZ60具有较好的机械性能,比如室温下或者高温下具有高强度[6]。然而,它的强度在室温或者高温时候还是低于铝合金。最近,据报道,添加稀土可以改善ZK60合金的力学性能[7]。周教授等人研究了稀土元素钕和钇对于ZK60合金的微观结构和力学性能的影响。钕和钇的结合在动态再结晶过程中对细化晶粒产生了很大的影响。此外,钕和钇的结合还提高了屈服强度和抗拉强度。何教授等人的确定了钆元素对ZK60合金显微组织和力学性能的影响。钆的增加大大减少了时效硬化效果和少量的降低了屈服强度和抗拉强度。然而,添加钆造成的晶粒细化补偿了部分屈服强度和抗拉强度的损失。张教授等人[9]指出ZK60合金与铒结合之后改善变形性能,细化了晶粒和显微组织,具有良好的机械性能。 在这项研究中,镁合金准备直接进行冷铸造。此外,挤压比和温度对合金影响也表现了体现出来。

铸钢的金相组织及检验

铸钢的金相组织及检验 一、铸造碳钢的金相组织及检验 (一)铸造碳钢的显微组织 1.铸态组织为铁素体+珠光体+魏氏组织。如图8-1、图8-2。 图8-1 ZG230-450铸钢铸态组织(100×) 图8-2 ZG310-570铸钢铸态组织(100×) 铸态组织的形貌和组成相的含量与钢的碳含量有关。碳含量越低的铸钢,铁素体含量越多,魏氏组织的针状越明显、越发达,数量也多。随铸钢碳含量的增加,珠光体量增多,魏氏组织中的针状和三角形的铁素体量减少,针齿变短,量也减少,而块状和晶界上的网状铁素体粗化,含量也增多。若存在严重的魏氏组织,或存在大量低熔点非金属夹杂物沿晶界呈断续网状分布,将使铸钢的脆性显著增加。 2.退火组织为铁素体+珠光体。铁素体呈细等轴晶。珠光体分布形态随钢的碳含量增加而变化。随钢的碳含量增加,珠光体呈断续网状分布→网状分布→珠光体与铁素体均匀分布,其含量也不断增多。若退火组织中存在残留的铸态组织或组织粗化均属于不正常组织。 3.正火组织为铁素体+珠光体,分布较均匀,如图8-3。与退火组织相比较,正火组织的组成相更细、更均匀,珠光体含量稍多。若存在残留铸态组织或组织粗化均属不正常组织。 4.调质组织 ZG270-500以上牌号的铸造碳钢可进行调质处理,组织为回火索氏体,见图8-4。若出现未溶铁素体或粗大的回火索氏体属不正常组织。 图8-3 ZG230-450 铸钢正火组织(100 ×) 图8-4 ZG35CrMo铸钢调质组织(650×) 5.几种常用铸造碳钢的组织见表8-1, 表8-1 常用铸造碳钢的组织 铸造碳钢 ZG200-400 ZG230-450 ZG270-500 ZG310-570 ZG340-640 显 微 组 织铸态魏氏组织+块状铁素体+珠光体珠光体+魏氏组织+铁素体珠光体+铁素体 部分铁素体呈网状分布铁素体呈网状分布 退火铁素体+珠光体珠光体+铁素体 珠光体呈断续网状分布珠光体呈网状分布 正火铁素体+珠光体珠光体+铁素体 调质回火索氏体 (二)铸造碳钢的质量检验 铸造碳钢多数用于一般工程,金相检验按照GB/T 8493-1987《一般工程用铸造碳钢金相》标准进行。主要是在金相显微镜下进行显微组织鉴别及晶粒度和非金属夹杂物级别的测定。标准规定金相试样从力学性能试块或试样上切取,特殊情况由供需双方协商决定。 1.显微组织检验试样用2~4%硝酸酒精溶液侵蚀后,在显微镜下按大多数视场确定其组织。对铸态、退火、正火态组织放大100倍观察,对调质态组织在500倍下鉴别。 GB/T 8493-1987标准对ZG200-400、ZG230-450、ZG270-500, ZG310-577、ZG340-640五种铸钢分别按铸态、退火、正火及调质状态下的正常和非正常组织的特征列表作了文字说明,并列出了标准组织照片,供对照评定。 2.晶粒度测定奥氏体晶粒度和铁素体晶粒度的测定方法,按 GB/T 8493-1987标准的规定执行。被测试样在放大100倍下与标准晶粒度图对照进行评级。若放大倍数为非100倍时,按YB/T 5148标准规定的方

镁合金铸态和挤压态组织观察实验指导书

镁合金铸态和挤压态组 织观察实验指导书 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

镁合金铸态和挤压态组织观察的操作及组织观察 一、实验目的 1掌握镁合金组织金相制作的方法 2了解镁合金的显微组织特征 二、概述 镁合金的密度是钢的23%,铝的67%,塑料的170%,是金属结构材料中最轻的金属,镁合金的屈服强度与铝合金大体相当,只稍低于碳钢,是塑料的4~5倍,其弹性模量更远远高于塑料,是它的二十多倍,因此在相同的强度和刚度情况下,用镁合金做结构件可以大大减轻零件重量,这点对航空工业,汽车工业,手提电子器材均有重要意义。 镁合金是以金属镁为基,通过添加一些合金元素形成的合金系,通常可分为二元、三元及多组元系合金。二元系如Mg-Al,Mg-Zn,Mg-Mn,Mg-RE,Mg-Zr等;三元系如Mg-Al-Zn,Mg-Al-Si,Mg-Al-RE等;多元系如Mg-Th-Zn-Zr,Mg-Ag-Th-RE-Zr等。因为大多数合金含有不止一种合金元素,所以实际上为了分析问题方便,也为了简化和突出合金中最主要的合金元素,习惯上依据镁与其中的一个主要合金元素,将其划分为二元合金系。 对于AZ31镁合金的腐蚀,早期的研究主要集中在合金元素对腐蚀性能的影响上。近几年来随着加工及表面处理技术的进步,合金耐蚀性的研究越来越集中在通过新型的加工技术(如快速凝固技术、半固态成型技术等)和表面处理技术(如化学转化、阳极氧化、微弧氧化等)来直接或间接的提高AZ31镁合金的耐蚀性能。总而言之提高合金耐蚀性的途径主要从以下几个方面入手:减少镁合金杂质含量,提高镁合金的纯度;采用快速凝固、热处理与合金化改性等方法细化合金组织,使成分均匀化。

镁合金力学性能强化的几种途径

镁合金力学性能强化的几种途径 摘要对近几年镁合金力学性能强化的研究进行了总结,主要途径归纳为三个方面,一是热处理,二是合金化,三是加工工艺。 关键词:镁合金力学性能热处理合金化加工工艺 镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高的特点,而且还具有优良的阻尼性能、较好的尺寸稳定性和机械加工性能及较低的铸造成本。广泛应用于航空航天、汽车和电子等行业。但是,镁合金密排六方的晶体结构及较少的滑移系决定了其塑性变形能力较差,所以应该用一些方法来提高其力学性能,本文就近几年镁合金力学性能方面的研究进行总结,并提出建议。 1 镁及其合金的力学性能 镁是一种二价的碱金属元素,属于密排六方晶系,这种密排六方结构使之在力学和物理性能方面表现出强烈的各向异性。纯镁象其他纯金属一样,表现出相对低的强度。其弹性模量E=45GPa,切变模量K=17GPa,比弹性模量E/ρ=25GPa。因此必须用其他元素进行合金化以获得所需要的性能。目前主合金元素是Al、Zn 和Re等,这些合金元素使镁合金得到不同程度的强化。变形镁合金主要通过热变形和冷变形来提高强度。热处理是提高镁合金力学性能的重要途径。另外其他一些工艺或处理也能有效提高镁合金的力学性能,如颗粒增强复合材料、半固态铸造和熔体热速处理、表面处理等。 2强化途径 2.1 热处理 2.1.1铸造镁合金的热处理 铸造镁合金的室温和高温力学性能强化途径有固溶处理和失效处理[1]。对某高锌镁合金Mg-Zn-Al-RE进行热处理[2],固溶处理温度340℃,保护剂为硫铁矿石,保温时间20 h,热水淬火,淬火介质采用70~75℃热水;时效处理温度180℃,保温时间10 h,出炉空冷。经固溶及时效处理后,合金的相成分主要为α-Mg,还有含微量稀土的其它固溶强化三元相。其中比较典型的固溶强化相有Ф相

镁合金铸态和挤压态组织观察实验指导书

镁合金铸态和挤压态组织观察的操作及组织观察 一、实验目的 1掌握镁合金组织金相制作的方法 2了解镁合金的显微组织特征 二、概述 镁合金的密度是钢的23%,铝的67%,塑料的170%,是金属结构材料中最轻的金属,镁合金的屈服强度与铝合金大体相当,只稍低于碳钢,是塑料的4~5倍,其弹性模量更远远高于塑料,是它的二十多倍,因此在相同的强度和刚度情况下,用镁合金做结构件可以大大减轻零件重量,这点对航空工业,汽车工业,手提电子器材均有重要意义。 镁合金是以金属镁为基,通过添加一些合金元素形成的合金系,通常可分为二元、三元及多组元系合金。二元系如Mg-Al,Mg-Zn,Mg-Mn,Mg-RE,Mg-Zr等;三元系如Mg-Al-Zn,Mg-Al-Si,Mg-Al-RE 等;多元系如Mg-Th-Zn-Zr,Mg-Ag-Th-RE-Zr等。因为大多数合金含有不止一种合金元素,所以实际上为了分析问题方便,也为了简化和突出合金中最主要的合金元素,习惯上依据镁与其中的一个主要合金元素,将其划分为二元合金系。 对于AZ31镁合金的腐蚀,早期的研究主要集中在合金元素对腐蚀性能的影响上。近几年来随着加工及表面处理技术的进步,合金耐蚀性的研究越来越集中在通过新型的加工技术(如快速凝固技术、半固态成型技术等)和表面处理技术(如化学转化、阳极氧化、微弧氧化等)来直接或间接的提高AZ31镁合金的耐蚀性能。总而言之提高合金耐蚀性的途径主要从以下几个方面入手:减少镁合金杂质含量,提高镁合金的纯度;采用快速凝固、热处理与合金化改性等方法细化合金组织,使成分均匀化。 因此,了解镁合金组织,对于提高镁合金质量、防止镁合金腐蚀有重要的意义。 三、铸态镁合金的组织 AZ31镁合金属于典型的亚共晶合金,其凝固区间约为60℃,铸造过程中凝固时间短,冷却速度快,因此无论采用何种方式,其凝固收缩均难以补偿,加之Al元素在镁合金中的扩散速度极慢,凝固过程十分复杂,而镁合金组成相的含量、分布、形态、成分等因素与合金的腐蚀性能密切相关。 图1为AZ31镁合金铸态XRD谱图。结合相图(图2)可得,AZ31镁合金相组成为α-Mg固溶体和β-Mg17Al12析出相。 图1 AZ31镁合金铸态XRD谱图 图2 镁铝合金二元平衡相图 图3(a)和 (b)为AZ31镁合金铸态经Acetic-picral浸蚀后的金相照片,可以看出,铸态组织内部晶粒大小不一,平均晶粒尺寸为90μm;在其晶界处某些部位能够观测到黑色的团聚物。经SEM观察发现,这些团聚物是由一些气孔和缩松构成。 a b (a) 铸态组织 (b) 晶界处黑色团聚物 图3 AZ31镁合金铸态组织; 四、挤压态镁合金的组织 对铸态组织进行热挤压处理,既能通过晶粒的充分细化来提高组织的成分均匀性,又能在挤压过程中消除组织的铸造缺陷,通过后续的热处理工艺还可以进一步抑制第二相的析出并使其弥散分布。 图4为棒材横向与纵向剖面示意图。图5(a)和5(b)为AZ31镁合金铸态在Acetic-picral浸蚀液

镁合金研究现状及发展趋势

镁合金研究现状及发展趋势 摘要:镁合金作为21世纪的绿色环保工程材料之一,近年来已成为学术界的一个研究热点。本文主要综述了镁合金的研究进展和应用,介绍了耐热、耐蚀、阻燃和高强高韧等高性能镁合金材料的最新发展。还介绍了镁合金成型技术的研究成果,最后展望了高性能镁合金的发展前景。 关键词:镁合金;高强高韧;成型技术;应用 1.引言 镁(Mg)是地球上储量最为丰富的元素之一,在陆地、湖泊和海洋中都广为分布,例如,其在地壳表层金属矿资源中的含量达2.3%,仅次于占8.1%的铝和5%的铁,居第三位;海水中的镁含量达到2.1×1015吨,可以认为是取之不尽、用之不竭的元素[1]。此外,我国的白云石矿储量、菱镁矿以及原镁的产量位列世界镁资源储量首位[2]。同时,随着当前钢铁行业中铁矿石等资源的日趋紧张,开发和利用镁作为替代材料是必然的趋势。被誉为“二十一世纪绿色金属结构工程材料”的镁合金是目前所知金属结构材料中最轻的,与其他同类材料相比,它具有密度小,比强度、比刚度较高,可以回收再利用且机加工性能优异,阻尼减震性好,电磁屏蔽效果佳等一系列优点,因此在交通运输(如汽车、摩托车、自行车等工业)、航空航天、武器装备、计算机通讯和消费电子产品等领域具有广阔的应用前景[3],但其使用量与铝合金和塑料相比还相当少[4]。 目前,从全球镁合金研发状况看,发展方向如图1所示[5],我国在镁合金材料的应用研究与产业化方面也己取得重大进展,形成了从高品质镁材料生产到镁合金产品制造的完整产业链,为我国实现由镁资源大国向镁应用强国的跨越奠定了坚实的基础。

图1 镁合金的研发方向[5] Fig. 1 Directions of Mg alloy development 2.镁合金的特点及分类 通过在纯镁中添加其他化学元素,可显著改善镁的物理、化学和力学性能。但镁合金同时存在着显著的缺点,下面对镁合金的优缺点进行简要的阐述。 2.1镁合金的优点[6 ~ 8] 1)密度小、质量轻。镁合金是目前工业应用中最轻的金属结构材料,根据合金成分的不同,其密度通常在1.75-2.10g/cm3范围内,约为铝的2/3,钢的1/4。 2)比强度、比刚度高。镁合金的比强度高于铝合金和钢铁,但略低于比强度最高的纤维增强塑料。其比刚度与铝合金和钢铁相当,但却远高于纤维增强塑料。镁合金材料与其他相关材料的物理性能和力学性能分析比较如表1所示。 表1 镁合金和相关材料的物理和力学性能比较 Tab. 1 The comparison of physical and mechanical properties between magnesium alloy and other materials [9] 材料抗拉强度/Mpa 屈服强度/Mpa 延伸率/% 弹性模量/Gpa 比强度镁合金AZ31 251 154 13.8 45 141 镁合金AZ91 275 145 13.8 45 151 镁合金AM60 240 140 15 45 134 铝合金380 315 160 3 71 106 碳钢517 140 22 200 80 塑料ABS 35 - 40 2.1 41 塑料PC 104 - 3 6.7 102 3)吸震阻尼性能好。镁合金与铝合金、钢、铁相比具有较低的弹性模量,在同样受力条件下,可消耗更大的变形功,具有降噪、减振功能,可承受较大的冲击震动负荷。镁合金具有极好的滞弹吸震能力,其抗冲击性是铝合金的10倍,塑料的20倍。 4)良好的铸造性能。镁与铁的反应低,熔炼时可用铁坩埚,熔融镁对坩埚的侵蚀小,压铸时对压铸模的侵蚀小,与铝合金压铸相比,压铸模使用寿命可提高2-3倍,通常可维持20万次以上。镁合金的比热和结晶潜热小,所以流动性

时效对AZ31镁合金组织与性能的影响

龙源期刊网 https://www.wendangku.net/doc/8a7360244.html, 时效对AZ31镁合金组织与性能的影响 作者:吴丹卢雅琳徐文婷 来源:《江苏理工学院学报》2014年第04期 摘要:对挤压后的AZ31镁合金件进行时效处理。时效温度为200-300℃,时效时间为 15min-3h。研究了不同时效温度、时间对AZ31镁合金微观组织、力学性能的影响。结果表明:合适的时效工艺可使挤压变形后的试样组织达到平衡状态,材料塑性有较大幅度提高,而强度并没有显著降低。对于AZ31镁合金,最佳的时效工艺为275℃保温0.5h。 关键词:镁合金AZ31;时效处理;显微组织;力学性能 中图分类号:TG146.22文献标识码:A文章编号:2095-7394(2014)04-0027-05 0引言 镁合金材料是一种新型绿色金属材料,也是典型的轻量化材料,其重量仅为铝合金的 2/3,用镁合金做结构件可以大大减轻构件重量[1-4]。近年来,随着纺织机械向着高速和大宽 幅方向发展,重量轻、强度刚度好的轻合金材料被广泛应用于纺织设备[5-6]。镁合金因具有密度小、比强度和比刚度高、减震性能好,机械加工方便等优点[7]而成为经编机械的首选。其 中AZ31镁合金为最常用的镁合金材料。 合适的热处理工艺是改善和提高镁合金综合性能的重要手段[8-10]。因AZ31镁合金中有Mg17Al12相,强化相较少,固溶强化效果不明显,所以通过时效处理改善其组织性能成为最佳选择。此外,由于经编机械中的针床、梳栉等关键零件均为尺寸较长的薄板、异型材件,在挤压成型之后只能通过合适的时效处理,才能保证其较好的机械性能和尺寸稳定性。时效处理可以消除AZ3l镁合金挤压变形后的缺陷和残余应力,且时效过程中容易在晶界和接点处形成无畸变的再结晶晶粒和可移动的大角晶界,发生静态再结晶,使材料性能发生得以改善[10-12]。本文以纺织机械用AZ31挤压型材为研究对象,通过合适的时效处理,使其机械性能和尺寸稳定性达到最优,为企业实际生产提供技术保证。 1实验材料及方法 实验采用挤压的AZ31镁合金型材为实验材料,其材料成分(质量分数,%)为:Al- 3.07, Mn-028,Zn-0.6,其余为Mg。 实验所用热处理设备为SX.5.12型箱式电阻炉,温控精度±1℃。热处理工艺方案如表1所示。 表1AZ31镁合金热处理工艺

AZ31镁合金组织性能的影响研究

摘要 挤压变形AZ31镁合金组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征。挤压变形可显著地细化镁合金晶粒并提高镁合金的力学性能。随挤压比的增大,晶粒细化程度增加,晶粒尺寸由铸态的d400μm减小到挤压态的d12μm(min);强度、硬度随挤压比的增大而增大,延伸率在挤压比大于16时呈单调减的趋势。 轧制变形使板材晶粒明显细化,硬度提高。AZ31合金中添加Ce,其铸态组织中能够形成棒状Al4Ce相,并能改善合金退火态组织和力学性能;添加Ce可以改善AZ31的综合力学性能。 关键词:AZ31变形镁合金;强化机制;组织;性能

绪论 20世纪90年代以来,作为最轻金属结构材料的镁合金的用量急剧增长,在交通、计算机、通讯、消费类电子产品、国防军工等诸多领域的应用前景极为广阔,被誉为“21世纪绿色工程材料”,许多发达国家已将镁合金列为研究开发的重点。 大多数镁合金产品主要是通过铸造生产方式获得,变形镁合金产品则较少。但与铸造镁合金产品相比,变形镁合金产品消除了铸造缺陷,组织细密,综合力学性能大大提高,同时生产成本更低,是未来空中运输、陆上交通和军工领域的重要结构材料。 目前,AZ31镁合金的应用十分广泛,尤其用于制作3C产品外壳、汽车车身外覆盖件等冲压产品的前景被看好,正成为结构镁合金材料领域的研究热点而受到广泛重视。

第1章挤压变形对AZ31镁合金组织和性能的影响 1.1 挤压变形组织特征及挤压比的影响作用 图1-1为动态挤压变形过程中的组织变化。动态变形过程大致分为3个区域:初始区、变形区和稳态区,分别对应着不同的组织。图1-1a为初始区挤压变形前的铸态棒料组织。由粗大的α-Mg树枝晶和分布其间的α-Mg+Mg17Al12共晶体组成,枝晶形态十分发达,具有典型的铸造组织特征。晶粒尺寸为112~400μm。图1-1b为变形区近稳态区组织。图中存在大量无序流线,流线弯曲度大、方向不定且长短不一,显然这种组织特征是在挤压力作用下破碎的树枝晶晶臂(α固溶体)发生滑移、转动的结果。 图1-1c为稳态区纵断面组织。图中沿挤压方向分布的剪切条纹平行流线清晰可见,在平行流线上,分布着大量细小、致密的等轴晶粒。显然,形变组织已发生了再结晶,平行流线可能是变形纤维在再结晶组织中的再现。晶粒间几乎看不到α-Mg+Mg17Al12共晶组织。这表明,经过大的挤压变形后,铸态组织中的共晶体发生破碎,离散分布于α固溶体中。挤压流线密度较高,黑白相间,成簇状穿越每一个再结晶晶粒。挤压纤维横向尺度比再结晶晶粒要小的多。 图1-2为λ=28时稳定段不同截面组织。图1-2a为45°斜截面组织,图中晶粒细小,流线呈菊花瓣状分布。图1-2b为横断面组织,图中晶粒细小,短小的网状流线依稀可辨。挤压平行流线和再结晶等轴晶粒是变形组织的基本特征。图1-3为不同挤压比所对应的变形组织。 图1-3a为λ=16的组织,图1-3b为λ=64的组织。可知,在等温挤压条件下,随着挤压比的增大,合金变形程度增加,挤压组织进一步细化,挤压流线更加细密,晶粒变得更加细小。三种挤压比(λ=16、28、64)分别对应的晶粒平均尺寸为50μm、35μm和20μm。最小尺寸仅12μm,与快速凝固所形成的等轴晶尺寸(10μm)十分接近。 观察发现,在横断面和斜截面上,周边组织比中心区组织略显细小和致密些,在中心区域存在年轮状或花瓣状流线条纹。相应地,纵向挤压组织中也存在晶粒大小和剪切条纹分布不均匀现象,边缘区比轴线附近的条纹更加细密,晶粒显得更为细小。这主要与挤压棒材周边变形量较大,中心变形量较小,晶粒细化程度不同有关。

高性能镁合金发展现状与趋势

高性能镁合金发展现状与趋势 摘要 随着人们对能源和环境的日益关注,镁及镁合金的应用正在受到前所未有的关注。镁是我国少有的几种优势金属资源之一,在过去的15年里,我国的镁工业从弱小到壮大,目前已成为世界上原镁生产的绝对大国,2003年镁产量更是占世界总产量的60%以上。从2000年开始,在师昌绪等院士的直接推动下,我国镁合金的研究和应用也取得了举世瞩目的成绩,逐步从镁生产大国向镁研发和应用强国迈进。过去5年里,我国在高性能镁材料的研究,镁加工装备的开发以及镁合金深加工产品的开发应用方面都取得极大的进展。从镁产业的角度来讲,已经形成了从原材料到深加工一直到应用的完整产业链,从镁研究开发的角度来讲,已经初步形成了从基础研究到应用研究一直到产品开发的完整科研开发体系。镁合金作为21世纪的绿色环保工程材料,近年来已成为全球学术界的一个研究热点,并越来越受到工业界的重视。目前我国在镁合金的研究和应用上取得了很大进展,已经研制出耐热镁合金、高强高韧镁合金等新材料,在变形镁合金领域也取得了突破,本文重点介绍几种有特色和良好应用前景的高性能镁合金,以及镁合金成形加工技术的最新研究进展。高性能镁合金包括阻燃镁合金、低成本高强度铸造镁合金和高强耐热变形镁合金,成形加工技术包括镁合金涂层转移精密铸造技术、镁合金熔体复合纯净化技术、不含六价铬离子的镁合金超声阳极氧化表面处理技术、大型镁铸件低压成型技术以及镁板差温拉深工艺。镁合金的深入研究有力地推动了镁合金产业的发展。 关键词镁合金发展现状趋势 正文 1、我国镁及镁合金现状 我国目前在镁工业方面拥有三项"世界冠军"。第一是镁资源大国,储量居世界首位。在青海盐湖蕴藏着氯化镁32亿吨,硫酸镁16亿吨。在辽宁、山西、宁夏、内蒙、河南等省区菱镁矿均有很大储量,仅辽宁大石桥一带的储量就占世界菱镁矿的60%以上,矿石品位高达40%。第二是原镁生产大国,2003年我国共生产原镁35.4万吨,约占全球总产量的67%。第三是出口大国,年产量80%以上的镁出口到国际市场。尽管如此,我国的镁工业还存在着不少问题,主要表现在:1)原镁生产技术比较落后,质量不够稳定,镁锭中的夹杂物和有害元素含量大大超标,难以满足压铸、板材轧制和冲压等高端产品的生产需求;2)出口产品绝大多数是廉价的纯镁锭,镁合金出口比重只有15%左右,镁合金制品出口则更是微乎其微,因此出口利润低效益差,而对于军工生产所需求的高性能镁合金板材和型材还需要从俄罗斯进口;3)原创性的研究成果缺乏,目前出口的所有镁合金锭几乎全部按照国外的牌号生产,而且在镁合金产品加工中的关键技术和装备大部分依靠进口。 中国镁合金产品的生产和应用现状是,镁合金的优势已经被许多企业所认识,在汽车、摩托车和3C产业中镁合金已经开始获得应用,用户包括如上汽、一汽、二汽、奇瑞、隆鑫、海尔等,例如,一汽铸造有限公司AM50镁合金方向盘骨架;镁合金压铸迅速增长,台湾、香港和大陆投资的镁压铸厂分布在向几乎全国各地,各种压铸机数量超过50台;变形镁合金加工开始起步。 2、我国镁合金研究现状 国家相关研究和应用计划包括,科技部组织实施的"十五"攻关计划重大专项"镁合金应用开发及产业化"、"十五"863计划相关项目、重点国际合作计划、科技型中小企业创新基金,国家自然科学基金委立项的国家自然科学基金,国防科工委的民口军工配套项目,经贸委的技改项目,国家发改委的高技术示范工程等。 十五科技攻关重大专项"镁合金应用开发及产业化"的目标是,建立镁合金技术创新体系;

18.金属铸锭的组织

第六节金属铸锭的工宏观组织与缺陷 金属的铸态组织包括: 铸态组织包括晶粒的大小、形状和取向,合金元素和杂质的分布以及铸锭中的缺陷如缩孔、气孔等等。 因此应该了解铸锭或铸件的组织及其形成规律,并设法改善铸锭或铸件的组织 对铸件来说,铸态组织直接影响到它的机械性能和使用寿命;对铸锭来说,铸态组织不但影响到它的压力加工性能,而且还影响到压力加工后的金属制品的组织及性能。 一,铸锭三晶区的形成 纯金属铸锭的宏观组织通常由三个晶区所组成 即外表层的细品区,中间的柱状晶区和心部的等轴晶区,如图2-33所示。 根据浇注条件的不同铸锭中晶区的数目及其相对厚度可以改变 ()一表层细晶区 表层细晶区或激冷层的形成: 当高温的金属液体倒入铸型后,结晶首先从型壁处开始。这是由于温度较低的模壁有强烈地吸热和散热作用,使靠近型壁的一薄层液体产生极大地过冷,加上模壁可以作为非均匀形核的基底,因此在此一薄层液体中立即产生大量的晶核,并同时向各个方向生长。由于晶核数目很多,故邻近的晶粒很快彼此相遇,不能继续生长,这样便在靠近模壁处形成一很细的薄层等轴晶粒区。又称为激冷区 表层细晶区的形核率和厚度决定于下列因素: 1.模壁的形核能力以及模壁处所能达到的过冷度大小,后者主要依赖于铸型的表面温 度、铸型的热传导能力和浇注温度等因素。 2.如果铸型的表面温度低,热传导能力好,以及浇注温度较低的话,便可以获得较大

的过冷度,从而使形核率增加,细晶区的厚度即可増大。 3.相反,如果浇注温度髙,铸锭模的散热能力小而使其温度很快升高的活,就可大大 降低晶核数目,细品区的厚度也要减小。 表层细晶区性能厚度及其他: 1.细晶区的晶粒十分细小,组织致密,力学性能很好。 2.但由于细晶区的厚度一般都很薄,有的只有几个毫米厚,因此没有多大的实际意义。()二柱状晶区: 柱状晶区由垂直于模壁的粗大的柱状晶所构成 上述种种原因均使液态金属冷却减慢温度梯度变得平缓: 在表层细晶区形成的同时,一方面模壁的温度由于被液态金属加热而迅速升高,另一方面由于金属凝固后的收缩,使细晶区和型壁脱离,形成一空气层,给液态金属的继续散热造成困难。此外,细品区的形成还释放出了大量的结晶潜热,也使型壁的温度升离,上述种种原因均使液态金属冷却减慢,温度梯度变得平缓,这时开始形成柱状晶区。 这时开始形成柱状晶区这是因为: ●尽管在结晶前沿液体中有适当的过冷度,这一过冷度很小,使之不能生成新的晶核, 但它有利于细晶区靠近液相的某些小晶粒的继续长大,而离柱状品前沿稍远处的液态金属尚处于过热之中,无法另行生核,因此结晶主要靠晶粒的继续长大来进行。 ●垂直于型壁方向散热最快,因而晶体沿其相反方向择优生长成柱状晶。晶体的长大 速度是各向异性的,一次轴方向长大速度最大,但是由于散热条件的影响,因此只有那些一次晶轴垂直于型壁的晶粒长大速度最快,迅速地优先长入液体中,如图2-35所示。

镁合金的生物性能

1,为什么镁合金可以作为生物可降解材料? (1) 2,镁合金的实验数据与人体测试的差别? (1) 3,镁合金不适用于做可降解材料的原因? (3) 4,最适合的材料? (4) 5,镁合金发展的瓶颈?降解速度过快 (5) 6,各种元素对镁的作用?(论文5) (5) 7,镁合金的发展史? (6)

1,为什么镁合金可以作为生物可降解材料? 生物力学性能:密度与人体骨骼最接近。弹性模量为人体骨骼的两倍,不及钛合金的50%,能有效缓解应力遮挡效应(镁的弹性模量和压缩屈服强度和人骨相近,可避免材料弹性模量较高时因应力屏蔽效应造成骨质吸收,而弹性模量过低则不能起到刺激骨生长的作用[5])。 生理作用及代谢:镁是人体必需的营养元素,与钠、钾、钙元素一起构成人体细胞内外最重要的4种阳离子。镁是多种酶的激活剂和辅助因子。镁是骨骼和牙齿的重要组成部分,对预防骨质疏松有一定作用。就人体循环系统而言,镁可引起血管扩张,同时有防止动脉粥样硬化的作用。镁参与体内三大产热营养素代谢、神经冲动产生与传递、肌肉收缩等[4,5]。肾脏是镁代谢调节的中心,肾小球对血镁进行过滤,95%~98%由肾小管再吸收。肾的调节作用可在一定范围内保持血镁正常。因此,将可吸收镁合金的降解速度控制在一定范围内,不超过肾脏代谢能力,就能保持较好的安全性[4,6]。(论文9)镁是人体内含量仅次于钾的细胞内阳离子,在新陈代谢过程中起着重要作用,镁也是组成生物体骨的主要成分,能够促进骨、牙齿及细胞形成并在骨的矿物质代谢中具有重要的调节作用[3]。此外,由于镁合金所具有的金属材料特性,其塑性、刚度、加工性能等都要远优于现已开始临床应用的聚乳酸等可降解高分子材料[4],因而更适于在骨等硬组织修复和介入治疗方面的临床应用。更令人欣喜的是,全球现有实验中所选用的镁合金在血液及骨环境下进行短期实验观察时均没有不良后果产生[5]镁具有很好的生物相容性,可以减缓细胞膜表面对植入物的排斥。 镁是300 多种酶的共存因子,能够稳定DNA 和RNA 的结构[5],调节神经肌肉和中枢神经系统的活动,抑制神经的兴奋,保障心肌正常收缩。人体大约70 kg 体重中包含有35g 镁[3]。世界卫生组织提出,镁的每日摄入量男性为300mg,女性为280 mg,儿童为250 mg,婴幼儿为80mg。镁的密度为1.74 g/cm3,而铝和铁的密度分别为镁的1.6 倍和4.5 倍[5] 3VormannJ.Magnesium:Nutritionandmetabolism[J].MolAspectsMed,2003,24(1):274StaigerMP,PietakAM,HuadmaiJ,etal.Magnesiumanditsalloysasorthopedicbiomaterials:Areview[J].Biomate-rials,2006,27:1728 5郑玉峰,顾雪楠,李楠,等.生物可降解镁合金的发展现状与展望[J].中国材料进展,2011,30(4):30 2,镁合金的实验数据与人体测试的差别? 体外实验缺乏统一的标准,加之体外实验常规方法(失重测试、氢气体积监控、pH检测、电化学测试、阻抗分析等)各有利弊,同时模拟体液(Simulatedbodyfluid,SBF)的选择更是各有不同(见表1),这使得研究者的实验结果存在不小差别,甚至大相径庭。

相关文档