文档库 最新最全的文档下载
当前位置:文档库 › Bacterial cellulose derived reduction electrocatalyst for zinc-air battery

Bacterial cellulose derived reduction electrocatalyst for zinc-air battery

Bacterial cellulose derived  reduction electrocatalyst for zinc-air battery
Bacterial cellulose derived  reduction electrocatalyst for zinc-air battery

journal homepage: https://www.wendangku.net/doc/8c7377742.html,/locate/nanoenergy

Available online at https://www.wendangku.net/doc/8c7377742.html,

RAPID COMMUNICATION

Bacterial cellulose derived nitrogen-doped

carbon nano?ber aerogel:An ef?cient

metal-free oxygen reduction electrocatalyst

for zinc-air battery

Hai-Wei Liang1,Zhen-Yu Wu1,Li-Feng Chen,

Chao Li,Shu-Hong Yu n

Division of Nanomaterials and Chemistry,Hefei National Laboratory for Physical Sciences at Microscale,

Collaborative Innovation Center of Suzhou Nano Science and Technology,Department of Chemistry,

University of Science and Technology of China,Hefei,Anhui230026,PR China

Received14October2014;received in revised form3November2014;accepted4November2014

Available online13November2014

KEYWORDS

Carbon nano?ber

aerogels;

Nitrogen-doped;

Electrocatalyst;

Zinc-air battery;

Oxygen reduction;

Bacterial cellulose

Abstract

The prohibitive cost and scarcity of the platinum-based eletrocatalysts for oxygen reduction

reaction(ORR)in fuel cells and metal-air batteries hamper dramatically the commercialization

of theses clean-energy technologies.Here,we develop a highly active nitrogen-doped carbon

nano?ber(N-CNF)aerogel metal-free ORR electrocatalyst,prepared by direct pyrolysis of a

cheap,green,and mass-producible biomass,i.e.,bacterial cellulose,followed by NH3

activation.The N-CNF aerogel inherits the three-dimensional nano?brous network of bacterial

cellulose and meanwhile possess high density of N-containing active sites(5.8at%)and high BET

surface area(916m2/g).Such N-CNF aerogel shows superior ORR activity(half-wave potential

of0.80V versus reversible hydrogen electrode)and high selectivity(electron-transfer number

of3.97at0.8V),and excellent electrochemical stability(only20mV negative shift of half-

wave potential after10,000potential cycles)in alkaline media.The ORR activity of N-CNF

aerogel exceeds that of NH3-treated carbon blacks,carbon nanotubes as well as reduced

graphene oxide aerogels,and that of most reported metal-free catalysts.Importantly,when

used as a cathode catalyst for constructing the air electrode of Zn-air battery,the N-CNF

aerogel exhibits high voltages of1.34and1.25V at the discharge current densities of1.0and

10mA cmà2,respectively,which are highly comparable with the state-of-the art Pt/C catalyst

https://www.wendangku.net/doc/8c7377742.html,/10.1016/j.nanoen.2014.11.008

2211-2855/&2014Elsevier Ltd.All rights

reserved.

n Corresponding author.

E-mail address:shyu@https://www.wendangku.net/doc/8c7377742.html,(S.-H.Yu).

1H.W.Liang and Z.Y.Wu have contributed equally to this work.

Nano Energy(2015)11,366–376

(20wt%Pt,BASF),indicating the great potential of this metal-free catalyst as a promising alternative to the Pt/C for alkaline fuel cells and metal-air batteries.

&2014Elsevier Ltd.All rights reserved.

Introduction

Electrochemical reduction of oxygen is an important process for many energy conversion and storage technologies, including fuel cells,metal-air batteries,and electrolyzers. Due to the high overpotential caused by the sluggish nature of oxygen reduction reaction(ORR),development of ef?-cient ORR electrocatalysts is crucial for practical applica-tions of these electrochemical devices.Although Pt and Pt-based alloys,up to now,are known as the most ef?cient catalysts for ORR,the high costs and scarce reserves of Pt signi?cantly hinder its large-scale applications[1,2].Addi-tional problem associated with Pt is its poor durability during long-term electrochemical process,as Pt-based catalysts suffer from nanoparticle migration,coalescence, and even detaching from support materials in both acidic and alkaline electrolytes[3–5].

Accordingly,substantial efforts have been dedicated to searching for alternative ORR catalysts with low cost,high activity,and long-term durability[6–14].In particular,recent experimental observations and theoretical calculations both revealed that heteroatoms(e.g.,nitrogen or/and phos-phorus,boron)-doped carbon materials could serve as ef?-cient metal-free electrocatalysts for ORR as the result of their unique electronic properties,which are derived from the heteroatom-induced charge transfer and delocalization [15–20].In order to achieve a high ORR performance,it is essential to fabricate carbon-based materials with rationally nanostructural design that would offer a desirable combina-tion of high internal reactive surface area and straightfor-ward transport path leading to such a surface.In this respect, heteroatoms-doped carbon nanotubes[15,21],mesoporous carbon[16–18],and grapheme[22–26]have been developed, some of which exhibited comparable ORR performance with that of commercial Pt/C catalysts in alkaline media[15,17]. Of particular interest,Dai et al.reported vertically aligned nitrogen-doped carbon nanotubes(VA-NCNT s)as ORR elec-trocatalysts[15].Besides the electronic effect induced by nitrogen doping,the authors believed that the well-de?ned geometric features of aligned CNT s provide additional struc-tural bene?ts in achieving high electrocatalytic performance [15].Although certainly promising,considering the complex fabrication methods,it remains a question to what extent these materials will affect a real cost reduction when compared to Pt-based catalysts.An inexpensive,green and scalable process is quite desirable to lower the fabrication cost of carbon-based metal-free catalysts for industrial applications.

Herein,we report a new type of metal-free ORR catalysts based on nitrogen-doped carbon nano?ber(N-CNF)aero-gels,which are fabricated from bacterial cellulose(BC),a cheap and green biomass that has long been known as the raw material of an indigenous dessert food(nata-de-coco) of the South-East Asia.Our recent studies revealed that BC was an excellent precursor for producing highly conductive carbon nano?ber(CNF)aerogels by direct pyrolysis of lyophilized BC under an inert atmosphere[27–29],and heteroatom-doped CNFs for energy storage and conversion [30–32].In the present study,we demonstrate that the BC-derived CNF aerogels,following nitrogen-doping by anneal-ing them in NH3,can act as ef?cient electrocatalysts for ORR.The as-prepared N-CNF aerogels possess a high level of nitrogen doping(N content,5.8at%)and high Brunauer–Emmett–Teller surface area(S BET up to916m2/g).It is believed that the three-dimensional(3D)nano?brous struc-tures of N-CNF aerogels would be favorable for easy molecular/ionic diffusion throughout the highly porous architecture to the reactive surface and facilitate the rapid transport of electrons along the interconnected carbon ?brous networks during electrocatalysis.As a consequence, the ORR activity of the N-CNF aerogels is much higher than that of NH3-treated carbon blacks,carbon nanotubes,and reduced graphene oxide aerogels.More importantly,as a cathode electrocatalyst for the Zn-air battery,the N-CNF aerogel exhibits highly comparable performance with the state-of-the-art Pt/C catalyst(20wt%,BASF). Experimental section

Synthesis of N-CNF aerogels electrocatalysts

Puri?ed BC pellicles with?ber content of$1%(vol/vol) were kindly provided by Ms CY Zhong(Hainan Yeguo Foods Co.,Ltd.,Hainan,China).They were produced in an industry-scale by the bacterial strain Acetobacter xylinum using a culture of coconut milk and sucrose[33].The wet BC pellicles were?rst cut into rectangular shapes with a sharp blade,frozen in liquid nitrogen(–1961C)and then freeze-dried in a bulk tray dryer(Labconco Corporation,Kansas City,MO,USA)at a sublimating temperature of–501C and a pressure of0.04mbar.The dried BC aerogels were then pyrolyzed under?owing N2at8001C to generate black CNF aerogels.Finally,N-CNF aerogel catalysts were obtained by a second heat-treatment of CNF aerogels under an NH3 atmosphere at700–9001C.NH3heat-treatment was per-formed by placing CNF aerogels in a quartz tube under ?owing NH3with a heating ramp rate of51C/min to desired temperatures and the temperature was kept for1h.The heating and cooling steps were performed in a N2atmo-sphere.For comparison,four reference carbon materials, including Vulcan XC-72R(S BET,ca.240m2/g),Ketjenblack EC-300J(S BET,ca.800m2/g),CNTs,and reduced graphene oxide(RGO)aerogels,were also doped with nitrogen by the same NH3treatment process.RGO aerogels were prepared by hydrothermal treatment of GO solution(2mg/mL)at 1801C for2h[34].

367

Metal-free oxygen reduction electrocatalyst for zinc-air battery

Electrocatalytic activity measurements

All the electrochemical measurements were carried out in a conventional three-electrode cell using WaveDriver20bipo-tentiostat(Pine Instrument Company,USA)controlled at room temperature.Ag/AgCl(4M KCl)and platinum wire were used as reference and counter electrodes,respectively.All poten-tials in this study refer to that of reversible hydrogen electrode(RHE).The potential difference between Ag/AgCl and RHE is0.96570.002V,based on the calibration measure-ment in H2saturated0.1M KOH with polished Pt wires as the working and counter electrodes,and the Ag/AgCl as the reference electrode.A RDE with a glassy carbon disk(5.0mm diameter)and a RRDE electrode with a Pt ring(6.25mm inner-diameter and7.92mm outer-diameter)and a glassy carbon disk(5.61mm diameter)served as the substrate for the working electrode for evaluating the ORR activity and selectivity of various catalysts,respectively.Prior to use,the glassy carbon electrodes in RDE/RRDE were polished using aqueous alumina suspensions on felt polishing pads.

The catalyst ink was prepared by blending N-doped carbon materials(10mg)with100m L Na?on solution(0.5wt%)and 3.9mL ethanol in an ultrasonic bath.A certain volume of catalyst ink was then pipetted onto the glassy carbon surface to result in a desirable catalyst loading.The catalyst loading are0.1and0.4mg/cm2for CV and RDE/RRDE tests,respec-tively.RDE/RRDE tests were measured in O2-saturated0.1M KOH at1600rpm with a sweep rate of10mV/s.In order to estimate the double layer capacitance,the electrolyte was deaerated by bubbling with argon,and then the voltammo-gram was evaluated again in the deaerated electrolyte.The oxygen reduction current was taken as the difference between currents measured in the deaerated and oxygen-saturated electrolytes.For detecting peroxide species formed at the disc electrode,the potential of the Pt ring electrode in the RRDE system was set to1.4V.

A state-of-the-art Pt/C catalyst(20wt%platinum on Vulcan carbon black,BASF)was measured for comparison. The working electrode was prepared as follows:5mg Pt/C and50m L Na?on solution(0.5wt%)was dispersed in970m L of ethanol by sonication for1h to obtain a well-dispersed ink. 4μL of catalyst ink was then pipetted onto the GC surface, leading to a Pt loading of20μg/cm2.Other experimental conditions were the same as for the metal-free catalysts.

The four-electron selectivity of catalysts was evaluated by using the RRDE techniques based on the H2O2yield, calculated from the following Eq.(1):

H2O2e%T?200?

I R=N

eI R=NTtI D

e1T

The electron transfer number can be calculated from the following Eq.(2):

n?4?

I D

eI R=NTtI D

e2T

Here,I D and I R are the disk and ring currents,respectively, and N=0.37is the ring collection ef?ciency.

Also,the number of electrons involved per O2in the ORR on N-CNF aerogel was further determined by the Koutecky–Levich equation:

1=j?1=j kt1=Bω1=2where j k is the kinetic current andωis the electrode rotating rate.B is determined from the slope of the K–L plots based on the Levich equation:

B?0:2nF D0

eT2=3ωà1=6C0

where n represents the overall number of electrons gained per O2,F is the Faraday constant(F=96,485C molà1),D0is the diffusion coef?cient of O2in0.1M KOH electrolyte (1.9?10à5cm2sà1),C0is the bulk concentration of O2 (1.2?10à6mol cmà3),ωis the kinetic viscosity of the electrolyte(0.01cm2sà1).

Zn-air batteries were tested in home-built electrochemi-cal cells,where catalysts loaded on the gas diffusion layer (Te?on-coated carbon?ber paper,1.0cm2,catalyst loading 1.0mg for all materials)as the air cathode and Zn foil as anode in6.0M KOH.Measurements were carried out on the as-fabricated cell at room temperature with a CHI760E(CH Instrument,USA)electrochemical workstation.

Characterization

Scanning electron microscopy(SEM)was performed with a ?eld emission scanning electron microanalyzer(Zeiss Supra 40)after coating the samples with Au layers using a Sputter Coater(Model BAL-TEC SCD005).Transmission electron microscopy(TEM)and energy-?ltered TEM(EFTEM)mapping were performed using JEM-ARM200F operating at an accelerating voltage of200kV.Elemental mapping were collected using a Gatan GIF Quantum965.X-ray photo-electron spectra(XPS)were determined by an X-ray photo-electron spectrometer(ESCALab MKII)with an excitation source of MgK a radiation(1253.6eV).N2sorption analysis was conducted on a TriStar3020accelerated surface area and porosimetry instrument,equipped with automated sur-face area,at77K using Barrett–Emmett–T eller(BET)calcula-tions for the surface area.Raman scattering spectra were recorded with a Renishaw System2000spectrometer using the514.5nm line of Ar+for excitation.Inductively coupled plasma atomic emission spectrometry(ICP-AES)measure-ments were conducted using an Atomscan Advantage Spec-trometer(Thermo Ash Jarrell Corporation,USA).

Results and discussion

Large quantity of wet BC pellicles with controllable thick-ness(3–20mm)were produced by an industry-scaled micro-bial fermentation process(step1in Figure1a;also see Supporting Information Figure S1).For preparing N-CNFs aerogels,the puri?ed BC pellicles were?rst cut into small pieces and lyophilized to form dry BC aerogels(step2in Figure1a).The dried BC aerogels were then subjected to pyrolysis under a N2atmosphere at8001C for2h to afford the CNF aerogels.Finally,N-CNF aerogel catalysts were obtained by a second heat-treatment of CNF aerogels under an NH3atmosphere(step3in Figure1a).For comparison, four other carbon materials,including Vulcan XC-72R(S BET, $240m2/g),Ketjenblack EC-300J(S BET,$800m2/g), CNTs,and reduced graphene oxide(RGO)aerogels,were also treated by the same NH3annealing process.

Scanning electron microscopy(SEM)and transmission electron microscopy(TEM)observations indicated that the

H.-W.Liang et al.

368

mechanically robust nano ?brous network structures of original BC precursors maintained well even after high-temperature pyrolysis and NH 3annealing (Figure 1b and c),although both of the macroscopic dimensions of BC-derived aerogels (photos in Figure 1a)and the microscopic diameter of nano ?bers (Figure 1b,c and Figure S2)gradually shrank to about half of their original sizes after twice heat-treatment.High resolution TEM image revealed that the N-CNFs composed of randomly orientated graphene layers accompanied with amorphous and defective carbon struc-tures (Figure 1d).Based on the Raman spectroscopy ana-lyses (Figure S3),it was revealed that the D and G bands are positioned at 1345cm à1and 1595cm à1,respectively,and the intensity ratio of D to G band was about 0.92and 0.97for CNF aerogels and N-CNF aerogels,respectively.The increase of D/G ratio further con ?rmed that the defective structure of N-CNF aerogels was more pronounced than that of CNF aerogels due to the N-doping induced by NH 3treatment.The resulting doped-N defects at the graphene edges and in planes may serve as active sites for electro-catalysis of oxygen reduction.

The textural properties of BC-derived aerogels were investigated by N 2sorption measurements and the results were summarized in Table https://www.wendangku.net/doc/8c7377742.html,pared to pristine BC aerogels,the CNF aerogels showed much improved BET surface area (from 83to 374m 2/g)and pore volume (from 0.19to 0.38cm 3/g),due to the micropores evolution caused by the evaporation of volatile species (such as CO,CO 2,methanol,and acetic acid)during pyrolysis of BC [27,35].NH 3treatment further increased the porosity signi ?cantly for N-CNF aerogels (S BET ,916m 2/g;pore volume,0.71cm 3/g).X-ray photoelectron spectroscopy (XPS)measurements were performed to analyze the content and chemical state of nitrogen atoms in CNF aerogels before and after NH 3treat-ment (Figure 2a,b).A week N1s signal was observed for the CNF aerogels (Figure S4)even before NH 3treatment.This small amount of “intrinsic ”nitrogen atoms (ca. 1.0at%)come from the residual nitrogen-containing compounds left by culture media and secretions [36].After NH 3treatment,about 5.8at%of N was detected for N-CNF aerogel.The high resolution N1s spectrum of N-CNFs aerogel could be ?tted well with three different signals having binding energies of 398.5,400.2,and 401.8eV ,corresponding to pyridinic N,pyrrolic N,and graphitic N,respectively (Figure 2b)[37–38].Elemental mapping with sub-nanoscale energy-?ltered TEM (EFTEM)imaging revealed that the N species were homo-geneously distributed throughout the individual nano ?ber as well as the whole nano ?brous network structure (Figure 2c and Figure S5).

Considering the possible trace amount of metal species in biomass precursors and its in ?uence on the electrocatalysis,[39]we used the inductively coupled plasma atomic emis-sion spectrometry (ICP-AES)technique to detect Fe and Co species for the N-CNFs aerogel.ICP-AES analyses suggested that the total metal content of N-CNFs aerogel is below 0.01wt%and much lower than the reported values of active metal-based catalysts with metal contents at least of 0.1–0.2wt%[8,40,41].Such results,therefore,exclude the possible contribution of metal species to the ORR perfor-mance of N-CNF aerogel.

The much improved porosity and nitrogen content for N-CNF aerogels can be explained well by the reactions between carbon and NH 3.At an elevated temperature,the radicals generated by the decomposition of NH 3could

etch

Figure 1Synthesis and morphologies of N-CNF aerogels.(a)Schematic diagram of the synthetic steps.(1)A large-sized BC pellicle (200?230?5mm 3,water content $99vol%)was produced by an industry-scaled microbial fermentation.(2)Photograph,scanning electron microscopy (SEM)image and schematic illustration of BC aerogels after cutting and freeze-drying of wet BC pellicles.(3)Black N-CNF aerogels were obtained ?nally by heat treatments of BC aerogels two times under a N 2and NH 3atmosphere,respectively.The ?brous networks survived after pyrolysis and various types of nitrogen were doped into carbon matrix successfully after NH 3treatment.(b,c)SEM and TEM images of N-CNF aerogels,respectively,showing the nano ?brous network structure.(d)HRTEM image of an individual N-CNF .

369

Metal-free oxygen reduction electrocatalyst for zinc-air battery

out carbon fragments,leaving behind the new generated micropores hosted with nitrogen-containing active sites [42–44].The replacement reaction of oxygen-bearing spe-cies on carbon surface with NH3also resulted in additional nitrogen-containing groups[41,45].Previous study has demonstrated that the nature of the pristine carbon mate-rials has a great in?uence on the capacity for capturing nitrogen during NH3treatment[44,46].For comparison, four other commercial and synthesized carbon materials, i.e.,Vulcan carbon,Ketjenblack carbon,CNTs,and RGO aerogel were also treated with NH3under the same condi-tions.RGO could capture only1.9at%N after NH3treat-ment,while the N contents of other three carbons were too low(o0.5at%)to be detected successfully by XPS(Table1

) Figure2Elemental composition of N-CNF aerogels.(a)XPS survey spectra of CNF and N-CNF aerogels.(b)High-resolution N1s spectrum of N-CNFs aerogels.(c)EFTEM elemental mapping of an individual N-doped CNF

.

H.-W.Liang et al. 370

Figure 3ORR performance of N-CNF aerogels and reference catalysts.(a)CV curves of N-CNF aerogels and Pt/C catalyst in O 2-saturated (solid line)and Ar-saturated 0.1M KOH (dash line).Catalyst loading was 0.1mg cm à2for both of the two catalysts.(b)ORR polarization plots of CNF aerogel,N-CNF aerogel,and Pt/C catalyst.(c)ORR polarization plots of N-CNF aerogel and other NH 3-treated carbon materials.(d)H 2O 2yield plots of N-CNF aerogel and reference catalysts.(e)ORR polarization plots for N-CNF aerogel in O 2-saturated 0.1M KOH with different speeds.(f)The corresponding Koutecky –Levich (K –L)plots at different potentials.For RDE and RRDE testing,the catalyst loading is 0.4mg cm à2for non-Pt catalysts and 20m g Pt cm à2for Pt/C catalyst.Electrode rotation speed,1600rpm;scan rate,10mV/s.

371

Metal-free oxygen reduction electrocatalyst for zinc-air battery

[47].Compared to the four reference carbon materials,the strong nitrogen-?xing ability of CNF aerogel was believed to be due to the numerous defective sites and oxygen-containing groups on surface of CNFs,as indicated by the Raman (Figure S3)and XPS (Figure 2a)analyses.Additionally ,the unique 3D nano ?brous network structure of CNF aerogel was more easily accessible to gaseous NH 3molecules than other carbons,[43]resulting in more ef ?cient activation processes with a homo-geneous distribution of functionalized sites.

Cyclic voltammetry (CV)and rotating disk electrode (RDE)measurements were performed in 0.1M KOH at room temperature to assess the ORR activity of N-CNF aerogels.For comparison,four other N-doped carbon materials and a state-of-the-art Pt/C (20wt%Pt on Vulcan carbon black,BASF)catalyst were also tested under the same conditions.We ?rst examined the ORR activity of the N-CNF aerogels as a function of NH 3annealing temperature in the range of 700–9001C.It was found that the N-CNF aerogels obtained at 8001C showed the highest activity,as revealed by the onset and half-wave potentials in the ORR polarization plots (Figure S6),probably because a balance of surface area,

nitrogen content and type could be optimized at this temperature [23,43].Therefore,the N-CNF aerogels dis-cussed in the text were all produced at 8001C unless otherwise speci ?ed.

CV measurements in O 2statured electrolyte shown that the N-CNF aerogel afforded a peak potential of 0.85V versus reversible hydrogen electrode (RHE),which was comparable that of Pt/C catalyst (0.85V)and much higher than those of four other N-doped carbon materials (0.78–0.64V ,Figure 3a and Figure S7).The high ORR activity of N-CNF aerogel was then further con ?rmed by the RDE measurements.The pristine CNF aerogel could act as oxygen reduction catalyst at high electrode overpotential (Figure 3b),probably due to the defective structure and the “intrinsic ”nitrogen doping.After NH 3-treatment,the obtained N-CNF aerogel exhibited much enhanced catalytic activity with an ORR half-wave potential of 0.8070.01V ,which was only 50mV more negative than that of Pt/C catalyst (Figure 3b and T able 1)and higher than most of the values previously reported for metal-free catalysts (T able S2),indicating the very high electrocatalytic activity of N-CNF aerogel toward ORR in alkaline

media.

Figure 4Electrochemical durability and methanol tolerance of N-CNFs aerogel and Pt/C catalyst.(a,b)ORR polarization plots of N-CNF aerogel and Pt/C before and after 10,000potential cycles in oxygen-saturated 0.1M KOH,respectively.(c)Negative shift of the half-wave potential (E 1/2)of N-CNF aerogel and Pt/C catalyst with the number of potential cycles under O 2.(d)ORR polarization plots of N-CNF aerogel in 0.1M KOH with (black curve)and without (red curve)0.1M methanol.

H.-W.Liang et al.

372

The four reference carbon materials,though obtained by the same NH3-activation process,showed much lower ORR activity than N-CNF aerogel in terms of half-wave potential and diffusion-limited current density(Figure3c).Compared with the reference carbon materials,the better electro-catalytic activity of the N-CNF aerogel can be attributed to its strong nitrogen-?xing ability during NH3treatment and the3D nano?brous network structure.The highly porous N-doped CNFs with large surface area(S BET,918m2/g)can exposure numerous nitrogen-containing active sites to elec-trochemical interface,meanwhile the3D nano?brous net-work offers“highways”for the rapid transport of ORR species,such as O2,OHà,and electrons[48].Note that the nano?brous network structure of N-CNFs survived well on RDE even after catalyst ink processing(Figure S8).It is believed that such reasonable combination of high reactive surface area and straightforward transport path results in the superior ORR performance of N-CNF aerogel.

Four-electron reduction of oxygen is highly preferred for energy conversion applications and high yield of H2O2 may damage the stability of catalyst.The selectivity of the four-electron reduction of oxygen was studied using the rotating ring-disk electrode(RRDE)technique and the potential of the Pt ring electrode was set to 1.4V for detecting peroxide species formed at the disc electrode. The H2O2yield of N-CNF aerogel remained below10%at all potentials and dropped to1.5%at0.8V,corresponding to a high electron-transfer number of3.97,which was higher than the reference carbon materials and comparable with Pt/C catalyst(Figure3d and Figure S9).The outstanding ORR selectivity of N-CNF aerogel was further con?rmed by the Koutechy–Levich analyses(Figure3e,f).The linear K–L plots at different potentials suggest the?rst-order reaction kinetics toward the concentration of O2on N-CNF aerogel from0.3V to0.6V.The numbers of electrons transferred per O2molecule(n)were calculated from the slope of the K–L plots to be between4.08and4.1,thereby indicating that the ORR is dominated by a4e process and O2is reduced to OHà,which is consistent with the RRDE results.

To investigate the durability of the catalysts,N-CNF aerogel and Pt/C were cycled from0.6to1.0V at a scan rate of50mV/s in0.1M KOH solution saturated with O2

. Figure5Zn-air battery performance of N-CNF aerogels and Pt/C catalysts.(a,b)Typic galvanostatic discharge curves of Zn-air batteries with N-CNF aerogel and Pt/C as cathode catalysts at different current densities:(a)1mA cmà2and(b)10mA cmà2.

(c)Long-term galvanostatic discharge curves of Zn-air batteries until complete consumption of Zn anode.The speci?c capacity was normalized to the mass of consumed Zn.

373 Metal-free oxygen reduction electrocatalyst for zinc-air battery

After10,000continuous potential cycles,the half-wave potential of N-CNF aerogel decreased$20mV(Figure4a), while there was$40mV loss of half-wave potential for the commercial Pt/C catalyst under the same cycling conditions (Figure4b),suggesting the superior electrochemical stabi-lity of N-CNF aerogel in alkaline medium.The high selectiv-ity for the four-electron reduction of O2probably is an important contributing factor to high stability of the N-CNF aerogel.And it is well known that Pt/C catalysts generally suffered from nanoparticle migration,coalescence,and even detaching from carbon supports during the accelerated durability tests[49].In addition to the high activity and excellent durability,as expected as other reported metal-free catalysts[15,16],the N-CNF aerogel developed here also exhibited better methanol tolerance than Pt/C catalyst (Figure4d and Figure S10),making it very attractive as cathode catalysts for alkaline direct methanol fuel cells.

Furthermore,to demonstrate the application potential of N-CNF aerogel for the ORR that typically proceeds in acidic media,such as proton-exchange membrane fuel cells,we also investigated the electrocatalytic properties of the N-CNF aerogel for oxygen reduction in an acid electrolyte. As shown by the polarization curves for the ORR in O2-saturated0.5M H2SO4(Figure S11),N-CNF aerogel exhibited high catalytic activity toward ORR,with an onset potential at0.83V(vs RHE)and a current density of2.10mA/cmà2at 0.6V,which were higher than that of the fabricated reference carbon materials and some reported metal-free catalysts,such as mesoporous N-doped carbon made from ionic liquid[17],dopamine-derived N-doped carbon spheres [50],and NH3-treated commercial carbon black[51].More-over,the calculated electron-transfer number of N-CNF aerogel based on the RRDE measurements was3.65–3.76 and higher than all reference carbon materials(Figure S12). Although the activity of N-CNF aerogel was still inferior to the state-of-the-art Pt/C catalyst(Figure S11),it is believed that incorporating simple metals(e.g.Fe and Co)into BC precursors before pyrolysis and NH3treatment might offer further potentialities in improving ORR performance in acidic media.

Finally,a laboratory Zn-air battery was constructed with N-CNF aerogel loaded on the gas diffusion layer(T e?on-coated carbon?ber paper)as the air cathode and with Zn foil as anode,to demonstrate the practical application potential of our catalyst.The Zn/air battery made of Pt/C catalyst with the same catalyst loading was also tested for comparison.An open-circuit voltage of$1.50V was observed(Figure S13), consisting with preciously reported values of such cells[52]. Galvanostatic discharge measurements(Figure5a,b)revealed that the N-CNF aerogel exhibited very high voltages of1.34 and1.25V at the discharge current densities1.0and10mA cmà2,respectively.The Zn-air battery performance of N-CNF aerogel was highly comparable to that of Pt/C catalyst (voltages of1.35and1.26V at1.0and10mA cmà2,respec-tively)and reported non-precious metal ORR catalysts (T able S3),and much higher than reported metal-free poly (3,4-ethylenedioxythiophene)electrode[52].Normalized to the mass of consumed Zn during the long-term galvanostatic discharge process,the speci?c capacity of the battery made with N-CNF aerogel was estimated to be$615mAh gà1 (Figure5c),corresponding to gravimetric energy density of $760Wh kgà1at the discharge density of10mA cmà2,which is comparable to the battery made of Pt/C catalyst(speci?c capacity630mAh gà1,gravimetric energy density$790Wh kgà1).These results clearly reveal that our developed N-CNF aerogel catalyst is a highly competitive alternative to commercial Pt/C for practical application in metal-air batteries.

Conclusions

In summary,we have developed a new N-CNF aerogel electrocatalyst for ORR by using a cheap,green,nanostruc-tured biomass,BC,as precursor,which were produced by an industry-scaled microbial fermentation process.The as-prepared N-CNF aerogels possessed high density of N-containing active sites(N content,5.8at%)and high BET surface area(916m2/g).Importantly,the3D nano?brous network structure was highly favorable for the rapid trans-port of ORR species.Such reasonable combination of high reactive surface area and fast transport path resulted in the superior ORR activity(half-wave potential0.80V),high selectivity(electron-transfer number 3.97at0.8V),and excellent electrochemical stability of N-CNF aerogel in alka-line media.The ORR performance of N-CNF aerogel exhibited a highly comparable ORR performance with the state-of-the-art Pt/C catalyst,as revealed by both half-cell(RDE techni-que)and full-cell(Zn-air battery)measurements.These results suggest that the N-CNF aerogel made from BC is a technologically and economically promising replacement of Pt-based ORR catalysts for practical applications in alkaline fuel cells and metal-air batteries.Extended works based on the BC-derived carbons in future will include preparation of other metal-free and even nonprecious metal nano?brous electrocatalysts with enhanced ORR performance. Acknowledgment

This work is supported by the Ministry of Science and T echnology of China(Grants2014CB931800,2013CB933900), the National Natural Science Foundation of China(Grants 21431006,91022032,91227103),the Chinese Academy of Sciences(Grant KJZD-EW-M01-1),and Hainan Province Science and T echnology Department(CXY20130046)for?nancial support.We thank Ms C.Y.Zhong for kindly providing pure bacterial cellulose pellicles.

Appendix A.Supporting information Supplementary data associated with this article can be found in the online version at https://www.wendangku.net/doc/8c7377742.html,/10.1016/ j.nanoen.2014.11.008.

References

[1]M.K.Debe,Nature486(2012)43–51.

[2]C.Sealy,Mater.Today11(2008)65–68.

[3]Y.Shao,G.Yin,Y.Gao,J.Power Sources171(2007)558–566.

[4]X.Yu,S.Ye,J.Power Sources172(2007)145–154.

[5]I.Katsounaros,S.Cherevko,A.R.Zeradjanin,K.J.J.Mayrhofer,

Angew.Chem.Int.Ed.53(2013)102–121.

[6]R.Jasinski,Nature201(1964)1212–1213.

H.-W.Liang et al.

374

[7]R.Bashyam,P.Zelenay,Nature443(2006)63–66.

[8]M.Lefevre,E.Proietti,F.Jaouen,J.P.Dodelet,Science324

(2009)71–74.

[9]G.Wu,K.L.More, C.M.Johnston,P.Zelenay,Science332

(2011)443–447.

[10]E.Proietti,F.Jaouen,M.Lefèvre,https://www.wendangku.net/doc/8c7377742.html,rouche,J.Tian,

J.Herranz,J.-P.Dodelet,https://www.wendangku.net/doc/8c7377742.html,mun.2(2011)416.

[11]Y.Y.Liang,Y.G.Li,H.L.Wang,J.G.Zhou,J.Wang,T.Regier,

H.J.Dai,Nat.Mater.10(2011)780–786.

[12]F.Y.Cheng,J.A.Shen,B.Peng,Y.D.Pan,Z.L.Tao,J.Chen,

Nat.Chem.3(2011)79–84.

[13]J.Suntivich,H.A.Gasteiger,N.Yabuuchi,H.Nakanishi,

J.B.Goodenough,Y.Shao-Horn,Nat.Chem.3(2011)546–550.

[14]W.Zhang,Z.-Y.Wu,H.-L.Jiang,S.-H.Yu,J.Am.Chem.Soc.

136(2014)14385–14388.

[15]K.P.Gong,F.Du,Z.H.Xia,M.Durstock,L.M.Dai,Science323

(2009)760–764.

[16]R.L.Liu,D.Q.Wu,X.L.Feng,K.Müllen,Angew.Chem.Int.Ed.

49(2010)2565–2569.

[17]W.Yang,T.-P.Fellinger,M.Antonietti,J.Am.Chem.Soc.133

(2010)206–209.

[18]Y.Zheng,Y.Jiao,J.Chen,J.Liu,J.Liang,A.Du,W.Zhang,

Z.Zhu,S.C.Smith,M.Jaroniec,G.Q.Lu,S.Z.Qiao,J.Am.

Chem.Soc.133(2011)(2011)6–20119.

[19]L.Yang,S.Jiang,Y.Zhao,L.Zhu,S.Chen,X.Wang,Q.Wu,

J.Ma,Y.Ma,Z.Hu,Angew.Chem.Int.Ed.50(2011) 7132–7135.

[20]Z.-W.Liu,F.Peng,H.-J.Wang,H.Yu,W.-X.Zheng,J.Yang,

Angew.Chem.Int.Ed.50(2011)3257–3261.

[21]S.Wang, E.Iyyamperumal, A.Roy,Y.Xue, D.Yu,L.Dai,

Angew.Chem.Int.Ed.50(2011)11756–11760.

[22]L.Qu,Y.Liu,J.-B.Baek,L.Dai,ACS Nano4(2010)1321–1326.

[23]S.Yang,X.Feng,X.Wang,K.Müllen,Angew.Chem.Int.Ed.50

(2011)5339–5343.

[24]Y.Zheng,Y.Jiao,L.Ge,M.Jaroniec,S.Z.Qiao,Angew.Chem.

Int.Ed.52(2013)3110–3116.

[25]Y.Xue,J.Liu,H.Chen,R.Wang,D.Li,J.Qu,L.Dai,Angew.

Chem.Int.Ed.51(2012)12124–12127.

[26]Y.Xue,D.Yu,L.Dai,R.Wang,D.Li,A.Roy,F.Lu,H.Chen,

Y.Liu,J.Qu,PCCP15(2013)12220–12226.

[27]H.-W.Liang,Q.-F.Guan,Z.Zhu,L.-T.Song,H.-B.Yao,X.Lei,

S.-H.Yu,NPG Asia Mater.4(2012)e19.

[28]Z.-Y.Wu, C.Li,H.-W.Liang,J.-F.Chen,S.-H.Yu,Angew.

Chem.Int.Ed.52(2013)2925–2929.

[29]L.-F.Chen,Z.-H.Huang,H.-W.Liang,Q.-F.Guan,S.-H.Yu,

Adv.Mater.25(2013)4746–4752.

[30]Z.-Y.Wu,H.-W.Liang,C.Li,B.-C.Hu,X.-X.Xu,Q.Wang,

J.-F.Chen,S.-H.Yu,Nano Res.(2014).https://www.wendangku.net/doc/8c7377742.html,/

10.1007/s12274-12014-10546-12274.

[31]L.-F.Chen,Z.-H.Huang,H.-W.Liang,H.-L.Gao,S.-H.Yu,Adv.

Funct.Mater.24(2014)5104–5111.

[32]L.-F.Chen,Z.-H.Huang,H.-W.Liang,W.-T.Yao,Z.-Y.Yu,

S.-H.Yu,Energy Environ.Sci.6(2013)3331–3338.

[33]Vol.Chinese Patent,ZL96100534.3,China,2001.

[34]Y.Xu,K.Sheng,C.Li,G.Shi,ACS Nano4(2010)4324–4330.

[35]Y.Z.Wan,G.F.Zuo,F.Yu,Y.A.Huang,K.J.Ren,H.L.Luo,Surf.

Coat.Technol.205(2011)2938–2946.

[36]M.Seifert,S.Hesse,V.Kabrelian,D.Klemm,J.Polym.Sci.,

Part A:Polym.Chem.42(2004)463–470.

[37]P.H.Matter,L.Zhang,U.S.Ozkan,J.Catal.239(2006)83–96.

[38]G.Wu,P.Zelenay,Acc.Chem.Res.46(2013)1878–1889.

[39]L.Wang,A.Ambrosi,M.Pumera,Angew.Chem.Int.Ed.52

(2013)13818–13821.

[40]J.Masa, A.Zhao,W.Xia,Z.Sun, B.Mei,M.Muhler,

W.Schuhmann,https://www.wendangku.net/doc/8c7377742.html,mun.34(2013)113–116. [41]Y.Li,W.Zhou,H.Wang,L.Xie,Y.Liang,F.Wei,J.-C.Idrobo,

S.J.Pennycook,H.Dai,Nat.Nanotechnol.7(2012)394–400.[42]H.P.Boehm,G.Mair,T.Stoehr,A.R.De Rincón,B.Tereczki,

Fuel63(1984)1061–1063.

[43]X.Wang,J.S.Lee,Q.Zhu,J.Liu,Y.Wang,S.Dai,Chem.

Mater.22(2010)2178–2180.

[44]F.Jaouen,J.P.Dodelet,J.Phys.Chem.C111(2007)

5963–5970.

[45]D.Villers,X.Jacques-Bedard,J.P.Dodelet,J.Electrochem.

Soc.151(2004)A1507–A1515.

[46]F.Jaouen,F.Charreteur,J.P.Dodelet,J.Electrochem.Soc.

153(2006)A689–A698.

[47]I.Herrmann-Geppert,J.Radnik,U.I.Kramm,S.Fiechter,

P.Bogdanoff,ECS Trans.41(2011)1161–1171.

[48]S.Nardecchia,D.Carriazo,M.L.Ferrer,M.C.Gutierrez,F.del

Monte,Chem.Soc.Rev.42(2013)794–830.

[49]X.W.Yu,S.Y.Ye,J.Power Sources172(2007)133–144.

[50]K.Ai,Y.Liu,C.Ruan,L.Lu,G.Lu,Adv.Mater.25(2013)

998–1003.

[51]M.Chisaka,T.Iijima, A.Tomita,T.Yaguchi,Y.Sakurai,

J.Electrochem.Soc.157(2010)B1701–B1706.

[52]B.Winther-Jensen,O.Winther-Jensen,M.Forsyth,

D.R.MacFarlane,Science321(2008)671–674

.

Hai-Wei Liang received his Ph.D.in inor-

ganic chemistry under the supervision of

Prof.Shu-Hong Yu in the Department

of Chemistry,University of Science and

Technology of China.He is currently a

Postdoctoral research associate under Prof.

Dr.Klaus Müllen and Prof.Dr.Xinliang Feng

at the Max Planck Institute of Polymer

Research in Mainz,Germany.His current research topics include non-precious metal and metal-free electro-catalysts for fuel cell and metal-air battery

.

Zhen-Yu Wu received his Bachelor Degree

at Nanjing Agricultural University in applied

chemistry in2011.He is currently a Ph.D.

candidate in chemistry under the supervi-

sion of Prof.Shu-Hong Yu in the Department

of Chemistry,University of Science and

Technology of China(USTC).His current

research focuses on designing carbon-

based materials for energy storage and

conversion,and environmental

sciences.

Li-Feng Chen received his B.E.degree in

2006from Anhui University of Technology

and Ph.D.in chemistry under the super-

vision of Prof.Shu-Hong Yu at University of

Science and Technology of China(USTC)in

2013.Then,he worked as a Postdoctoral

Research Fellow with Prof.Shu-Hong Yu

at USTC.His current research interests

are carbon-based nanomaterials/nanostruc-

tures for ef?cient energy storage and con-

version devices.

375

Metal-free oxygen reduction electrocatalyst for zinc-air battery

Chao Li received his B.S.degree in chem-istry in2012from University of Science and Technology of China(USTC).He is currently a Ph.D.candidate in Chemistry at USTC under the supervision of Prof.Shu-Hong Yu.His research interests mainly focus on preparation of new nanocarbon materi-als for capacitive deionization and super-

capacitors.

Shu-Hong Yu received his Ph.D.in Inorg.

Chem.in1998from the University of

Science and Technology of China(USTC).

From1999to2001,he joined in Tokyo

Institute of Technology as a Postdoctoral

Research Fellow.From2001to2002,he

was as an Alexander von Humboldt Research

Fellow in the Max Planck Institute of

Colloids and Interfaces,Potsdam,Germany.

He was appointed as a full professor in2002and the Cheung Kong

Professorship in2006by the Ministry of Education in the Depart-

ment of Chemistry,USTC.His current research interests include bio-

inspired synthesis and self-assembly of new nanostructured materi-

als and nanocomposites,and their related properties.He has

authored and co-authored more than360refereed journal publica-

tions,and17invited book chapters.He serves as an editorial

advisory board member of journals Accounts of Chemical Research,

Chemical Science,Materials Horizons,Chemistry of Materials,Nano

Research,CrystEngComm,Part.Part.Syst.Charact.and Current

Nanoscience.His recent awards include Chem.Soc.Rev.Emerging

Investigator Award(2010)and Roy-Somiya Medal of the Interna-

tional Solvothermal and Hydrothermal Association(ISHA)(2010).

H.-W.Liang et al. 376

四种再生纤维的概述

四种再生纤维的概述及鉴定方式 再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开 发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达 到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手 感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持

再生纤维概述

再生纤维具有优良的吸湿性、穿着舒适性,是纺织服装业最理想、最有开发潜力的纺织原料。 再生纤维概述: 1.Tencel纤维 Tencel纤维是以针叶树为主的木浆、水和溶剂氧化胺混合,加热至完全溶解,在溶解过程中不会产生任何衍生物和化学作用,经除杂而直接纺丝,其分子结构是简单的碳水化合物。Tencel纤维在泥土中能完全分解,对环境无污染;另外,生产中所使用的氧化胺溶剂对人体完全无害,几乎完全能回收,可反复使用,生产中原料浆粕所含的纤维素分子不起化学变化,无副产物,无废弃物排出厂外,是环保或绿色纤维。该纤维织物具有良好的吸湿性、舒适性、悬垂性和硬挺度且染色性好,加之又能与棉、毛、麻、腈、涤等混纺,可以环锭纺、气流纺、包芯纺,纺成各种棉型和毛型纱、包芯纱等。 2.Modal纤维 Modal纤维是一种全新的纤维素纤维,Modal纤维的原料来自于大自然的木材,使用后可以自然降解。由于这类纤维是采用天然纤维素为原料,具有生物将解性,并且在纤维生产过程中不产生类似粘胶县委的严重污染环境问题,是21世纪的新型环保纤维。Modal纤维价格是Tencel纤维的一半,系第二代再生纤维素纤维。Modal纤维可与多种纤维混纺、交织,发挥各自纤维的特点,达到更佳的服用效果。Modal纤维面料吸湿性能、透气性能优于纯棉织物,其手感柔软,悬垂性好,穿着舒适,色泽光亮,是一种天然的丝光面料。 3.大豆蛋白纤维 大豆蛋白纤维是以出油后的大豆废粕为原料,运用生物工程技术,将豆粕中的球蛋白提纯,并通过助剂、生物酶的作用,使提纯的球蛋白改变空间结构,再添加羟基和氨基等高聚物,配制成一定浓度的蛋白纺丝液,用湿法纺丝工艺纺成。豆粕是油脂车间的副产品,在我国资源十分吩咐,属废物综合利用,资源取之不尽,用之不竭。大豆蛋白纤维可称为新世纪的“绿色纤维”。由于大豆蛋白纤维外层基本上是蛋白质,与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工艺中加入定量的有杀菌消炎作用的中草药与蛋白质侧链以化学键相结合,药效显著且持久,避免了棉制品用后整理方法开发的功能性产品,其药效难以持续的缺点。大豆蛋白纤维织物手感柔软、光滑,具有良好的吸湿透气性,有真丝般的光泽,抗皱性优于真丝,尺寸稳定性好。 4.竹纤维 竹纤维是继大豆蛋白纤维之后我国自行开发研制并产业化的新型再生纤维素纤维,竹纤维分竹素纤维和竹原纤维。竹素纤维是以毛竹为原料,在竹浆中加入功能性助剂,经湿法纺丝加工而成。竹原纤维是将毛竹经天然生物制剂处理后所制取的纤维。作为纺丝原料的竹浆粕,来源于速成的鲜竹,资源十分丰富。其废弃物土埋、焚烧不会造成环境污染,属于环保型纤维,满足绿色消费的需求。竹纤维是性能与粘胶纤维相类似,竹纤维织物具有良好的吸湿、透气性,其悬垂性和染色性能也比较好,有蚕丝般的光泽和手感,且具有抗菌、防臭、防紫外线功能

常见食品纤维素含量

常见食品纤维素含量常见食品的纤维素含量

麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。

麦片:8-9%; 燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。 豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆。(无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。 蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜。 菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:香菇、银耳、木耳。此外,紫菜的纤维。20%素含量也较高,达到. 黑芝麻、松子、10%以上的有:。坚果:3-14%以下的有白芝麻、核桃、榛子、胡桃、;10%杏仁

葵瓜子、西瓜子、花生仁。含量最多的是红果干,纤维素含量接近:水果大枣、酸枣、黑枣、其次有桑椹干、50%,樱桃、小枣、石榴、苹果、鸭梨。各种肉类、蛋类、奶制

品、各种油、海鲜、酒精饮料、软饮料都不含纤维素;各种婴幼儿食品的纤维素含量都极低。 蔬菜中的膳食纤维 1、笋干:笋干含有多种维生素和纤维素,具有防癌、抗癌作用。发胖的人吃笋之后,也可促进消化,是肥胖者减肥的佳品 2、辣椒:辣椒中含有丰富的膳食纤维,能清洁消化壁和增强消化功能,并能抑制致癌物质的产生和加速有毒物质的排除,可降低血脂和控制胆固醇。. 3、蕨菜:其所含的膳食纤维能促进胃肠动,具有下气通便、清肠排毒的作用。经常食用

还可降低血压缓解头晕失眠治疗风湿性关炎等作用。其所含的膳食纤维能促进胃肠蠕动具有下气通便清肠排毒的作用经常食用还降低血压缓解头晕失眠治疗风湿性关节

药用辅料羟丙基甲基纤维素在制剂中的应用

药用辅料羟丙基甲基纤维素在制剂中的应用 一、前言 药剂辅料不仅是原料药物制剂成型的物质基础,而且与制剂工艺过程的难易程度、药品质量、稳定性、安全性、释药速度、作用方式、临床疗效以及新剂型、新药途径的开发密切相关。新药用辅料的出现往往推动着的提高以及新剂型的发展。药用辅料羟丙基纤维素(HPC)是由碱性纤维素与环氧丙烷在高温高压下反应而得的非离子型纤维素醚。根据其取代基羟丙氧基含量的高低,其分为低取代羟丙基纤维素(LS-HPC或L-HPC)(中国药典称其为羟丙纤维素,规定其羟丙氧基含量为7.0%~16.0%),和高取代羟丙基纤维素(H-HPC;USP/NF中则为HPC)(USP/NF 中规定其羟丙氧基含量不得超过80. 5%;JP中则规定为53. 4% ~77.5%)。L-HPC 和H-HPC均为白色或类白色粉末,无臭,无味,无毒安全,具有良好的抗菌性。L-HPC 在水中溶胀成胶体溶液,在乙醇、丙酮或乙醚中不溶,具有黏合、成膜、乳化等性质,主要被用作崩解剂和黏合剂;而H-HPC常温下溶于水和多种有机溶剂,具有良好的热塑性、黏结性和成膜性,所成的膜坚硬、光泽度好、弹性充分,主要被用作成膜材料和包衣材料等。 羟丙基甲基纤维素( HPMC) 是纤维素衍生物,也是目前国内和国外最受欢迎的药用辅料之一,由于它相对分子质量和黏度的不同,具备乳化、黏合、增稠、增黏、助悬、胶凝和成膜等特点和用途,在制药技术中用途广泛。 二、HPMC的基本性质 羟丙基甲基纤维素( HPMC) ,HPMC为白色或乳白色、无臭无味、纤维状粉末或颗粒,干燥失重不超过10%,能溶于冷水而不溶于热水,在热水中缓缓膨胀、胶溶,形成粘稠的胶体溶液,冷却为溶液,加热时相应地成为凝胶。HPMC不溶于乙醇、氯仿和乙醚,溶于甲醇和氯甲烷混合溶剂中,也溶于丙酮,氯甲烷和异丙醇的混合溶剂以及其它一些有机溶剂中。其水溶液能耐盐(其胶体溶液不被盐类破坏),1%水溶液的pH6一8。HPMC分子式为C8H15O8-( C10H18O6) -C815O,相对分子质量约为86 000。本品为半合成材料,是纤维素的部分甲基和部分聚羟丙基醚。HPMC 属于一种非离子型纤维素醚,它的溶液不带离子电荷不与金属盐或离子)*+, 是纤维素的部分甲基和部分聚羟丙基醚; 具有许多其他辅料所不具备的特性。它有优异的冷水水溶性,在冷水中稍加搅拌便能溶解成透明的溶液,反而在60℃以上热水中基本不溶解,仅能溶胀,它是一种非离子型纤维素醚,其溶液不带离子电荷,不与金属盐或离子有机化合物作用,它在制剂生产过程中不与其他原辅料反应;它具有较强的抗敏性,且随分子结构内取代度的提高,其抗敏性更强,也更稳定;它还具有代谢惰性,作为药用辅料,不被代谢,不被吸收,故在药品食品中不提供热量,对糖尿病患者需用的低热值、无盐、无变原性药品及食品具有独特适用性;它对酸和碱比较稳定,但若PH 值超出2~11并同时受较高温度影响或存放时间较长,其黏度则会降低;其水溶液能提供表面活性,呈现出适度的表面张力与界面张力值;它在两相体系中具有有效的乳化作用,可作为有效的稳定剂和保护胶体;其水溶液具有优良的成膜性能,是片剂和丸剂的良好包衣材料。由它形成的膜具有无色、坚韧的优点,加入甘油还可提高它的可塑性。

新型再生纤维素纤维

新型再生纤维素纤维 小组成员:翁密侬 41006010214 刘肖肖 41006010219 冯莹莹 41006010215 张玲玲 41006010217 张亚婷 41006010209 顾恬静 41006010206

新型再生纤维素纤维的发展前景 (一)资源前景 从长远看,合成纤维的原料石油是一次性资源,终会枯竭,因此,在这一背景下,发展纤维素纤维是解决纺织品原料的长远之计。自然界纤维年产量约1000亿吨,大约只有2.5%是通过再生途径制成纤维加以利用的。可见,纤维素资源十分丰富,而且加上纤维素是可再生的自然资源,具有可持续性、可循环性。因此,作为纺织品的原料,从资源供应量这一方面来说,再生纤维素纤维有着相当大的竞争力,发展前景十分可观。 (二)市场前景 自1960年以来,世界纤维消耗量的增长与人口增长呈并行发展趋势及对2020年世界人口和纤维消耗量增长的预测,2020年世界纤维的总消耗量为7000万吨,人均9.2kg。若再生纤维素纤维仍保持在目前的水平上,则棉纤维须从目前的1800万吨增加到3200万吨,而生产这些棉纤维所需资源(土地和水)几乎是无法到达的,而作为棉纤维代用品的再生纤维素的原料木材等将大幅增加。因此,大力发展再生纤维素纤维既是市场的需求,从资源方面来说又是可能的。另外,随着人们对舒适健康生活重视的提高,保健纺织品引起了消费者的极大关注。而后面介绍的四种新型再生纤维素纤维中,竹纤维和甲壳素纤维都有保健功能,竹纤维在生产过程中无虫蛀、无腐烂、无需使用任何农药,且因为竹子的天然抗菌性,使纤维在服用中不会对皮肤造成任何过敏性反应。甲壳素纤维具有抑菌、防臭、止痒等功能。可见,新型再生纤维素纤维有着相当大的市场潜力。 (三)绿色前景 当今,由于全球生态环境受到严重的破坏,环境污染日趋严重,环保议题已成为全人类共同关心的焦点,因此,在“我们只有一个地球”的口号下,消费者越来越多地考虑到产品对生态的影响,生产过程对环境的影响,天然资源的消耗及产品的可处理性等问题,从而,在人们思想意识中逐渐形成“绿色产品”、“绿色消费”、“绿色营销”等观念,且已形成一股国际潮流。据经济协作与开发组织(OECD)在OECD国家中作过的调查表明,大部分消费者愿意选购较高的环保产品。加拿大一项全国性民意调查中,有80%接受调查者表示,如果环保产品价格比一般产品价格高出10%左右,还是愿意购买环保产品。前面介绍的四种新型再生纤维素纤维都属于绿色纤维,在生产过程中不会对生态环境造成危害;纤维制

食品营养标签管理规范--膳食纤维(简)

食品营养标签管理规范 卫生部印发 2008年5月1日开始实施 推荐性法规:国家鼓励食品企业对其生产的产品标示营养标签。卫生部根据本规范的实施情况和消费者健康需要,确定强制进行营养标示的食品品种、营养成分及实施时间。 营养标签是指向消费者提供食品营养成分信息和特性的说明,包括营养成分表、营养声称和营养成分功能声称。 食品企业在标签上标示食品营养成分、营养声称、营养成分功能声称时,应首先标示能量和蛋白质、脂肪、碳水化合物、钠4种核心营养素及其含量。 膳食纤维的定义 膳食纤维(dietary fiber)膳食纤维是指植物中天然存在的、提取的或合成的碳水化合物的聚合物,其聚合度DP ≥ 3、不能被人体小肠消化吸收、对人体有健康意义的物质。包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分等。 食品中产能营养素的能量折算系数 表 1 食物中产能营养素的能量折算系数 * 1 营养成分的标示

包括能量和核心营养素的标识以及宜标示的营养成分的标示,膳食纤维属于宜标识的营养成分。 膳食纤维包括纤维素、半纤维素、果胶、菊粉及其他一些膳食纤维单体成分。膳食纤维可根据其成分选择检测方法和标示方式。 1)以国标或GB/T 9822测定数据,标示为: 不溶性膳食纤维…克(g); 2)以AOAC 、AOAC 方法测定数据,标示为: 膳食纤维…克(g);也可标示为:膳食纤维、可溶性膳食纤维、不可溶性膳食纤维, 例如:膳食纤维…克(g) 或膳食纤维…克(g) --可溶性膳食纤维…克(g)(自愿) --不溶性膳食纤维…克(g)(自愿) 3)以AOAC其他方法测定的膳食纤维单体成分的数据,可标示出膳食纤维和单体成分如“膳食纤维(以xxx计)…克或g ”, 例如:膳食纤维(以菊粉计)…克(g) “零”数值的表达 当某食品营养成分含量低微,或其摄入量对人体营养健康的影响微不足道时,允许标示“0”的数值。可标示的“0”的界限值如下表: 表5 标示“0”的界限值

十三五规划(纤维素纤维)

再生纤维素纤维行业“十三五”发展规划 ——中国化学纤维工业协会纤维素纤维分会 前言 再生纤维素纤维是采用富含纤维素的植物原料,经一系列的化学处理和机械加工而制的的纤维,主要品种包括粘胶纤维、醋酸纤维和铜氨纤维等传统再生纤维素纤维,以及以天丝为代表的新型溶剂法纤维素纤维等。 再生纤维素纤维是重要的纺织材料之一,具有很好的吸湿性、染色性和舒适性。在人们对产品可回收、可降解、对织物舒适性要求越来越高的条件下,其在纺织原料中凸现出越来越重要的作用,另外,其原料为可再生资源,是循环经济可持续发展的重要化学纤维产品。因此,再生纤维素纤维有着更为重要的意义和广泛的发展空间。 我国再生纤维素纤维工业的整体水平和竞争能力的发展将对世界再生纤维素纤维工业 产生重要影响。“当前纺织行业发展的新常态特征日益凸显,对于企业提出更高的调整转型的要求,企业发展压力和挑战将持续增加,但同时也隐含着外部发展的机遇和行业自身提升的动力”。在当前新常态下如何生存与发展是再生纤维素纤维行业“十三五”面临的迫切任务。 《再生纤维素纤维行业“十三五”发展规划》总结分析了我国再生纤维素纤维制造行业的发展现状及特点,存在主要问题和产业发展趋势,明确了“十三五”期间行业发展由“数量型”向“技术效益型”战略转变的指导思想,明确了发展目标和发展重点,提出了发展高新技术、功能性、差别化纤维的技术方向和主要任务。对贯彻落实《国民经济和社会发展第十三个五年规划纲要》精神和《纺织工业“十三五”发展纲要》的具体要求,推动再生纤维素纤维行业的科技进步和自主创新,实现全面、协调和可持续发展,具有重要的指导作用。 一、“十二五”发展规划完成情况及特点 我国是世界最大的再生纤维素纤维生产国,主要生产粘胶纤维、醋酸纤维(用于烟草行业)、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等。其主要产品是粘胶纤维,约占世界粘胶纤维总量近三分之二。原料采用进口木浆,进口棉短绒生产棉浆,国产木浆、棉浆、竹浆、纸改浆等品种,原料进口依存度约在60%左右。 “十二五”期间,纤维素纤维行业在大宗原料、纤维生产方面基本完成规划目标。在原料利用上发展较慢,木浆发展较快,许多大型纸浆生产企业都在转产溶解浆,溶解木浆产能已达150余万吨。棉浆生产由于资源受限,总量萎缩。竹、麻浆产量较低,秸秆利用进展缓慢。粘胶纤维工业在生产设备、工艺技术、产品质量、节能减排等方面都有了大幅度提高。高湿模量纤维、NMMO溶剂法纤维素纤维、低温尿素溶解纤维素纤维等也有了可喜的进步。 其特点是:企业规模不断增强、产量持续增长,产业集中度进一步加大、产业链配套有

羟丙基甲基纤维素与羧甲基纤维素有什么不同

市场上纤维素,从粘度上分为低粘度、中粘度、高粘度,不同粘度的纤维素有着不同的用途。所以厂家在购买的时候需要分清要做什么用,该用什么纤维素,不能贪图便宜找个替代品,否则做出的东西达不到效果,损失的只会是自己的利益。 羧甲基纤维素CMC、羧甲基淀粉钠(CMS),价位较为便宜(从产品本身性能上说,CMC要比阜盈HPMC低一个档次),羧甲基纤维素用在内墙低档腻子粉中,保水性和稳定性要比阜盈牌羟丙基甲基纤维素差很多,不能在防水腻子和外保温干混料中使用。 很多人认为这些纤维素都呈碱性,一般水泥、灰钙粉也是碱性,认为可以结合使用,但羧甲基纤维素、羧甲基淀粉钠不是单元素,它们在生产过程中使用的氯乙酸属于酸性,在生产纤维素过程中残留的物质与水泥、灰钙粉起反应,所以不能结合,很多厂家因此遭受很大损失,应引起重视。 羧甲基纤维素和羟丙基甲基纤维素用途只是相似,但其作用区别很大的,二者技术指标相差甚远; 二者主要原料同是精制棉是一样的,但其辅料,生产设备,工艺流程是不一样的,羟丙基甲基纤维素生产设备和工艺复杂很多。 两者完全不是一种生产工艺,且其他辅料也不一样的,所以用途也不一样。 不能替代,也不能为了降低成本相互结合。 阜盈羟丙基甲基纤维素(hpmc)化学性能稳定、防霉、保水增稠效果最好,而且不受PH值变化影响,粘度10万的适合用于腻子粉,粘度15万~20万适用于砂浆中,主要增加流平性、施工性,可以减少水泥的用量。另一个作用是水泥砂浆有一个凝固期,在凝固期内需要养护,需供水保持湿润。由于纤维素的保水

作用,水泥砂浆凝固所需的水分从纤维素的保水中得到保证,因此不需要养护就可以达到凝固的效果。

食用纤维素

食用纤维素(网摘) 纤维素虽然不能被人体吸收,但具有良好的清理肠道的作用,因此成为营养学家推荐的六大营养素之一,具有很好的肠道质素作用。各种食物的纤维素含量--麦麸:31% 谷物:4-10%,从多到少排列为小麦粒、大麦、玉米、荞麦面、薏米面、高粱米、黑米。麦片:8-9%;燕麦片:5-6% 马铃薯、白薯等薯类的纤维素含量大约为3%。豆类:6-15%,从多到少排列为黄豆、青豆、蚕豆、芸豆、豌豆、黑豆、红小豆、绿豆无论谷类、薯类还是豆类,一般来说,加工得越精细,纤维素含量越少。蔬菜类:笋类的含量最高,笋干的纤维素含量达到30-40%,辣椒超过40%。其余含纤维素较多的有:蕨菜、菜花、菠菜、南瓜、白菜、油菜菌类(干):纤维素含量最高,其中松蘑的纤维素含量接近50%,30%以上的按照从多到少的排列为:发菜、香菇、银耳、木耳。此外,紫菜的纤维素含量也较高,达到20% 坚果:3-14%。10%以上的有:黑芝麻、松子、杏仁;10%以下的有白芝麻、核桃、榛子、胡桃、葵瓜子、西瓜子、花生仁水果:含量最多的是红果干,纤维素含量接近50%,其次有桑椹干、樱桃、酸枣、黑枣、大枣、小枣、石榴、苹果、鸭梨。富含纤维素的食品之于冠心病,能降低胆固醇。胆固醇是造成动脉粥样硬化的原因之一,是由于血浆胆固醇的增加,使较多的胆固醇沉积在血管内壁。其结果不仅降低了血管的韧性和弹性,而且使血

管内壁加厚,管径变细,影响血液流通,增加了心脏的负担。而食品中的粗纤维能与胆固醇相互结合,防止血浆胆固醇的升高,从而有利于防止冠心病的发生和进一步恶化。另外,食品中的粗纤维还能和胆酸结合,使部分胆酸随着粗纤维排出,而胆酸又是胆固醇的代谢产物。为了补充被排出的部分胆酸,就需要有更多的胆固醇进行代谢。胆固醇代谢的增加则减少了动脉粥样硬化发生的可能性。那么,哪些食物含纤维素多呢?①海带、紫菜、木耳、蘑菇等菌藻类;②黄豆、赤小豆、绿豆、蚕豆、豌豆等豆类;③水果、蔬菜类。一言概之,冠心病患者宜多食富含纤维素的食物。一些粗粮,诸如玉米,小米、紫米、高粱、燕麦这样的食物。纤维素不能背吸收,可以充盈你的肠道,促进排泄。排泄顺畅了,身体就自然不会聚集什么毒素了。而且这类食物不被肠道吸收,就会使你有饱涨感吃不下别的

医药、食品用甲基纤维素

医药、食品用甲基纤维素 医药、食品用羟丙基甲基纤维素 中文名称:甲基纤维素 英文全称:Methy Cellulose 英文简称:MC 分子式:〔 C 6H 7O 2(OH )3 -n(OCH 3)n 〕x 中文名称:羟丙基甲基纤维素 英文全称:Hydroxypropyl Methyl Cellulose 英文简称:HPMC 分子式:〔C 6H 7O 2(OH )3-m-n(OCH 3)m(OCH 2CH(OH)CH 3)n 〕x 1) 外观:本产品为白色至微黄色颗粒或粉末。 2) 可溶性:本产品在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑 浊的胶体溶液。HPMC 可溶在某些有机溶剂中,也可溶解在不——有机溶剂的混合溶剂中。 3) 颗粒度:100目筛上物≤5.0。 4) 本产品随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 1、 抗盐性:本产品是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或 有机电解质存在时,在水溶液中比较稳定,但过量的添加电解质,可引起凝胶和沉淀。 2、 表面活性:本产品水溶液具有表面活性功能,可作为胶体保护剂,乳化剂,和 分散剂。 3、 热凝胶:HPMC 水溶液当加热到一定温度时,变的一透明,凝胶,形成沉淀, 但在逐渐冷却时,则又恢复到原来的溶液状态。而发生这种凝胶和沉淀的温度主要取决于它们的类型、浓度和加热速率。 4、 PH —稳定性:本产品水溶液的粘度几乎不受酸或碱影响,而且PH 值在3.0~11.0 的范围内比较稳定。因此,溶液的粘度在长期贮存过程中趋于稳定。 5、 保水性:本产品是一种高效保水剂。其医药级产品在食品、化妆品以及许多其 它方面具有广泛应用。 6、 成膜性:本产品可形成一种透明、坚韧、柔性的薄膜,而这种膜能极好的阻止 油脂的渗入。在食品中的应用,常常运用这种性质,在冷却期保持水份和吸附油。 7、 粘结性:本产品还作为一种高性能粘结剂,被应用于食品和药品中。 符合中国药典2000版,美国药典USP24/NF19标准,欧洲药典EP4。

羟丙基甲基纤维素醚

维素醚作为建筑干混砂浆产品中的最主要外加剂,对于干混砂浆的性能和成本起着关键性的作用。那么,什么是羟丙基甲基纤维素醚?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 羟丙基甲基纤维素(INN名称:Hypromellose),亦有简化作羟丙甲纤维素(hydroxypropyl methylcellulose,缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于眼科学用作润滑科,又或在口服药物中充当辅料或赋型剂,常见于各种不同种类的商品。作为食品添加剂,羟丙甲纤维素可担当以下角色:乳化剂、增稠剂、悬浮剂及动物明胶的替代品。它的《食品法典》代码(E编码)是E464。 溶于水及大多数极性c和适当比例的乙醇/水、丙醇/水、二氯乙烷等,在乙醚、丙酮、无水乙醇中不溶,在冷水中溶胀成澄清或微浊的胶体溶液。水溶液具有表面活性,透明度高、性能稳定。HPMC

具有热凝胶性质,产品水溶液加热后形成凝胶析出,冷却后又溶解,不同规格的产品凝胶温度不同。 安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到

浅谈新型再生纤维素纤维的发展前景

浅谈新型再生纤维素纤维的发展前景 刘长河 胡正春 王建坤 (天津工业大学纺织与服装学院,天津 300160) [摘 要] 本文介绍了新型再生纤维素纤维的性能和特点,从资源、市场、环保三方面分析了新型再生纤维素纤维的发展前景。 [关键词] 新型;再生纤维素纤维;前景 1 前 言 在20世纪70年代以前,作为再生纤维素纤维之一的粘胶纤维,曾是化学纤维生产的第一大品种。然而,随着合成纤维新品种的出现和发展,加上粘胶纤维的生产工艺流程长而复杂,能耗大,耗水量大,特别是严重污染环境,废气和污水的治理难度高、费用大,一些发达国家相继关闭了部分生产粘胶纤维的工厂。致使其世界产量在20年间下降约41%。 在这一背景下,天然纤维素纤维再次得到重视。自然界纤维素年产量1000亿吨,大约只有2.5%是通过再生途径制作成纤维等加以利用的。纤维素资源十分丰富,纤维素是可再生的自然资源,具有可持续性;纤维素具有环保性,可参与自然界的生态循环。作为纺织纤维,纤维素纤维具有优良的吸湿性、穿着舒适性,一直是纺织品和卫生用品的重要原料。所以,纤维素纤维是新世纪最理想,最有前途的纺织原料之一。近年来,出现M odal、Tencel等新一代再生纤维素纤维。随着新型再生纤维素纤维在生产中的大量应用,前景将非常看好。2 各种新型再生纤维素纤维 2.1 T encel纤维 天丝是我国的通俗称呼,它的学名叫Lyocell,商品名叫Tencel。它与粘胶纤维同属再生纤维素纤维,虽然粘胶纤维在19世纪90年代已经问世,并在化学纤维中占据着重要地位,但由于粘胶纤维的制造工艺严重污染环境,在人们强烈呼吁清洁生产、保护地球生态环境、减少污染的今天,如何克服污染环境的缺点呢?荷兰阿克苏?诺贝尔(Akzo Nobel)公司属于美国恩卡公司和德国的恩卡研究所与1980年研究成功用有机溶剂直接溶解纤维浆粕生产纤维素纤维的工艺方法,并取得了专利。1989年,布鲁塞尔国际人造及合成纤维标准局(BISFA)把由这类方法制造的纤维素纤维正式命名为“Ly ocell”。与此同时,英国考陶尔兹公司于20世纪80年代初开始研制T encel短纤维,在得到荷兰阿克苏?诺贝尔公司Ly ocell的许可证后,马上开始试生产,在实验工厂经过反复试验,成功地开发出一种对人体无害的氧化胺溶剂,其后又解决了生产中的一系列问题,最后成功地生产了T encel短纤。 天丝纤维的化学结构,基本与棉纤维,粘 2

食品添加剂羟丙基甲基纤维素HPMC1范围本标准适用于食品

食品添加剂羟丙基甲基纤维素(HPMC)1 范围 本标准适用于食品添加剂羟丙基甲基纤维素。 产品为白色至灰白色纤维状粉末或颗粒。 2 结构式 R=H或者CH3或者CH2CHOHCH3 4 技术要求 应符合表1的规定。

附录 A 检验方法 A.1 一般规定 除非另有说明,在分析中仅使用确认为分析纯的试剂和GB/T 6682-2008中规定的水。分析中所用标准滴定溶液、杂质测定用标准溶液、制剂及制品,在没有注明其他要求时,均按GB/T 601、GB/T 602、GB/T 603的规定制备。本试验所用溶液在未注明用何种溶剂配制时,均指水溶液。 A.2 鉴别试验 A.2.1 称取1g试样,加入100mL水,可在水中溶胀,形成透明呈乳白色粘稠状胶体溶液。 A.2.2 称取1g试样,加入100mL沸腾的水,搅拌均匀(保持部分此试样溶液,用于鉴别试验A.2.3),此试样溶液呈糊状,冷却至20℃,形成清澈或半透明粘稠液体。 A.2.3 取部分A.2.2中的试样溶液,将试样溶液置于玻璃盘中,使水分挥发,形成薄膜。 A.3 甲氧基和羟丙氧基含量的测定 A.3.1 试剂和材料 A.3.1.1 甲苯。 A.3.1.2 邻二甲苯。 A.3.1.3 己二酸 A.3.1.4 氢碘酸。 A.3.1.5 异丙碘。 A.3.1.6 甲基碘。 A.3.2 仪器和设备 气相色谱仪:配备热导检测器,或其他等效的检测器。 A.3.3 参考色谱条件 A.3.3.1 色谱柱:1.8m×4mm玻璃柱,填料为100到120目色谱纯硅质土(Chromosorb WHP或其他等效物)上含10%的甲基硅酮油(UCW 982或其他等效物),或其他等效色谱柱。 A.3.3.2 柱温:100℃。 A.3.3.3 进样口温度:200℃。 A.3.3.4 检测器温度:200℃。 A.3.3.5 载气:氦气。 A.3.3.6 流速:20mL/min。 A.3.3.7 进样量:约2μL。 A.3.3.8 甲基碘、异丙碘、甲苯和邻二甲苯的色谱保留时间分别为3 min,5min,7min和13min。A.3.4 分析步骤 注意事项:在通风橱中进行含有氢碘酸的操作步骤。使用护目镜、耐酸手套和其他合适的安全设备。在处理热玻璃瓶时,要极度小心,因为它们有压力。万一不慎接触氢碘酸,要用大量水冲洗,并立即寻求医疗帮助。 A.3.4.1 内标溶液的制备

hpmc纤维素用途

hpmc羟丙基甲基纤维素主要用于聚氯乙烯生产中的分散剂,此外在其他石油化工、涂料、建材、除漆剂、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、成膜剂等。那么,hpmc纤维素用途是什么?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 本品为工业级HPMC,主要用途为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、农业化学品、油墨、纺织印染、陶瓷、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、赋形剂、保水剂、成膜剂等。在合成树脂方面的应用,可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点,从而基本上取代了明胶和聚乙烯醇作分散剂。另外,在建筑工业施工过程中,主要用于砌墙,灰泥粉饰,嵌缝等机械化施工中;特别在装饰性施工中,用做粘贴瓷砖、大理石、塑料装饰,粘贴强度高,还可以减少水泥用量。用于涂料行业中做增稠剂,可使图层光亮细腻,不脱粉,改善流平性能等。

安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到北京、2个小时到上海。水路运输主要航线由宿州港经洪泽湖至长江中下游各港口城市,经大运河至江、浙、沪等地或经淮河到淮河沿岸

膳食纤维的作用与常见食物含量

膳食纤维的作用与常见食物含量 山野国际霍永明高级营养师膳食纤维的定义: 膳食纤维是一种重要的非营养素,它是碳水化合物中的一类非淀粉多糖及寡糖等不消化部分。越来越多的研究表明,膳食纤维的摄入与人体健康密切相关。过量摄入膳食纤维会影响维生素、铁、锌、钙、等的消化吸收,但是摄入足会增加便秘、肥胖、糖尿病、心血管疾病和某些癌症发生的危险。所以与食物中的其他营养素一样,为了保持健康,膳食纤维的摄入量也应在适宜的范围之内。 膳食纤维的定义有两种,一是从生理学角度将膳食纤维定义为哺乳动物消化系统内未被消化的植物细胞的残存物,包括纤维素、半纤维素、果胶、树胶、抗性淀粉和木质素等;二是从化学角度将膳食纤维定义为植物的非淀粉多糖加木质素。 膳食纤维的分类: 膳食纤维可分为可溶性膳食纤维与非可溶性膳食纤维。可溶性膳食纤维包括部分半纤维素、果胶、树胶等;非可溶性膳食纤维包括纤维素、木质素等。 膳食纤维的主要特性: 1,吸水作用 膳食纤维具有很强的吸水能力或与水结合能力。此作用可使肠道中粪便的体积增大,加快其转运速度、减少其中有害物质接触肠壁的时间。 2,黏滞作用 一些膳食纤维具有很强的黏滞性,能形成黏液性溶液,包括果胶、树胶、海藻多糖等。 3,结合有机化合物作用 膳食纤维具有结合胆酸和胆固醇的作用。 4,阳离子交换作用 膳食纤维的与阳离子交换作用与糖醛酸的羧基有关,可在胃肠内结合无机盐,如钾、钠、铁等阳离子形成膳食纤维复合物,影响其吸收。 5,细菌发酵作用 膳食纤维在肠道内易被细菌酵解,其中可溶性膳食纤维可完全被细菌所酵解,而非溶性膳食纤维则不易被酵解。酵解后产生的短链脂肪酸如乙酯酸、丙脂酸和丁酯酸均可作为肠道细胞和细菌的能量来源。 膳食纤维的生理功能: 1,有利于食物的消化过程 膳食纤维能增加食物在口腔咀嚼时间,可促进肠道消化酶分泌,同时加速肠道内容物的排泄,这些都有利于食物的消化吸收。 2,降低血清胆固醇 膳食纤维可结合胆酸,故有降血脂作用,此作用以可溶性纤维(如果胶、树胶、豆胶)的降脂作用较明显,而非溶性纤维无此作用。

羟丙基甲基纤维素的产品知识

羟丙基甲基纤维素的产品知识 羟丙基甲基纤维素外观为白色的粉末,无嗅无味,溶于水及大多数极性有机溶剂和适当比例的乙醇/水、丙醇/水、二氯乙烷等,在乙醚、丙酮、无水乙醇不溶,在冷水中溶胀成澄清或微浊的胶体溶液。水溶液具有表面活性,透明度高、性能稳定。HPMC具有热凝胶性质,产品水溶液加热后形成凝胶析出,冷却后又溶解,不同规格的产品凝胶温度不同。溶解度随粘度而变化,粘度越低,溶解度越大,不同规格的HPMC 其性质有一定差异,HPMC在水中溶解不受PH值影响。颗粒度:100目通过率大于100%。堆密度:0.25-0.70g/ (通常0.4g/ 左右),比重1.26-1.31。变色温度:180-200℃,炭化温度:280-300℃。HPMC具有增稠能力,排盐性、PH稳定性、保水性、尺寸稳定性、优良的成膜性以及广泛的耐酶性、分散性和粘结性等特点。 羟丙基甲基纤维素的知识问答 1、羟丙基甲基纤维素在抗裂砂浆中起什么作用 既然是做抗裂砂浆!适量加些聚丙烯抗裂纤维(PP纤维),让他们在砂浆中以倒刺的形态而存在,从而达到抗裂效果。HPMC只是在其中起到保水,增稠,抗垂挂的效果。 2、羟丙基甲基纤维素有什么别名呢? 答:羟丙基甲基纤维素,英文:Hydroxypropyl Methyl Cellulose 简称:HPMC或MHPC 别名:羟丙甲纤维素; 纤维素羟丙基甲基醚; Hypromellose,Cellulose, 2-hydroxypropyl methyl Cellulose ether. Cellulose hydroxypropyl methyl ether Hyprolose。 3、腻子粉中羟丙基甲基纤维素(HPMC)的粘度越大保水越好吗? 答:理论上是这样,但是,实际上粘度到10万以后,保水性的增长就很小了。一般做腻子,粘度在10万就可以了,如果是做聚笨颗粒砂浆,用高粘度的效果更好。 用途介绍: 1.建筑业:作为水泥沙浆料的保水剂、缓凝剂使沙浆具有泵送性。在抹灰浆、石膏料、腻子粉或其他的建材作为黏合剂,提高涂抹性和延长可操作时间。用作粘贴瓷砖、大理石、塑料装饰,粘贴增强剂,还可以减少水泥用量。HPMC的保水性能使浆料在涂抹后不会因干得太快而龟裂,增强硬化后强度。 2.陶瓷制造业:在陶瓷产品制造中广泛用作黏合剂。 3.涂料业:在涂料业作为增稠剂、分散剂和稳定剂,在水或有机溶剂中都具有良好相溶性。作为脱漆剂。 4.油墨印刷:在油墨业作为增稠剂、分散剂和稳定剂,在水或有机溶剂中都具有良好相溶性。 5.塑料:作成形脱模剂、软化剂、润滑剂等。 6.聚氯乙烯:聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。 7.其它:本品还广泛用于皮革、羟丙基甲基纤维素纸制品业、果蔬保鲜和纺织业等。 羟丙基甲基纤维素的用途与其他纤维素醚类相仿,主要在各领域用作分散剂、悬浮剂、增稠剂、乳化剂、稳定剂和胶粘剂等。它在溶解性、分散性、透明度和抗酶性等方面,优于其他纤维素醚类。 食品和药物工业中,用作添加剂,由于具有粘接性、成膜性、在液体中有增稠和分散以及防油脂渗透和保持水分等作用,因此用作胶粘剂、增稠剂、分散剂、缓解剂、稳定剂和乳化剂。它没有毒性,无营养价值,也不会代谢变化。 此外HPMC在合成树脂聚合反应、石油化工、陶瓷、造纸、皮革、化妆品、涂料、建筑材料和光敏印刷版等方面都有应用。

羟丙基甲基纤维素

羟丙基甲基纤维素 HPMC 备注:精制棉、氯甲烷、环氧丙烷、片碱、酸、甲苯、异丙醇等主要原材料均采用一级优质品。 羟丙基甲基纤维素别名为羟丙甲纤维素、羟丙基甲基纤维素醚。本品选用高度纯净的棉纤维素作为原料,在碱性条件下经专门醚化而制得,全过程在自动化监控下完成,不含任何动物器官和油脂等活性成分。本品为非离子型纤维素醚,外观为白色的粉末,无嗅无味。我公司生产的羟丙基甲基纤维素(HPMC)可分为速溶型和热溶型。 速溶型HPMC,遇冷水迅速分散,消失在水里面,此时液体没有粘度,因为HPMC只是分散在水中,没有真正的溶解,大概2分钟,液体的粘度慢慢变大,形成透明的粘稠状胶体。 热溶型HPMC遇冷水抱团,能在热水中迅速分散,消失在热水中;待温度下降到一定温度,粘度慢慢出现,直到形成透明的粘稠胶体。(搅拌钧匀)热溶型HPMC主要应用在腻子粉和砂浆;速溶型HPMC,主要应用于液体胶水和涂料里。 HPMC在腻子粉中要求的粘度较低,5—10万就可以了,重要的是保水要好;在砂浆中的粘度要求较高,12万以上的要好些;在胶水中的应用则需要速溶型产品,粘度要达到15万左右。 HPMC的粘度与温度成反比,也就是说,粘度随着温度的下降而增高。我们通常说的某产品的粘度,指的是,其2%水溶液在20摄氏度的温度下检测的结果。 在实际应用中,夏季和冬季温差大的地区,应该注意,推荐在冬季的时候用相对低些的粘度,这样更有利于施工。 溶解方法 1. 所有型号均可以采用干混法加入到物料中; 2. 热溶型HPMC先用热水搅拌分散后,加入冷水搅拌冷却后即可溶解; 3. 溶解时如发生结块包裹现象,是因为搅拌不充分或热溶型HPMC直接加入到冷水中的原因,此时应快速搅拌; 4. 溶解时如果产生气泡,可以静置2-12小时(具体时间由溶液稠度决定)或抽真空、加压等方法去除,也可以加入适量的消泡剂。

甲基纤维素

甲基纤维素(MC) 本公司生产的甲基纤维素为白色或类白色纤维素状粉末,无臭无味,稍有吸湿性,不溶于热水和一般的有机溶剂。它的水溶液对酸和碱是稳定的,PH 2—12范围内不受影响,可耐溶一般的淡酸、碱能使溶液粘度提高,但无其它影响,它的水溶液长期贮存很稳定并能抗酶菌生长。具有良好的粘合力、分散力、润湿性、增稠性、保水性和成膜性,以及对油脂的不透性,与各种水溶性物质有良好的混合性。 产品的溶解方法: 1、产品加入到所需水量的1/3—2/3的热水中(80℃--90℃)搅拌,待溶胀好后再加入剩余的冷水,经搅拌降温冷却而成。 2、将粉末状产品与其它组份干粉掺在一起,混合均匀,在搅拌下加到水中至粉末状产品完全溶解。 3、经过处理的粉末状产品可直接加到冷水中搅拌。为加快溶解,在搅拌下加入少量的碱,调节PH8—9后,产品可迅速溶解,形成均一溶液。 产品用途: 1、化工特殊产品:在工业生产和加工作业中,作为增稠剂、悬浮剂、粘结剂、成膜剂和乳胶稳定剂。 2、聚氯乙烯树脂:作为悬浮聚合的分散剂,用来保护胶体,提高吸收增塑剂的速率,控制树脂粒度分布,提高聚氯乙烯树脂的加工性能。 3、建筑材料:使水泥、砂浆、灰浆以及石膏装饰材料具有定型保水性能,并提高和易性,应用于新型建材涂料,多彩涂料,具有牢固的吸附性和分散性。 4、粘结剂:在粘结剂的配方中作为增稠剂兼粘料。 5、陶瓷:赋予润滑性,保水性并提高坯料原始强度。 6、化妆品:调节流变性,使产品具有适当的粘度,乳化度、稳定性、润滑性和泡沫稳定性,以及 表面活性剂的相溶性。 7、食品:作为烘制食品、营养食品、面包等多种食品的增稠剂、粘结剂、稳定剂、保水剂、成型 剂及胶体悬浮剂。 8、纺织品:作为纺织品浆料、印染色浆、或乳胶涂料中的增稠剂和粘结剂。 9、脱漆剂:利用其水和有机溶剂的兼容性,作为油漆的脱除剂和冲洗剂的增稠剂。 10、油漆及乳胶涂料:作为乳胶漆的保护胶体,增稠剂和颜料悬浮助剂。使油漆粘度稳定,漆膜完整。 11、医药:作为药片的粘结剂、片剂的薄膜包衣,软膏和乳油的稳定剂。 12、农药:喷雾、粘附剂、保护膜和可湿性农药的分散剂。 13、各种树脂:纤维增强塑料的成型,脱膜剂,水基乳胶涂料的增稠剂和稳定剂。 14、香烟:作为烟叶片的粘结剂和成膜剂。

医药食品用甲基纤维素

医药食品用甲基纤维素 医药、食品用羟丙基甲基纤维素 中文名称:甲基纤维素 英文全称:Methy Cellulose 英文简称:MC 分子式:〔C 6H 7O 2(OH )3-n(OCH 3)n 〕x 中文名称:羟丙基甲基纤维素 英文全称:Hydroxypropyl Methyl Cellulose 英文简称:HPMC 分子式:〔C 6H 7O 2(OH )3-m-n(OCH 3)m(OCH 2CH(OH)CH 3)n 〕x 1) 外观:本产品为白色至微黄色颗粒或粉末。 2) 可溶性:本产品在无水乙醇、乙醚、丙酮中几乎不溶,在冷水中溶胀成澄清或微浑 浊的胶体溶液。HPMC 可溶在某些有机溶剂中,也可溶解在不——有机溶剂的混合溶剂中。 3) 颗粒度:100目筛上物≤5.0。 4) 本产品随甲氧基含量减少,凝胶点升高,水溶解度下降,表面活性也下降。 1、 抗盐性:本产品是非离子型纤维素醚,而且不是聚合电解质,因此在金属盐或 有机电解质存在时,在水溶液中比较稳固,但过量的添加电解质,可引起凝胶和沉淀。 2、 表面活性:本产品水溶液具有表面活性功能,可作为胶体爱护剂,乳化剂,和 分散剂。 3、 热凝胶:HPMC 水溶液当加热到一定温度时,变的一透亮,凝胶,形成沉淀, 但在逐步冷却时,则又复原到原先的溶液状态。而发生这种凝胶和沉淀的温度要紧取决于它们的类型、浓度和加热速率。 4、 PH —稳固性:本产品水溶液的粘度几乎不受酸或碱阻碍,而且PH 值在3.0~11.0 的范畴内比较稳固。因此,溶液的粘度在长期贮存过程中趋于稳固。 5、 保水性:本产品是一种高效保水剂。其医药级产品在食品、化妆品以及许多其 它方面具有广泛应用。 6、 成膜性:本产品可形成一种透亮、坚强、柔性的薄膜,而这种膜能极好的阻止 油脂的渗入。在食品中的应用,常常运用这种性质,在冷却期保持水份和吸附油。 7、 粘结性:本产品还作为一种高性能粘结剂,被应用于食品和药品中。

相关文档
相关文档 最新文档