文档库 最新最全的文档下载
当前位置:文档库 › 高中物理竞赛——振动与波习题

高中物理竞赛——振动与波习题

高中物理竞赛——振动与波习题
高中物理竞赛——振动与波习题

高中物理竞赛——振动与波习题

一、简谐运动的证明与周期计算

物理情形:如图5所示,将一粗细均匀、两边开口的U 型管固定,其中装有一定量的水银,汞柱总长为L 。当水银受到一个初始的扰动后,开始在管

中振动。忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。

模型分析:对简谐运动的证明,只要以汞柱为对象,看它的回复力与位移关系是否满足定义式①,值得注意的是,回复力∑F

系指振动方向上的合力(而非整体合力)。当简谐运动被证明后,回复力系数k 就有了,求周期就是顺理成章的事。

本题中,可设汞柱两端偏离平衡位置的瞬时位移为x 、水银密度为ρ、U 型管横截面积为S ,则此瞬时的回复力

ΣF = ρg2xS =

L

mg 2x

由于L 、m 为固定值,可令:L

mg 2 = k ,而且ΣF 与x 的方向相反,故汞柱

做简谐运动。

周期T = 2π

k

m

= 2πg 2L

答:汞柱的周期为2πg

2L 。

学生活动:如图6所示,两个相同的柱形滚轮平行、等高、水平放置,绕各自的轴线等角速、反方向地转动,在滚轮上覆盖一块均质的木板。已知两滚轮轴线的距离为L 、滚轮与木板之间的动摩擦因素为μ、木板的质量为m ,且木板放置时,重心不在两滚轮的正中央。试证明木板做简谐运动,并求木板运动的周期。

思路提示:找平衡位置(木板重心在两滚轮中央处)→力矩平衡和ΣF 6= 0结合求两处弹力→求摩擦力合力…

答案:木板运动周期为2π

g

2L μ 。

巩固应用:如图7所示,三根长度均为L = 2.00m 地质量均匀直杆,构成一正三角形框架ABC ,C 点悬挂在一光滑水平轴上,整个框架可绕转轴转动。杆AB 是一导轨,一电动松鼠可在导轨上运动。现观察到松鼠正在导轨上运动,而框架却静止不动,试讨论松鼠的运动是一种什么样的运动。

解说:由于框架静止不动,松鼠在竖直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。设松鼠

的质量为m ,即:

N = mg ① 再回到框架,其静止平衡必满足框架所受合力

矩为零。以C 点为转轴,形成力矩的只有松鼠的压力N 、和松鼠可能加速的静摩擦力f ,它们合力矩为零,即:

M N = M f

现考查松鼠在框架上的某个一般位置(如图7,设它在导轨方向上距C 点为x ),上式即成:

N ·x = f ·Lsin60° ②

解①②两式可得:f =

L

3mg 2x ,且f 的方向水平向左。

根据牛顿第三定律,这个力就是松鼠在导轨方向上的合力。如果我们以C 在导轨上的投影点为参考点,x 就是松鼠的瞬时位移。再考虑到合力与位移的方向因素,松鼠的合力与位移满足关系——

F

= -k x

其中k =

L

3mg 2 ,对于这个系统而言,k 是固定不变的。

显然这就是简谐运动的定义式。 答案:松鼠做简谐运动。

评说:这是第十三届物理奥赛预赛试题,问法比较模糊。如果理解为定性求解,以上答案已经足够。但考虑到原题中还是有定量的条件,所以做进一步的定量运算也是有必要的。譬如,我们可以求出松鼠的运动周期为:T = 2πk

m

= 2π

g

2L

3 = 2.64s 。 二、典型的简谐运动

1、弹簧振子

物理情形:如图8所示,用弹性系数为k 的轻质弹簧连着一个质量为m 的小

球,置于倾角为θ的光滑斜面上。证明:小球在弹簧方向的振动为简谐运动,并求其周期T 。

学生自己证明…。周期T = 2π

k

m 模型分析:这个结论表明,弹簧振子完全可以突破放置的方向而伸展为一个广义的概念,且伸展后不会改变运动的实质。其次,我们还可以这样拓展:把上面的下滑力换程任何一个恒力(如电场力),它的运动性质仍然不会改变。

当然,这里的运动性质不变并不是所有运动参量均不改变。譬如,振子的平衡位置、振动方程还是会改变的。下面我们看另一类型的拓展——

物理情形:如图9所示,两根相同的弹性系数分别为k 1和k 2的轻质弹簧,连接一个质量为m 的滑块,可以在光滑的水平面

上滑动。试求这个系统的振动周期T 。

解说:这里涉及的是弹簧的串、并联知识综合。根据弹性系数的定义,不难推导出几个弹性系数分别为k 1、k 2、…、k n 的弹簧串、并联后的弹性系数定式(设新弹簧系统的弹性系数为k )——

串联:k

1 = ∑

=n

1i i

k 1 并联:k = ∑=n

1

i i k

在图9所示的情形中,同学们不难得出:T = 2π

2

121k k )

k k (m +

当情形变成图10时,会不会和图9一样呢?详细分析形变量和受力的关系,我们会发现,事实上,这时已经变成了弹簧的并联。

答案:T = 2π

2

1k k m + 。

思考:如果两个弹簧通过一个动滑轮(不计质量)再与质量为m 的钩码相连,如图11所示,钩码在竖直方向上的振动周期又是多少?

解:这是一个极容易出错的变换——因为图形的外表形状很象“并联”。但经过仔细分析后,会发现,动滑轮在这个物理情形中起到了重要的作用——致使这个变换的结果既不是串联、也不是并联。

★而且,我们前面已经证明过,重力的存在并不会改变弹簧振子的振动方程,所以为了方便起见,这里(包括后面一个“在思考”题)的受力分析没有考虑重力。

具体分析如下:

设右边弹簧的形变量为x 2 、滑轮(相对弹簧自由长度时)的位移为x 、钩子上的拉力为F ,则

k 1x 1 = k 2x 2

x =

2

x x 2

1+

F = 2 k 2x 2

解以上三式,得到:F =

2

12

1k k k k 4+x ,也就是说,弹簧系统新的弹性系数k = 2

12

1k k k k 4+ 。 答:T = π

2

121k k )k k (m + 。

再思考:如果两弹簧和钩码通过轻杆和转轴,连成了图12所示的系统,已知k

1 、k

2 、m 、a 、b ,再求钩码的振动周期T 。

思路提示:探讨钩码位移和回复力关系,和“思考”题类似。

(过程备考:设右弹簧伸长x 2 ,则中间弹簧伸长x 1 =

1

2

ak bk x 2 钩码的位移量x = x 1 + b

a x 2 而钩码的回复力F = k 1x 1 结合以上三式解回复力系数k = x F

= 2

212

212k b k a k k b + ,所

以…)

答:T = 2π

m

k k b k b k a 2

122

212+ 。

2、单摆

单摆分析的基本点,在于探讨其回复力随位移的变化规律。相对原始模型的伸展,一是关于摆长的变化,二是关于“视重加速度”的变化,以及在具体情形中的处理。至于复杂的摆动情形研究,往往会超出这种基本的变形,而仅仅是在分析方法上做适当借鉴。

物理情形1:如图13所示,在一辆静止的小车内用长为L 的轻绳静止悬挂着

一个小钢球,当小车突然获得水平方向的大小为a 的加速度后(a <g ),试描述小球相对小车的运动。

模型分析:小钢球相对车向a 的反方向摆起,摆至绳与竖直方向夹角θ= arctg g

a 时,达到最大速度,此位置即是小球相对车“单摆”的平衡位置。以车为参照,小球受到的场力除了重力G 外,还有一惯性力F 。所以,此

时小球在车中相当于处在一个方向倾斜θ、大小变为22F G +的新“重力”的作

用,属超重情况。这是一种“视重加速度”增加的情形。

解说:由于摆长L 未变,而g 视 = 22a g +,如果a 很小,致使最大摆角不

超过5°的话,小角度单摆可以视为简谐运动,周期也可以求出来。

答案:小球以绳偏离竖直方向θ= arctg g

a 的角度为平衡位置做最大摆角为θ的单摆运动,如果θ≤5°,则小球的摆动周期为T = 2π

2

2

a

g L +

物理情形2:某秋千两边绳子不等长,且悬点不等高,相关数据如图14所示,且有a 2 + b 2 = 21L + 22L ,

试求它的周期(认为人的体积足够小)。

模型分析:用C 球替代人,它实际上是在绕AB 轴摆动,类似将单摆放置在光滑斜面上的情形。故视重加速度g

视 = gcos θ= g 2

2b a a + ,

等效摆长l = CD ,如图15所示。

由于a 2 + b 2 = 21L + 22L 可知,AC ⊥CB ,因此不难求出

CD =

22

21

21L

L L L + ,最后应用单摆周期公式即可。

答案:T = 2π

ag

L L 21 。

相关变换1:如图16所示,质量为M 的车厢中用长为L 的细绳悬挂着一个质量为m 的小球,车轮与水平地面间的摩擦不计,试求这个系统做微小振动的周期。

分析:我们知道,证明小角度单摆作简谐运动用到了近似处理。在本题,也必须充分理解“小角度”的含义,大胆地应用近似处理方法。

解法一:以车为参照,小球将相对一个非惯性系作单摆运动,在一般方位角θ的受力如图17所示,其中惯性力F = ma ,且a 为车子的加速度。由于球在垂直T 方向振动,故回复力

F 回 = Gsin θ+ Fcos θ= mgsin θ+ macos θ ① *由于球作“微小”摆动,其圆周运动效应可以忽略,故有

T + Fsin θ≈ mgcos θ ② 再隔离车,有 Tsin θ= Ma ③

解①②③式得 F 回 =

θ

+2sin m M sin g )M m (m

*再由于球作“微小”摆动,sin 2θ→0 ,所以 F 回 = M

sin g )M m (m θ

+ ④

令摆球的振动位移为x ,常规处理 sin θ≈

L

x

解④⑤即得 F 回 = ML

g

)M m (m +x 显然,

ML

g

)M m (m + = k 是恒定的,所以小球作简谐运动。最后求周期用公

式即可。

解法二:由于车和球的系统不受合外力,故系统质心无加速度。小球可以看成是绕此质心作单摆运动,而新摆长L ′会小于L 。由于质心是惯性参照系,故小球的受力、回复力的合成就很常规了。

若绳子在车内的悬挂点在正中央,则质心在水平方向上应与小球相距x =

M

m M +Lsin θ,不难理解,“新摆长”L ′=

M

m M

+L 。(从严谨的意义上来讲,这

个“摆长”并不固定:随着车往“平衡位置”靠近,它会加长。所以,这里的等

效摆长得出和解法一的忽略圆周运动效应事实上都是一种相对“模糊”的处理。如果非要做精准的运算,不启用高等数学工具恐怕不行。)

答:T = 2π

g

)m M (ML

+ 。

相关变换2:如图18所示,有一个均质的细圆环,

借助一些质量不计的辐条,将一个与环等质量的小球固定于环心处,然后用三根竖直的、长度均为L 且不可伸长的轻绳将这个物体悬挂在天花板上,环上三个结点之间的距离相等。试求这个物体在水平方向做微小扭动的周期。

分析:此题的分析角度大变。象分析其它物理问题一样,分析振动也有动力学途径和能量两种途径,此处若援用动力学途径寻求回复力系数k 有相当的难度,因此启用能量分析。

本题的任务不在简谐运动的证明,而是可以直接应用简谐运动的相关结论。根据前面的介绍,任何简谐运动的总能都可以表达为

E = 2

1kA 2 ①

而我们对过程进行具体分析时,令最大摆角为θ(为了便于寻求参量,这里把摆角夸大了)、环和球的质量均为m ,发现最大的势能(即总能)可以表达为(参见图19)

E = 2m ·gL(1 ? cos θ) ② 且振幅A 可以表达为

A = 2Lsin 2

θ ③

解①②③式易得:k =

L

mg 2

最后求周期时应注意,中间的球体未参与振动,故不能纳入振子质量(振子质量只有m )。

答:T = π

g

L

2 。

三、振动的合成

物理情形:如图20所示,一个手电筒和一个屏幕的质量均为m ,都被弹性系数为k 的弹簧悬挂着。平衡时手电筒的光斑恰好照在屏幕的正中央O 点。现在令手电筒和屏幕都在竖直方向上振动(无水平晃动或扭动),振动方程分别为y 1 = Acos(ωt + φ1),y 2 = Acos(ωt + φ2) 。试问:两者初位相满足什么条件时,可以形成这样的效果:(1)光斑相对屏幕静止不动:(2)光斑相对屏幕作振幅为2A 的振动。

模型分析:振动的叠加包括振动的相加和相减。这里考查光斑相对屏幕的运动事实上是寻求手电筒相对屏幕的振动,服从振动的减法。设相对振动为y ,有

y = y 1 ? y 2 = Acos(ωt + φ1) ? Acos(ωt + φ2)

= ?2Asin

2

2

1?-?sin(2

t 2

1?+?+

ω)

解说:(1)光斑相对屏幕静止不动,即y = 0 ,得 φ1 = φ2 (2)要振幅为2A ,必须2

sin

2

1?-? = 1 ,得φ1 ? φ2 = ±π

答案:初位相相同;初位相相反。 相关变换:一质点同时参与两个垂直的简谐运动,其表达式分别为x = 2cos(2ωt +2φ) ,y = sin ωt 。(1)设φ = 2

π ,求质点的轨迹方程,并在xOy 平面绘出其曲线;(2)设φ = π ,轨迹曲线又怎样?

解:两个振动方程事实已经构成了质点轨迹的参数方程,我们所要做的,只不过是消掉参数,并寻求在两个具体φ值下的特解。在实际操作时,将这两项

工作的次序颠倒会方便一些。

(1)当φ = 2

π时,x = ?2(1 ? 2sin 2ωt) ,即 x = 4y 2 ? 2

描图时应注意,振动的物理意义体现在:函数的定义域 ?1 ≤ y ≤ 1 (这事实上已经决定了值域 ?2 ≤ x ≤ 2 )

(2)当φ =π时,同理 x = 2(1 ? 2sin 2ωt)= 2 ? 4y 2

答:轨迹方程分别为x = 4y 2 ? 2和x = 2 ? 4y 2 ,曲线分别如图21的(a )(b )所示——

四、简谐波的基本计算

物理情形:一平面简谐波向?x 方向传播,振幅 A = 6cm ,圆频率ω= 6πrad/s ,当t = 2.0s 时,距原点O 为12cm 处的P 点的振动状态为y P = 3cm ,且v P > 0 ,而距原点22cm 处的Q 点的振动状态为y Q = 0 ,且v Q < 0 。设波长λ>10cm ,求振动方程,并画出t = 0时的波形图。

解说:这是一个对波动方程进行了解的基本训练题。简谐波方程的一般形式已经总结得出,在知道A 、ω的前提下,加上本题给出的两个特解,应该足以解出v 和φ值。

由一般的波动方程y = Acos 〔ω(t - v

x )+ φ〕

(★说明:如果我们狭义地理解为波源就在坐标原点的话,题目给出特解是不存在的——因为波向?x 方向传播——所以,此处的波源不在原点。同学们自己理解:由于初相φ的任意性,上面的波动方程对波源不在原点的情形也是适用的。)

参照简谐运动的位移方程和速度方程的关系,可以得出上面波动方程所对应质点的速度(复变函数)

v = ?ωAsin 〔ω(t - v

x )+ φ〕 代t = 2.0s 时P 的特解,有—— y P = 6cos 〔6π(2 - v

12)+ φ〕= 3 ,v P = ?36πsin 〔6π(2 -

v

12)+ φ〕

> 0

即 6π(2 -

v

12

)+ φ = 2k 1π - 3

π

代t = 2.0s 时Q 的特解,有——

y Q = 6cos 〔6π(2 - v 22)+ φ〕= 0 ,v Q = ?36πsin 〔6π(2 - v

22

)+ φ〕< 0

即 6π(2 -

v

22

)+ φ = 2k 2π + 2π ②

又由于 AB = 22 ? 12 = 10 <λ ,故k 1 = k 2 。解①②两式易得 v = ?72cm/s , φ=

32π(或?3

) 所以波动方程为:y = 6cos 〔6π(t + 72x )+ 32π〕,且波长λ= v ω

π

2 = 24cm 。

当t = 0时, y = 6cos (

12

π

x +

3

2π),可以描出y-x 图象为——

答案:波动方程为y = 6cos 〔6π(t +

72x )+ 3

2π〕,t = 0时的波形图如图22所示。

相关变换:同一媒质中有甲、

乙两列平面简谐波,波源作同频率、同方向、同振幅的振动。两波相向传播,波长为8m ,波传播方向上A 、B 两点相距20m ,甲波在A 处为波峰时,乙波在B 处位相为?

2

π

,求AB 连线上因干涉而静止的各点的位置。

解:因为不知道甲、乙两波源的位置,设它们分别在S 1和S 2两点,距A 、B 分别为a 和b ,如图23所示。

它们在A 、B 之间P 点(坐标为x )形成的振动分别为——

y 甲 = Acos ω(t - v

x a +)= Acos 〔ωt ? 4

π(a + x )〕

y 乙 = Acos ω(t ? v

x b 20-+)= Acos 〔ωt ? 4

π(20 + b ? x )〕

这也就是两波的波动方程(注意:由于两式中a 、b 、x 均是纯数,故乙波的速度矢量性也没有表达)

当甲波在A 处(x = 0)为波峰时,有 ωt =

4

a π

此时,乙波在B 处(x = 20)的位相为?2

π ,有 ωt ?

4

b π = ?

2

π

结合①②两式,得到 b ? a = 2

所以,甲波在任意坐标x 处的位相 θ甲 = ωt ? 4

π(a + x )

乙波则为θ

乙 = ωt ?

4

(22 + a ? x)

两列波因干涉而静止点,必然满足θ

甲?θ

=(2k - 1)π

所以有 x = 13 ? 4k ,其中 k = 0,±1,±2,…

在0~20的范围内,x = 1、5、9、13、17m

答:距A点1m、5m、9m、13m、17m的五个点因干涉始终处于静止状态。

思考:此题如果不设波源的位置也是可以解的,请同学们自己尝试一下…(后记:此题直接应用波的干涉的结论——位相差的规律,如若不然,直接

求y

甲和y

的叠加,解方程将会困难得多。此外如果波源不是“同方向”振动,

位相差的规律会不同。)

高中物理振动和波

高中物理振动和波 1.图中表示一个小球在不同表面上产生的运动。假设表面是完全弹性的。 (a) (b) (c) (d) (e) (1)哪一种情况下,小球根本不会振动a (2)哪一种情况下,小球最接近简谐振动b 2.已知月球上的重力加速度是地球上的。一个在地球上周期是秒的单摆,放在月球上, 其周期变为c (a)1秒 (b)秒 (c)秒 (d)秒 (e)秒 3.利用单摆测定重力加速度的实验中,若测得g偏大,可能是b (a)计算摆长时,只考虑悬线长,漏加小球半径 (b)测量周期时,将(n-1) 个振动,误记为几个全振动,使得T偏小 (c)测量周期时,将n个全振动,误记为(n-1)个全振动,使得T偏大 (d)小球质量选得太轻,以致悬线的质量不能忽略。 (e)振动时,振幅过大。 4.在圆周轨道上运行的人造卫星内,放一只有摆的钟,将e (a)变快 (b)变慢 (c)周期不变 (d)不能确定变快变慢 (e)摆锤不会摆动 5.一个单摆挂在电梯内,在某一时刻电梯开始自由下落,而此时 (1)摆正经过“平衡位置”,则摆锤相对电梯的运动是b (a)静止 (b)匀速圆周运动 (c)摆动,周期不变 (d)摆动,周期变小 (e)摆动,周期变大 (2)摆正在某一边的端点,则摆锤相对电梯的运动是(供选择的答案同上)a

(3) 摆正在平衡位置与端点之间,则摆锤相对电梯的运动是(供选择的答案同上) b 6. 一个单摆挂在电梯内,电梯向上加速,加速度a=g ,则单摆的周期是原来电梯静止时的 e (a) 1倍 (b) 倍 (c) 2倍 (d) 倍 (e) 倍 7. 一个单摆挂在电梯内,发现单摆的周期增大为原来的2倍。可见,电梯在做加速运动, 加速度a 为d (a) 方向向上,大小为g (b) 方向向上,大小为g (c) 方向向下,大小为g (d) 方向向下,大小为g (e) 方向向下,大小为g 8. 图中,是一个拴在完全遵从胡克定律的弹簧上的木块,台面水平光滑,O 点是平衡位置。 (i) 木块受到的弹力随位置X 变化的图像用图中哪一表示最恰当a (ii) 在弹性限度内振动时,下面哪几句陈述正确1,2,3 (1) 木块作简谐振动 (2) 木块的机械能守恒 X F O x F O x F O x F O x F O x (a) (b) (C) (d) (e)

高中物理练习振动与波(习题含答案)

1.下列关于简谐振动和简谐波的说法,正确的是 A.媒质中质点振动的周期一定和相应的波的周期相等 B.媒质中质点振动的速度一定和相应的波的波速相等 C.波的传播方向一定和媒质中质点振动的方向一致 D.横波的波峰与波谷在振动方向上的距离一定是质点振幅的两倍 2.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的 A.频率、振幅都不变B.频率、振幅都改变 C.频率不变、振幅改变D.频率改变、振幅不变 3.家用洗衣机在正常脱水时较平稳,切断电源后,洗衣机的振动先是变得越来越剧烈,然后逐渐减弱。对这一现象,下列说法正确的是 A.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率大 B.正常脱水时,洗衣机脱水缸的运转频率比洗衣机的固有频率小 C.正常脱水时,洗衣机脱水缸的运转频率等于洗衣机的固有频率 D.当洗衣机的振动最剧烈时,脱水缸的运转频率恰好等于洗衣机的固有频率 4.两个振动情况完全一样的波源S1、S2相距6m,它们在空间产生的干涉图样如图所示,图中实线表示振动加强的区域,虚线表示振动减弱的区域,下列说法正确的是 A.两波源的振动频率一定相同 B.虚线一定是波谷与波谷相遇处 C.两列波的波长都为2m D.两列波的波长都为1m 5.频率一定的声源在空气中向着静止的接收器匀速运动。以u表示声源的速度,V表示声波的速度(u<V),v表示接收器接收到的频率。若u增大,则 A.v增大,V增大 B. v增大,V不变 C. v不变,V增大 D. v减少,V不变 6.如图所示,沿x轴正方向传播的一列简谐横波在某时刻的波形图为一正弦曲线,其波速为200m/s,下列说法中正确的是 A.图示时刻质点b的加速度将减小 B.从图示时刻开始,经过0.01s,质点a通过的路程为0.4m C.若此波遇到另一列波并发生稳定干涉现象,则另一列波的频率为50Hz D.若该波传播中遇到宽约4m的障碍物能发生明显的衍射现象 7.一列沿x轴正方向传播的简谐横波,周期为0.50s。某一时刻,离开平衡位置的位移都相等的各质点依次为P1,P2,P3,……。已知P1和P2之间的距离为20cm,P2和P3之间的距离为80cm,则P1的振动传到P2所需的时间为 A.0.50s B.0.13s C.0.10s D.0.20s 8.弹性绳沿x轴放置,左端位于坐标原点,用手握住绳的左端,当t =0时使其开始沿y轴做振幅为8cm的简谐振动,在t=0.25s时,绳 上形成如图所示的波形,则该波的波速为___________cm/s,t= ___________时,位于x=45cm的质点N恰好第一次沿y轴正向通过 平衡位置。 9.在t=0时刻,质点A开始做简谐运动,其振动图象如图乙所示。质点A振 动的周期是s;t=8s时,质点A的运动沿y轴的方向(填“正” 或“负”);质点B在波动的传播方向上与A相距16m,已知波的传播速度为 2m/s,在t=9s时,质点B偏离平衡位置的位移是cm。 10. 同一音叉发出的声波同时在水和空气中传播,某时刻的波形曲线见

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

高三 高中物理竞赛机械振动(无答案)

机械振动 振动类型:机械振动,交流电中电流和电压的振动,电磁学中电场和磁场的振动等。 这些振的物理本质不同,但遵守的基本规律相同。机械振动形象直观,最简单的机械振动是简谐运动。 1.简谐运动物体的受力特征: 质点离开平衡位置后所受合力是线性回复力 kx F -= 式中 x 为质点相对于平衡位置的位移,k 为力常数。 2.简谐运动的矢量图示分析法: 如图所示,矢量OP 绕x 轴上的坐标原点O 沿逆时针方向匀速转动,则P 做匀速圆周运动,P 在x 轴上的投影点Q 的运动就 是简谐运动,O 为平衡位置,OP 的长为振幅值。简谐运动的周 期等于圆周运动的周期。这种用旋转矢量表示简谐运动的方法称为矢量图示法。P 通过的圆为参考圆。 3.简谐运动的位移、速度和加速度方程 如图,令OP 长为A ,其旋转角速度为ω,在t=0时矢量OP 与x 夹角为φ0,则经过时间t ,P 在x 轴上投影点Q 的位移为()0cos φω+==t A OQ x ,此方程即为简谐运动的位移方程。 参考圆上参考点P 的线速度v P 在x 轴上的投影就等于Q 点作简谐运动的速度?? ? ?? ++=2cos 0πφωt v v P ,式中A v P ω=为速度的幅值。 参考圆上参考点P 的向心加速度a P 在x 轴上的投影就等于Q 点做简谐运动的加速度()0cos φω+-=t a a P 。其中A a P 2ω=为加速度的幅值。 4.简谐运动的图象 图象是从另一角度来描述物体的运动特征的,它与方程相比 较具有形象直观的特点。如下图中的甲、乙、丙三图分别表示简谐运动物体的位移——时间,速度——时间,加速度——时间图象。 2π(或者说落后2 ),加速度相位比位移相位超前π(或者说落后π)。 5.简谐运动的固有周期和频率 由牛顿第二定律和简谐运动的受力特征有 x m k m F a -==回 ………………① 由位移方程)c o s (0?ω+=t A x 和加速度方程)c o s (02?ωω+-=t A a 可得

全国中学生物理竞赛内容提要(俗称竞赛大纲)2020版

说明: 1、2016版和2013版相比较,新增了一些内容,比如☆科里奥利力,※质心参考系☆虚功原理,☆连续性方程☆伯努利方程☆熵、熵增。另一方面,也略有删减,比如※矢量的标积和矢积,※平行力的合成重心,物体平衡的种类。有的说法更严谨,比如反冲运动及火箭改为反冲运动※变质量体系的运动,※质点和质点组的角动量定理(不引入转动惯量) 改为质点和质点组的角动量定理和转动定理,并且删去了对不引入转动惯量的限制,声音的响度、音调和音品声音的共鸣乐音和噪声增加限制(前3项均不要求定量计算)。 2、知识点顺序有调整。比如刚体的平动和绕定轴的转动2013版在一、运动学的最后,2016版独立为一个新单元,---很早以前的版本也如此。 3、2013年开始实行的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。2016年开始实行的进一步细化,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 全国中学生物理竞赛内容提要 (2015年4月修订,2016年开始实行) 说明:按照中国物理学会全国中学生物理竞赛委员会第9次全体会议(1990年)的建议,由中国物理学会全国中学生物理竞赛委员会常务委员会根据《全国中学生物理竞赛章程》中关于命题原则的规定,结合我国中学生的实际情况,制定了《全国中学生物理竞赛内容提要》,作为今后物理竞赛预赛、复赛和决赛命题的依据。它包括理论基础、实验、其他方面等部分。1991年2月20日经全国中学生物理竞赛委员会常务委员会扩大会议讨论通过并开始试行。1991年9月11日在南宁经全国中学生物理竞赛委员会第10次全体会议通过,开始实施。 经2000年全国中学生物理竞赛委员会第19次全体会议原则同意,对《全国中学生物理竞赛内容提要》做适当的调整和补充。考虑到适当控制预赛试题难度的精神,《内容提要》中新补充的内容用“※”符号标出,作为复赛题和决赛题增补的内容,预赛试题仍沿用原规定的《内容提要》,不增加修改补充后的内容。 2005年,中国物理学会常务理事会对《全国中学生物理竞赛章程》进行了修订。依据修订后的章程,决定由全国中学生物理竞赛委员会常务委员会组织编写《全国中学生物理竞赛实验指导书》,作为复赛实验考试题目的命题范围。 2011年对《全国中学生物理竞赛内容提要》进行了修订,修订稿经全国中学生物理竞赛委员会第30次全体会议通过,并决定从2013年开始实行。修订后的“内容提要”中,凡用※号标出的内容,仅限于复赛和决赛。 2015年对《全国中学生物理竞赛内容提要》进行了修订,其中标☆仅为决赛内容,※为复赛和决赛内容,如不说明,一般要求考查定量分析能力。 力学 1. 运动学 参考系 坐标系直角坐标系 ※平面极坐标※自然坐标系 矢量和标量 质点运动的位移和路程速度加速度 匀速及匀变速直线运动及其图像 运动的合成与分解抛体运动圆周运动 圆周运动中的切向加速度和法向加速度

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

高中物理振动和波公式总结

高中物理振动和波公式总结 高中物理振动和波公式 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用 5.机械波、横波、纵波:波就是振动的传播,通过介质传播。在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障

碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第 近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小} 高中物理振动和波知识点 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.

高中物理竞赛辅导机械振动和机械波

高中物理竞赛辅导机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 假如一个物体受到的回复力回F 与它偏离平稳位置的位移x 大小成正比,方向相反。即满 足:K F -=回的关系,那么那个物体的运动就定义为简谐振动依照牛顿第二是律,物体的加速度 m K m F a -== 回,因此作简谐振动的物体,其加速度也和它偏 离平稳位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平稳时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中0x 为物体处于平稳位置时,弹簧伸长的长度,且有mg kx =0, 因此 kx F =回 讲明物体所受回复力的大小与离开平稳位置的位移x 成正比。因回复力指向平稳位置O , 而位移x 总是背离平稳位置,因此回复力的方向与离开平稳位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平稳位置的位移,并不确实是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平稳位置O 为圆心,以振幅A 为半径作圆,这圆就 称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在 时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x 〔2〕 这确实是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,那个线速度在x 轴上的投影是 0cos(? ωω+-=t A v 〕 〔3〕 这也确实是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 图5-1-1 图5-1-2

江苏省南京市金陵中学高中物理竞赛《力学教程第五讲 机械振动和机械波》教案

力学教程第五讲 机械振动和机械波 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满 足:x K F 回的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度 m K m F a 回,因此作简谐振动的物体,其加速度也和它偏 离平衡位置的位移大小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F )(0回 式中0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx 0, 因此 kx F 回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就 称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度 作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0 ,那么在时刻t ,参考圆上的质点与O 的连线跟x 的夹角就成为 0 t ,它在x 轴上的投影点的坐标 )cos(0 t A x (2) 这就是简谐振动方程,式中0 是t=0时的相位,称为初相: 0 t 是t 时刻的相位。 参考圆上的质点的线速度为 A ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos( t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 A ,其方向指向圆心,它在x 轴上的投影是 02 cos( t A a ) (4) 图5-1-1 图5-1-2

高三物理振动和波知识点归纳

2019高三物理振动和波知识点归纳 精品学习高中频道为各位同学整理了高三物理振动和波知识点归纳,供大家参考学习。更多各科知识点请关注新查字典物理网高中频道。 振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角100;lr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=f=/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率

与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

高中物理竞赛:振动与波

高中物理竞赛:振动与波 一、知识网络与概要 1.机械振动 (1)弹簧振子,简谐运动,简谐运动的振幅、周期和频率,简谐运动的位移—时间图象. (2)单摆,在小振幅条件下单摆做简谐运动,周期公式.(3)振动中的能量转化. (4)自由振动和受迫振动,受迫振动的振动频率,共振及其常见的应用. 2.机械波 (1)振动在介质中的传播——波,横波和纵波,横波的图象,波长、频率和波速的关系. (2)波的叠加,波的干涉、衍射现象. (3)声波、超声波及其应用. (4)多普勒效应. 二、巩固:夯实基础 1.机械振动的意义: 物体(或物体的一部分)在某一中心位置两侧所做的往复运动,叫机械振动. 回复力:使偏离平衡位置的振动物体回到平衡位置的力,叫回复力.回复力总是指向平衡位置,它是根据作用效果命名的,类似于向心力.振动物体所受的回复力可能是物体所受的合外力,也可能是物体所受的某一个力的分力. 2.描述振动的物理量 (1)位移x :由平衡位置指向振动质点所在位置的有向线段表示振动位移,是矢量. (2)振幅A :振动物体离开平衡位置的最大距离,是标量.表示振动的强弱. (3)周期T 和频率f :物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的物理量.二者互为倒数关系:T=f 1. 当T和f 是由振动系统本身的性质决定时(非受迫振动),则叫做固有周期和固有频率. 3.简谐运动:物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振

动. (1)受力特征:回复力F=-kx. (2)运动特征:加速度a=-kx/m ,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动.在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. 判断一个振动是否为简谐运动,依据就是看它是否满足上述受力特征或运动特征. (3)振动能量:对于两种典型的简谐运动——单摆和弹簧振子,其振动能量与振幅有关,振幅越大,能量越大.简谐运动过程中动能和势能相互转化,机械能守恒. (4)物体做简谐运动时,其位移、回复力、加速度、速度等矢量都随时间做周期性变化,它们的变化周期就是简谐运动的周期T.物体的动能和势能也随时间做周期性变化,其变化周期为2 1T. 4.单摆:(1)周期公式:T=2πg l 其中摆长l 指悬点到小球重心的距离,重力加速度为单摆所在处的测量值. (2)单摆的等时性:在振幅很小的条件下,单摆的振动周期跟振幅无关(单摆的振动周期跟振子的质量也没有关系). (3)单摆的应用: A.计时器.(摆钟是靠调整摆长而改变周期,使摆钟与标准时间同步) B.测重力加速度:g=224T l . 5.简谐运动的位移—时间图象 如图所示为一弹簧振子做简谐运动的图象.它反映了振子的位移随时间变化的规律,而其轨迹并非正弦曲线. 6.受迫振动:物体在周期性驱动力作用下的振动.做受迫振动的物体,它的周期或频率等于驱动力的周期或频率,而与物体的固有周期或频率无关. 7.共振:做受迫振动的物体,它的固有频率与驱动力的频率越接近,其振幅就越大,当

高中物理振动和波动解题技巧类析

高中物理振动和波动解题技巧类析 一、波的形成与传播过程 1.波是波源的振动形式在介质中的传播过程,介质中的每个质点只在自己的平衡位置振动,并不随波迁移。 2.在波的传播方向上相距波长整数倍的两质点,振动起来后的情况完全相同,相距半个波长奇数倍的两质点振动情况总是相反。 3.介质中任何一个质点的起振方向总是与波源的起振方向相同,且滞后于波源的振动。 4.波速由介质决定,频率由波源决定,同一介质中波速相同,与波长和频率无关。 二、振动图象和波动图象的区别和联系 1.区别 2.联系:振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象,简谐运动和其引起的简谐波的振幅、频率相同;图象的形状是正弦(或余弦)曲线。 三、横波的传播方向和质点的振动方向的关系 1.带动法(特殊点法)如图,为一沿x轴正方向传播的横波,判定图上P点的振动方向。 在P点的附近靠近波源的一方的图线上另找一点P/,若P/在P的上方,P/带动P向上振动,P向上振动;若P/在P的下方,则P/带动P向下振动,P向下振动。 2.微平移法沿波的传播方向将波的图象进行微小平移,然后由两条波形曲线来判定,如上图A/B/C/D/是ABCD运动后的位置,所以AB向上运动,CD向下运动。 3.上下坡法沿波的传播方向看,上坡的质点向下振动,下坡的质点向上振动,即“上坡下,下坡上”下图中AC在上坡上,向下振动,B在下坡上,所以向上振动,

4.刮风法设风沿波的传播方向刮,则风吹的地方,草被刮倒向下运动,背风的地方,风刮不到草则向上生长,即向上运动。 5.逆复描法逆着波的传播方向,沿波形图线复描,凡提笔经过的点向上振动,凡向下拉笔的点向下振动。 例1 一列简谐波在t=0时的波形如图1所示,图2表示该波传播介质中某个质点此后一段时间内的图象,则() A.若波沿轴正方向传播,图2为a点的振动图象 B.若波沿轴正方向传播,图2为b点的振动图象 C.若波沿的负方向传播,图2为c点的振动图象 D.若波沿的负方向传播,图2为d点的振动图象, 解:在图2的的图象中,t=0时刻,质点在平衡位置并向轴的正方向运动,而图1的波形却表明在t=0时刻,质点b、d才在平衡位置,而a、c不在平衡位置,所以A、C不正确;若波沿x轴正方向传播,可知质点b向上运动,B对,同理,波向x轴负方向传播,质点d向上振动,D对。 例2一列简谐横波在t=20s时的波形如上图甲,乙是这列波中P点的振动图象,那么该波的传播速度和传播方向是() A.v=25cm/s,向左传播 B.v=50cm/s,向右传播 C.v=25cm/s,向右传播 D.v=50cm/s,向左传播 解:由振动图象知T=2s,由波动图象知λ=100cm,由,由振动图象,时,P质点正经过平衡位置向上振动,说明P的右方的质点早一些振动所以波向左 传播,选D。 例3(07四川)图甲为一列简谐横波在某一时刻的波形图,图乙为质点P以此时刻为计时起点的振动图()

高一物理竞赛第4讲 机械振动.教师版

第四讲 机械振动 1 .简谐振动的受力分析 2 .等效法研究简谐振动 3 .三角函数法描述振动 第一部分:振动的受力特点以及参数 知识点睛 一、模型引入 1.什么是振动? 振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中.从狭义上说,通常把具有时间周期性的运动称为振动.如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动. 如图:振动演示实验:当振子往复振动时,匀速的拉动纸带,就可以研究振子离开中心位置的位移与时间的关系。 广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动.变化的物理量称为振动量,它可以是力学量,电学量或其它物理量.例如:交流电压、电流的变化、无线电波电磁场的变化等等. 2.什么是机械振动? 机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,口语称为“来回晃悠”。如活塞的运动,钟摆的摆动等都是机械振动. 产生机械振动的条件是:物体受到回复力的作用; 回复力: 使振动物体返回平衡位置的力叫回复力.回复力时刻指向平衡位置.回复力是以效果命名的力,它是振动物体在振动方向上的合外力,可能是几个力的合力,也可能是某个力或某个力的分力,可能是重力、弹力、摩擦力、电场力、磁场力等. 3.简谐运动 物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力作用下的振动,叫简谐运动.表达式为:F kx =-.做简谐运动物体的位移是相对于平衡位置的,位移的方向总是由平衡位置指向物体,而回复力总由物体是指向平衡位置,所以回复力总跟位移方向相反,式中的负号表示了这种相反关系. 知识模块 本讲介绍

物理知识点详解:振动和波

物理知识点详解:振动和波 【】:温故而知新,大家只要做到这点,一定可以提高学习能力。小编为大家整理了物理知识点详解,方便同学们查看复习,希望大家喜欢。也希望大家好好利用。 振动和波(机械振动与机械振动的传播) 1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向} 2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θlr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃: 332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源

发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身; (2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处; (3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式; (4)干涉与衍射是波特有的; (5)振动图象与波动图象; (6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。 【总结】:物理知识点详解就为大家介绍到这里了,希望大家在高三复习阶段不要紧张,认真复习,成功是属于你们的。

高中物理第七讲---振动与波动

高中物理第七讲---振动与波动

用心 爱心 专心 第七讲 振动与波动 湖南郴州市湘南中学 陈礼生 一、知识点击 1.简谐运动的描述和基本模型 ⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x ,且其所受合力F 满足 (0) F kx k =->,故得2k a x x m ω=-=- ,ω= 则该物体将在其平衡位置附近作简谐振动。 ⑵简谐运动的能量:一个弹簧振子的能量 由振子的动能和弹簧的弹性势能构成,即2 221112 22 E m kx kA υ =+=∑ ⑶简谐运动的周期:如果能证明一个物体 受的合外力 F k x =-∑u r r ,那么这个物体一定做简谐运 动, 而且振动的周期22T π ω ==式中m 是振动物 体的质量。 ⑷弹簧振子:恒力对弹簧振子的作用:只

用心 爱心 专心 要m 和k 都相同,则弹簧振子的振动周期T 就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。 多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。 悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力. ⑸单摆及等效摆:单摆的运动在摆角小于50 时可近似地看做是一个简谐运动,振动的周期 为2T =,在一些“异型单摆”中,l g 和的含义及 值会发生变化。 (6)同方向、同频率简谐振动的合成:若有两个同方向的简谐振动,它们的圆频率都是ω,振幅分别为A 1和A 2,初相分别为1 ?和2 ?,则它们 的运动学方程分别为 1 1 1 cos()x A t ω?=+ 222cos() x A t ω?=+

高中物理专题-振动和波

高中物理专题-振动和波 【母题来源一】2020年普通高等学校招生全国统一考试物理(全国Ⅰ卷) 【母题原题】(2020·全国Ⅰ卷)在下列现象中,可以用多普勒效应解释的有. A.雷雨天看到闪电后,稍过一会儿才能听到雷声 B.超声波被血管中的血流反射后,探测器接收到的超声波频率发生变化 C.观察者听到远去的列车发出的汽笛声,音调会变低 D.同一声源发出的声波,在空气和水中传播的速度不同 E.天文学上观察到双星(相距较近、均绕它们连线上某点做圆周运动的两颗恒星)光谱随时间的周期性变化 【答案】BCE 【解析】雷雨天看到闪电后,稍过一会儿才能听到雷声,是因为声音的传播速度比光的传播速度慢,不属于多普勒效应,故选项A错误;超声波遇到血液中的血小板等细胞发生反射时,由于血小板的运动会使得反射声波的频率发生变化,属于多普勒效应,故选项B正确;列车和人的位置相对变化了,所以听到的声音频率发生了变化,属于多普勒效应,故选项C正确;同一声源发出的声波,在空气和水这两个不同介质中传播时,频率不变,传播速度发生变化, 不属于多普勒效应,故选项D错误;双星在周期性运动时,到地球的距离发生周期性变化,故接收到的光频率会发生变化,属于多普勒效应,故选项E正确. 【母题来源二】2020年普通高等学校招生全国统一考试物理(浙江卷) 【母题原题】(2020·浙江7月选考)如图所示,x轴上-2 m、12 m处有两个振动周期均为4 s、振幅均为1 cm的相同的波源S1、S2,t=0时刻同时开始竖直向下振动,产生波长均为4 m沿x轴传播的简谐横波.P、M、Q分别是x轴上 2 m、5 m和8.5 m的三个点,下列说法正确的是() A.6.0 s时P、M、Q三点均已振动 B.8.0 s后M点的位移始终是2 cm C.10.0 s后P点的位移始终是0 D.10.5 s时Q点的振动方向竖直向下 【答案】CD

高中物理复习机械振动

九、机械振动 1、机械振动 (1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。 (2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。 (3)振动特点:振动是一种往复运动,具有周期性和重复性 2、简谐运动 (1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。 (2)振动形成的原因 ①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。 振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。 一、知识网络 二、画龙点睛 概念

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。 (4)简谐运动的力学特征 ①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。 ②动力学特征:回复力F与位移x之间的关系为 F=-kx 式中F为回复力,x为偏离平衡位置的位移,k是常数。简谐运动的动力学特征是判断物体是否为简谐运动的依据。 ③简谐运动的运动学特征 a=-k m x 加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。 简谐运动加速度的大小和方向都在变化,是一种变加速运动。简谐运动的运动学特征也可用来判断物体是否为简谐运动。 例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。 证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得 x0=mg/k 当振子向下偏离平衡位置x时,回复力为 F=mg-k(x+x0) 则F=-kx 所以此振动为简谐运动。 3、振幅、周期和频率 ⑴振幅 ①物理意义:振幅是描述振动强弱的物理量。 ②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。 ③单位:在国际单位制中,振幅的单位是米(m)。

相关文档
相关文档 最新文档