文档库 最新最全的文档下载
当前位置:文档库 › 多维无约束优化算法

多维无约束优化算法

多维无约束优化算法
多维无约束优化算法

多维无约束优化算法

多维无约束优化问题的一般数学表达式为:

求n 维设计变量

使目标函数

多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。所以,无约束优化方法在工程优化设计中有着十分重要的作用。

目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。

(1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。

(2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。

各种优化方法之间的主要差异是在于构造的搜索方向,因此,搜索方向的构成问题乃是无约束优化方法的关键。

下面介绍几种经典的无约束优化方法。

1、梯度法

基本思想:函数的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。

搜索方向s 取该点的负梯度方向

(最速下降方向) ,使函数值在该点附近的范围内下降最快 。

为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。即有

12[]T n x x x = x ()min f →x ()k f -?x k αmin ()n

f R ∈x x 1(0,1,2,)k k k k s k α+=+= x x 1(0,1,2,)

k k k k s k α+=+= x x 1()(0,1,2,)

k k k k a f k +=-?= x x x 1()[()]min [()]min ()k k k k k k k a a

f f a f f a f ?α+=-?=-?=x x x x x

根据一元函数极值的必要条件和多元复合函数求导公式,得

在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。这就是说在迭代点向函数极小点靠近的过程,走的是曲折的路线。形成“之”字形的锯齿现象,而且越接近极小点锯齿越细。

方法特点

(1)初始点可任选,每次迭代计算量小,存储量少,程序简短。即使从一个不好的初始点出发,开始的几步迭代,目标函数值下降很快,然后慢慢逼近局部极小点。

(2)任意相邻两点的搜索方向是正交的,它的迭代路径为绕道逼近极小点。当迭代点接近极小点时,步长变得很小,越走越慢。

梯度法的特点

(1)理论明确,程序简单,对初始点要求不严格。

(2)对一般函数而言,梯度法的收敛速度并不快,因为最速下降方向仅仅是指某点的一个局部性质。

(3)梯度法相邻两次搜索方向的正交性,决定了迭代全过程的搜索路线呈锯齿状,在远离极小点时逼近速度较快,而在接近极小点时逼近速度较慢。

(4)梯度法的收敛速度与目标函数的性质密切相关。对于等值线(面)为同心圆(球)的目标函数,一次搜索即可达到极小点。

梯度法由于每次迭代的搜索方向是取函数的最速下降方向,因此又称它为最速下降法。从这点看,容易使人认为,这种方法是一个使函数值下降最快的方法,{}'()[()]()0T k k k k f f f ?αα=-?-??=x x x 1[()]()0k T k f f +??=x x 1()0k T k s s +=

但实际上并不是这样,计算表明,此法往往收敛得相当慢。这是由于梯度法的相邻两次搜索方向是相互正交的,所以,当二元二次函数的等值线是比较扁的椭圆时,其梯度法逼近函数极小值的过程呈直角锯齿状,如图8-15(b)所示。

这种算法的优点是迭代过程简单,要求的存储量也少,而且在远离极小点时,函数下降还是比较快的。因此,常常将它与其它方法结合,在计算的前期使用最速下降方向,当接近极小点时,再改用其它搜索方向,以加快收敛速度。

2、牛顿法(二阶梯度法)

基本思想 :在x k 邻域内用一个二次函数来近似代替原目标函数,并将 的极小点作为对目标函数求优的下一个迭代点。经多次迭代,使之逼近目标函数的极小点。

牛顿法是求函数极值的最古老算法之一。

设 为

的极小点

这就是多元函数求极值的牛顿法迭代公式。

对于二次函数 ,海赛矩阵H 是一个常矩阵,其中各元素均为常数。因此,无论从任何点出发,只需一步就可找到极小点。

从牛顿法迭代公式的推演中可以看到,迭代点的位置是按照极值条件确定的,其中并未含有沿下降方向搜寻的概念。因此对于非二次函数,如果采用上述牛顿迭代公式,有时会使函数值上升 。

3、修正牛顿法(阻尼牛顿法)

阻尼因子 ,沿牛顿方向进行一维搜索的最佳步长,由下式求得: 方法特点 :

(1) 初始点应选在X *附近,有一定难度;

(2) 若迭代点的海赛矩阵为奇异,则无法求逆矩阵,不能构造牛顿法方向;

(3) 不仅要计算梯度,还要求海赛矩阵及其逆矩阵,计算量和存储量大。此外,对于二阶不可微的F (X )也不适用。

虽然阻尼牛顿法有上述缺点,但在特定条件下它具有收敛最快的优点,并为其他的算法提供了思路和理论依据。

()?x ()?x ()f x 1k +x ()f x 1k +x ()?x k α2()()()()()1()()()2k k T k k T k k f f f f ?≈=+?-+-?-x x x x x x x x x x x 1()0k ?+?=x 21()()()0

k k k k f f +?+?-=x x x x 121[()]()(0,1,2,)k k k k f f k +-=-??= x x x x 121[()]()(0,1,2,)k k k k k k k k s f f k αα+-=+=-??= x x x x x 1()()min ()

k k k k k

k k f f s f s ααα+=+=+x x x

4、变尺度法

DFP 法是基于牛顿法的思想又作了重要改进。这种算法仅用到梯度,不必计算海赛矩阵及其逆矩阵,但又能使搜索方向逐渐逼近牛顿方向,具有较快的收敛速度。

基本思想:变量的尺度变换是放大或缩小各个坐标。通过尺度变换可以把函数的偏心程度降到最低限度。

A k 是需要构造n ×n 的一个对称方阵 ,

如A k =I , 则得到梯度法 ;

则得到阻尼牛顿法 ; 当矩阵A k

不断地迭代而能很好地逼近 时,就可以不再需要计算二阶导数。

变尺度法的关键在于尺度矩阵A k 的产生。

从初始矩阵A 0=I (单位矩阵)开始,通过对公式

中修正矩阵 的不断修正,在迭代中逐步逼近于 因此,一旦达到最优点附近,就可望达到牛顿法的收敛速度。

21[()]k k f -=?A x 21[()]k f -?x k ?A 11()k -+G x 1()k k k k k f α+=-?x x A x 1k k k

+=+?A A A

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+, 转步骤2.

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

多维无约束优化算法

多维无约束优化算法 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

多维无约束优化算法 多维无约束优化问题的一般数学表达式为: 求n 维设计变量 使目标函数 多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。所以,无约束优化方法在工程优化设计中有着十分重要的作用。b5E2RGbCAP 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 <1)间接法——要使用导数,如梯度法、<阻尼)牛顿法、变尺度法、共轭梯度法等。 <2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的

下面介绍几种经典的无约束优化方法。 1、梯度法 基本思想:函数的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。DXDiTa9E3d 搜索方向s 取该点的负梯度方向 (最速下降方向> ,使函数值在该点附近的范围内下降最快 。 为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。即有 根据一元函数极值的必要条件和多元复合函数求导公式,得 在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负梯度方向,因此相邻两个搜索方向互相垂直。这就是说在迭代点向函数极小点靠近的过程,走的是曲折的路线。形成“之”字形的锯齿现象,而且越接近极小点锯齿越细。RTCrpUDGiT 方法特点 <1)初始点可任选,每次迭代计算量小,存储量少,程序简短。即使从一个不好的初始点出发,开始的几步迭代,目标函数值下降很快,然后慢慢逼近局部极小点。 5PCzVD7HxA ()k f -?x k α1(0,1,2,) k k k k s k α+=+=x x 1()(0,1,2,)k k k k a f k +=-?=x x x 1()[()]min [()]min ()k k k k k k k a a f f a f f a f ?α+=-?=-?=x x x x x {}'()[()]()0T k k k k f f f ?αα=-?-??=x x x 1[()]()0k T k f f +??=x x 1()0k T k s s +=

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

优化设计有约束优化无约束优化

目录 1.多维有约束优化错误!未定义书签。 题目错误!未定义书签。 已知条件错误!未定义书签。 建立优化模型错误!未定义书签。 问题分析及设计变量的确定错误!未定义书签。 目标函数的确定错误!未定义书签。 约束条件的建立错误!未定义书签。 优化方法的选择错误!未定义书签。 数学模型的求解错误!未定义书签。 确定数学优化模型错误!未定义书签。 运用Matlab优化工具箱对数学模型求解错误!未定义书签。 1. 最优解以及结果分析错误!未定义书签。 2.多维无约束优化错误!未定义书签。 题目错误!未定义书签。 确定优化设计模型错误!未定义书签。 运用Matlab优化工具箱对数学模型求解错误!未定义书签。 编写目标函数错误!未定义书签。 绘制该函数的平面和空间等值线错误!未定义书签。 利用matlab工具箱fminunc函数对该模型进行求解错误!未定义书签。求解结果错误!未定义书签。

1.多维有约束优化 题目 对一对单级圆柱齿轮减速器,以体积最小为目标进行多维有约束优化设计。 已知条件 已知数输入功p=58kw ,输入转速n1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H=550Mpa ,许用弯曲应力[δ]F=400Mpa 。 建立优化模型 1.3.1问题分析及设计变量的确定 由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数。 单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为: ] 3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.02221222122212222122121222 21222120222222222121z z z z z z z z z z z g g z z d d l d d m u mz b bd m u mz b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++- ----+-=πππππππ 式中符号意义由结构图给出,其计算公式为 b c d m umz d d d m umz D mz d mz d z z g g 2.0) 6.110(25.0,6.110,21022122211=--==-=== 由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为 T z z T d d l m z b x x x x x x x ][][21 1 65 4321== 1.3.2目标函数的确定 根据以上分析,可知,该齿轮减速器以体积最小的目标函数为: min )32286.18.092.0858575.4(785398.0)(26252624252463163212 51261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f 1.3.3 约束条件的建立 (1)为避免发生根切,应有min z z ≥17=,得 017)(21≤-=x x g (2)齿宽应满足 max min ??≤≤ d b ,min ?和max ?为齿宽系数d ?的最大值和最小值,一般取min ?=,

matlab 无约束优化问题

实验八 无约束优化问题 一.实验目的 掌握应用matlab 求解无约束最优化问题的方法 二.实验原理及方法 1:标准形式: 元函数 为其中n R R f X f n R x n →∈:) (min 2.无约束优化问题的基本算法一.最速下降法(共轭梯度法)算法步骤:⑴ 给定初始点 n E X ∈0,允许误差0>ε,令k=0; ⑵ 计算() k X f ?; ⑶ 检验是否满足收敛性的判别准则: () ε≤?k X f , 若满足,则停止迭代,得点k X X ≈*,否则进行⑷; ⑷ 令() k k X f S -?=,从k X 出发,沿k S 进行一维搜索, 即求k λ使得: ()() k k k k k S X f S X f λλλ+=+≥0 min ; ⑸ 令k k k k S X X λ+=+1,k=k+1返回⑵. 最速下降法是一种最基本的算法,它在最优化方法中占有重要地位.最速下降法的优点是工作量小,存储变量较少,初始点要求不高;缺点是收敛慢,最速下降法适用于寻优过程的前期迭代或作为间插步骤,当接近极值点时,宜选用别种收敛快的算法..牛顿法算法步骤: (1) 选定初始点n E X ∈0,给定允许误差0>ε,令k=0; (2) 求()k X f ?,()() 1 2-?k X f ,检验:若() ε

无约束优化

实验9 无约束优化 一、实验目的 1、了解无约束优化的基本算法; 2、掌握Matlab优化工具箱的基本用法; 3、掌握用Matlab求解无约束优化实际问题。 二、实验要求 能够掌握Matlab优化工具箱中fminunc,fminsearch,lsqnonlin,lsqcurvefit 的基本用法,能够对控制参数进行设置,能够对不同算法进行选择和比较。 [x,fv,ef.out,grad,hess]=fminunc(@f,x0,opt,P1,P2,…) [x,fv,ef.out,]=fminsearch(@f,x0,opt,P1,P2,…) [x,norm,res,ef,out,lam,jac]=lsqnonlin(@F,x0,v1,v2,opt,P1,P2,…) [x,norm,res,ef,out,lam,jac]=lsqcurvefit(@F,x0,t,y,opt,P1,P2,…) fminunc为无约束优化提供了大型优化和中型优化算法.由options中的参数LargeScale控制: LargeScale=’on’(默认值),使用大型算法 LargeScale=’off’,使用中型算法 fminunc为中型优化算法的搜索方向提供了3种算法,由options中的参数HessUpdate控制: HessUpdate=’bfgs’(默认值),拟牛顿法的BFGS公式;

HessUpdate=’dfp ’,拟牛顿法的DFP 公式; HessUpdate=’steepdesc ’,最速下降法 fminunc 为中型优化算法的步长一维搜索提供了两种算法,由options 中参数LineSearchType 控制: LineSearchType=’quadcubic ’(缺省值),混合的二次和三 次多项式插值; LineSearchType=’cubicpoly ’,三次多项式插 搜索步长的算法选择(lsqnonlin ,lsqcurvefit ) LevenbergMarquardt = ‘off ’ (GN 法) LevenbergMarquardt = ‘on ’ (LM 法,缺省值) 例 ()=++++122 12122min (42421)x f X x x x x x e 1、编写M-文件 fun1.m: function f = fun1 (x) f = exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1); 2、输入M 文件myprg3.m 如下: x0 = [-1, 1]; x=fminunc('fun1',x0) y=fun1(x) 三、实验内容

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

单纯形法解决无约束优化问题

分数: ___________ 任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,而且寻优的效率特别低下。

约束优化算法拉格朗日乘子法

拉格朗日乘子法 约束优化问题的标准形式为: min (),..()0,1,2,...,()0,1,2,...,n i j f x x R s t g x i m h x j l ∈≤=== ,,:n i j f g h R R →其中 约束优化算法的基本思想就是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。 1. 罚函数法 罚函数法(内点法)的主思想就是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。 它只适用于不等式约束: min (),..0,1,2,...,n i f x x R s t g i m ∈≤= 它的可行域为: {|()0,1,2,...,}n i D x R g x i m =∈≤= 对上述约束问题,其其可行域的内点可行集0D ≠?的情况下,引入效用函数: min (,)()()B x r f x rB x =+%、 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑% 算法的具体步骤如下: 给定控制误差0ε>,惩罚因子的缩小系数01c <<。 步骤1:令1k =,选定初始点(0)0x D ∈,给定10r >(一般取10)。 步骤2:以()k x 为初始点,求解无约束 min (,)()()k B x r f x r B x =+% 其中11()()m i i B x g x ==-∑%或1 ()|ln(())|m i i B x g x ==-∑%,得最优解()()k k x x r = 步骤3:若()()k k r B x ε<%,则()k x 为其近似最优解,停;否则,令,1k k r cr k k ==+,转步骤2、 2. 拉格朗日乘子法

优化设计-有约束优化-无约束优化

目录 1.多维有约束优化....................................................................................................................... - 3 - 1.1 题目............................................................................................................................... - 3 - 1.2 已知条件....................................................................................................................... - 3 - 1.3 建立优化模型............................................................................................................... - 3 - 1.3.1问题分析及设计变量的确定............................................................................. - 3 - 1.3.2目标函数的确定................................................................................................. - 4 - 1.3.3 约束条件的建立................................................................................................ - 4 - 1.4 优化方法的选择........................................................................................................... - 5 - 1.5 数学模型的求解........................................................................................................... - 5 - 1.5.1 确定数学优化模型............................................................................................ - 5 - 1.5.2运用Matlab优化工具箱对数学模型求解........................................................ - 6 - 1. 5.3最优解以及结果分析........................................................................................ - 7 - 2.多维无约束优化....................................................................................................................... - 8 - 2.1 题目............................................................................................................................... - 8 - 2.2 确定优化设计模型....................................................................................................... - 8 - 2.3运用Matlab优化工具箱对数学模型求解................................................................... - 9 - 2.3.1 编写目标函数.................................................................................................... - 9 - 2.3.2 绘制该函数的平面和空间等值线.................................................................... - 9 - 2.3.3利用matlab工具箱fminunc函数对该模型进行求解................................... - 11 - 2.3.3求解结果........................................................................................................... - 11 -

多维无约束优化算法

多维无约束优化算法 多维无约束优化问题的一般数学表达式为: 求n 维设计变量 使目标函数 多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。所以,无约束优化方法在工程优化设计中有着十分重要的作用。 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 (1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 (2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。 各种优化方法之间的主要差异是在于构造的搜索方向,因此,搜索方向的构成问题乃是无约束优化方法的关键。 下面介绍几种经典的无约束优化方法。 1、梯度法 基本思想:函数的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。 搜索方向s 取该点的负梯度方向 (最速下降方向) ,使函数值在该点附近的范围内下降最快 。 为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。即有 12[]T n x x x = x ()min f →x ()k f -?x k αmin ()n f R ∈x x 1(0,1,2,)k k k k s k α+=+= x x 1(0,1,2,) k k k k s k α+=+= x x 1()(0,1,2,) k k k k a f k +=-?= x x x 1()[()]min [()]min ()k k k k k k k a a f f a f f a f ?α+=-?=-?=x x x x x

无约束优化算法:单纯形法

单纯形法 1. 算法原理 单纯形法的基本思想是: 设(0)(1)(),,...,n x x x 是n R 中的1n +个点,构成一个当前的单纯形,max min ,x x 定义如下: {}(0)(1)()max ()max (),(),...,()n f x f x f x f x = {}(0)(1)()min ()min (),(),...,()n f x f x f x f x = 记x 为这个单纯形除去max x 外的所有顶点的形心, ()max 01n i i x x x n =??=- ??? ∑ 取max x 关于x 的反射点(1)n x +,(1)max ()n x x x x +=+-构成新的单纯形,反复上述过程,直到达到停止条件。 2. 函数min f search 1) 函数语法 min (,0)x f search fun x = min (,0,) [,]min (...) [,,]min (...) [,,,]min (...) x f search fun x options x fval f search x fval exitflag f search x fval exitflag output f search ==== 函数输入: fun :目标函数 0x :迭代初始点 options :函数参数设置 函数输出: x :最优点 fval :最优点对应的函数值 exitflag :函数停止信息 1:函数收敛正常停止 0:迭代次数,目标函数计算次数达到最大数 -1:算法被输出函数停止 output :函数运算信息

2)函数使用 BanaFun m (1)目标函数程序. function f BanaFun x =不含导数解析式 ()() f x x x =-+- 100*((2)(1)^2)^2(1(1))^2 -函数不需要导数信息。 Nelder Mead Simplex SimplexUnc m (2)算法参数设置:. ('arg','','','','',250,'','') = options optimset L eScale off gradobj off MaxFunEvals display iter SimplexUnc m (3)函数调用运算:. = ('arg','','','','',250,'','') options optimset L eScale off gradobj on MaxFunEvals display iter x=- [ 1.9,2] x fval exitflag output f search BanaFun x options = [,,,]min(@,,) 3)计算结果 Iteration Func-count min f(x) Procedure 0 1 267.62 1 3 236.4 2 initial simplex 2 5 67.2672 expand 3 7 12.2776 expand 4 8 12.2776 reflect 5 10 12.277 6 contract inside 6 12 6.76772 contract inside 7 13 6.76772 reflect 8 15 6.76772 contract inside 9 17 6.76772 contract outside 10 19 6.62983 contract inside 11 21 6.55249 contract inside 12 23 6.46084 contract inside 13 24 6.46084 reflect 14 26 6.46084 contract inside 15 28 6.45544 contract outside 16 30 6.42801 expand 17 32 6.40994 expand 18 34 6.32449 expand 19 36 6.28548 expand 20 38 6.00458 expand 21 39 6.00458 reflect 22 41 5.43287 expand

无约束优化方法

第四章无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的,无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题 (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。

所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法

可以利用无约束优化问题的极值条 件求得。即将求目标函数的极值问题变成求方程 0)(min *=X f 的解。也就是 求X* 使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性的,很难用解析法求解,0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束优化方法与MATLAB实现

例4-1 MA TLAB实现,用M函数文件形式求解: syms s t; f=s^2+3*t^2-2*t*s+4*t+3*s; [x,minf]=minZBLH(f,[-2 6],[0.2 0.2],1.5,[t s],0.0001,0.0001) 坐标轮换minZBLH函数文件如下: function [x,minf] = minconPS2(f,x0,delta,u,var,eps1,eps2) %目标函数:f; %初始点:x0; %收缩系数:u; %自变量向量:var; %步长精度:eps1; %自变量精度:eps2; if nargin == 7 eps2 = 1.0e-6; end n = length(var); y = x0; bmainCon = 1; while bmainCon yf = subs(f,var,y); yk_1 = y; for i=1:n tmpy = zeros(size(y)); tmpy(i) = delta(i); tmpf = subs(f, var,y+tmpy); if tmpf < yf bcon = 1; while bcon tmpy(i) = 2*tmpy(i); tmpf_i = subs(f, var,y+tmpy); if tmpf_i

相关文档
相关文档 最新文档