文档库 最新最全的文档下载
当前位置:文档库 › 数学分析课后习题答案11.2

数学分析课后习题答案11.2

数学分析课后习题答案11.2
数学分析课后习题答案11.2

数学分析试卷及答案6套

数学分析-1样题(一) 一. (8分)用数列极限的N ε-定义证明1n n n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使2 lim (1)0x x x ax b →+∞ -+-=. 八. (14分)求函数32()2912f x x x x =-+在15[,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --. 数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a a =, 1()n n a a a n N +=+ ∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

华东师大数学分析习题解答2

《数学分析选论》习题解答 第 二 章 连 续 性 1. 设n y x ? ∈,,证明: )|| |||| ||(2|| ||||||2 2 2 2 y x y x y x +=-++. 证 由向量模的定义, ∑∑==-+ += -++n i i i n i i i y x y x y x y x 1 2 12 2 2 ) () (|||||| || ∑=+=+=n i i i y x y x 1 2 2 22 )|| |||| ||(2)(2 . □ 2*. 设n n x S ?∈??点,到集合S 的距离定义为 ),(inf ),(y x S x S y ρ=ρ∈. 证明:(1)若S 是闭集,S x ?,则0),(>S x ρ; (2)若d S S S ?=( 称为S 的闭包 ),则 {}0 ),(|=ρ? ∈= S x x S n . 证 (1)倘若0),(=S x ρ,则由),(S x ρ的定义,S y n ∈?,使得 ,2,1,1 ),(=< ρn n y x n . 因 S x ?,故x y n ≠,于是x 必为S 的聚点;又因S 是闭集,故S x ∈,这就导致矛盾.所以证得0),(>S x ρ. (2)S x ∈?.若S x ∈,则0),(=ρS x 显然成立.若S x ?,则d S x ∈(即x 为S 的聚点),由聚点定义,?≠?ε>ε?S x U );(,0 ,因此同样有 0),(),(inf =ρ=ρ∈S x y x S y . 反之,凡是满足0),(=ρS x 的点x ,不可能是S 的外点( 若为外点,则存在正

数0ε,使?=?εS x U );(0,这导致0),(inf 0>ε≥ρ∈y x S y ,与0),(=ρS x 相 矛盾).从而x 只能是S 的聚点或孤立点.若x 为聚点,则S S x ?∈d ;若x 为孤立点, 则S S x ?∈.所以这样的点x 必定属于S . 综上,证得 { } 0),(|=ρ?∈=S x x S n 成立. □ 3.证明:对任何n S ? ?,d S 必为闭集. 证 如图所示,设0x 为d S 的任一聚点, 欲证∈0x d S ,即0x 亦为S 的聚点. 这是因为由聚点定义,y ?>ε?,0,使得 d S x U y ?ε∈);(0 . 再由y 为S 的聚点,);();(0ε?δ?x U y U ,有 ?≠?δS y U );( . 于是又有?≠?εS x U );(0 ,所以0x 为S 的聚点,即∈0x d S ,亦即d S 为闭 集. □ 4.证明:对任何n S ? ?,S ?必为闭集. 证 如图所示,设0x 为S ?的任一聚点,欲证S x ?∈0,即0x 亦为S 的界点. 由聚点定义,y ?>ε?,0,使 S x U y ??ε∈);(0 . 再由y 为界点的定义,);();(0ε?δ?x U y U , 在);(δy U 内既有S 的内点,又有S 的外点.由此证得在);(0εx U 内既有S 的内点,又有S 的外点,所以0x 为S 的界点,即S ?必为闭集. □ *5.设n S ??,0x 为S 的任一内点,1x 为S 的任一外点.证明:联结0x 与1 x 的直线段必与S ?至少有一交点. 0x );(δy U );(0εx U S S ? );(δy U );(0εx U S d S 0x

大学数学分析答案

《数学分析》练习题1 一、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、广义积分dx x ? -2 2 211的奇点的是 【 】 A .0 B .2 C .2 D .2± 2、下列关于定积分的说法正确的是 【 】 A .函数)(x f 在[]b a ,有界,则)(x f 在[]b a ,一定可积; B .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,一定有界; C .函数)(x f 在[]b a ,不可积,则)(x f 在[]b a ,一定无界; D .函数)(x f 在[]b a ,无界,则)(x f 在[]b a ,可能可积。 3、函数()x f 在闭区间[]b a ,可积是函数()x f 在闭区间[]b a ,连续的__ __条件。 【 】 A .充分非必要 B .必要非充分 C .充分必要 D .即不充分,又非必要 4、若级数∑∞ =1 n n u 收敛,则下列级数中,为收敛级数的是 【 】 A .()∑∞=-1 1n n n u B .()∑∞=-1 1n n n u C .∑∞=+1 1n n n u u D .∑ ∞ =++1 1 2 n n n u u 二、填空题(本大题共4小题,每小题5分,共20分)请在每小题的横线上给出正确的答案. 1、(){}x f n 在X 一致收敛的定义是: . 2、函数2 x e -在0=x 处的幂级数展开式为, . 3、积分()1012 <x 的收敛性。 解: 5、求级数∑ ∞ =1 3n n n n x 的收敛半径与收敛域。 解: 6、求dx e x ?+∞ 1。 解: 四、综合题(本大题共3小题,每小题8分,共24分)请在每小题后的空白处写出必要的 证明过程。 1、证明:积分?+∞ 02cos dx x 收敛。 证: 2、设()x f 在R 上连续,()()()dt t x t f x F x 20 -= ?。 证明:(1)若()x f 为偶函数,则()x F 也是偶函数;(2)若()x f 为单调函数,则()x F 也是单调函数。 证: 3、若{}n na 收敛, ()∑∞ =--1 1n n n a a n 收敛,证明级数∑∞ =1 n n a 收敛。 证:

数学分析专题研究试题及参考答案

数学分析专题研究试题及参考答案 一、填空题(每小题3分,共18分) 1.集合X 中的关系R 同时为反身的,对称的,传递的,则该关系R 为 . 2.设E 是非空数集,若存在实数β,满足1)E x ∈?,有β≥x ;2) ,则称β是数集E 的下确界。 3.函数)(x f y =在点0x 的某个邻域内有定义,若 存在,则称函数)(x f 在点 0x 可导。 4.若)(x f y =是对数函数,则)(x f 满足函数方程=)(xy f 。 5.若非零连续函数)(x f 满足方程)()()(y f x f y x f +=+,则函数)(x f 是 函数。 6.设函数)(x f 定义在区间),(b a 上,对于任意的),(,21b a x x ∈,)1,0(∈?α,有 成 立,则称)(x f 在),(b a 上为下凸函数。 二、单项选择题(每小题3分,共18分) 1.设f :Y X →,X A ??,则A ( )))((1 A f f - A. = B. ≠ C. ? D. ? 2.已知函数)(x f y =在区间),(b a 上可导,),(b a x ∈?,有1)(0<)(x ?' D. 前三个结论都不对 4.已知???∈∈=]2,1(2]1,0[1)(t t t f ,对于]2,0[∈x ,定义?=x t t f x F 0d )()(,则)(x F 在区 间[0,2]上( )。 A. 连续 B. 不连续 C. 可导 D. 前三个结论都不对 5.已知)(x f 是区间],[b a 上的严格下凸函数,则( )。

数学分析课本(华师大三)习题及答案第二十章

第十章 曲线积分 一、证明题 1.证明:若函数f 在光滑曲线L:x=x(t),y=y(t)(β≤≤αt )上连续,则存在点()L y ,x 00∈,使得,()?L ds y ,x f =()L y ,x f 00? 其中L ?为L 的长。 二、计算题 1.计算下列第一型曲线积分: (1) ()?+L ds y x ,其中L 是以0(0,0),A(1,0)B(0,1)为顶点的三角形; (2) ()?+L 2122ds y x ,其中L 是以原点为中心,R 为半径的右半圆周; (3) ?L xyds ,其中L 为椭圆22a x +22 b y =1在第一象限中的部分; (4) ?L ds y ,其中L 为单位圆22y x +=1; (5) () ?++L 222ds z y x ,其中L 为螺旋线x=acost,y=asinr, z=bt(π≤≤2t 0)的一段; (6) ?L xyzds ,其中L 是曲线x=t,y=3t 232,z=2t 2 1 ()1t 0≤≤的一段; (7) ?+L 22ds z y 2,其中L 是222z y x ++=2a 与x=y 相交的圆周. 2.求曲线x=a,y=at,z=2at 21(0a ,1t 0>≤≤)的质量,设其线密度为a z 2=ρ, 3.求摆线x=a(t -sint),y=a(1-cost)(π≤≤t 0)的重心,设其质量分布是均匀的. 4.若曲线以极坐()θρ=ρ()21θ≤θ≤θ表示,试给出计算 ()?L ds y ,x f 的公式.并用此公式计算下列曲线积分.

(1)? +L y x ds e 22,其中L 为曲线ρ=a ??? ??π≤θ≤40的一段; (2)?L xds ,其中L 为对数螺线θ=ρx ae (x>0)在圆r=a 内的部分. 5.设有一质量分布不均匀的半圆弧,x=rcos θ,y=rsin θ(π≤θ≤0),其线密度θ=ρa (a 为常数),求它对原点(θ,0)处质量为m 的质点的引力. 6.计算第二型曲线积分: (1) ?-L ydx xdy ,其中L 为本节例2的三种情形; (2) ()?+-L dy dx y a 2,其中L 为摞线x=a(t-sint),y=a(1-cost)(π≤≤2t 0)沿t 增加方向的 一段; (3) ?++-L 22y x ydy xdx ,其中L 为圆周222a y x =+,依逆时针方向; (4)?+L xdy sin ydx ,其中L 为y=sinx(π≤≤x 0) 与x 轴所围的闭曲线,依顺时针方向; (5)?++L zdz ydy xdx ,其中L 为从(1,1,1)到(2,3,4)的直线段. 7.质点受力的作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a,0)沿椭圆移动到(0,b),求力所作的功. 8.设质点受力的作用,力的方向指向原点,大小与质点到xy 平面的距离成反比,若质点沿直线x=at,y=bt,z=ct(0c ≠) 从M(a,b,c)到N(2a,2b,2c),求力所作的功. 9.计算沿空间曲线的第二型曲线积分: (1) ?L xyzddz ,其中L 为x 2+y 2+z 2=1与y=z 相交的圆,其方向按曲线依次经过1,2,7,8卦限; (2) ()()() ?-+-+-L 222222dz y x dy x z dx z y ,其中L 为球面x 2+y 2+z 2=1在第一卦限部分的边界线,其方向按曲线依次经过xy 平面部分,yz 平面部分和zx 平面部分 .

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章 曲面积分 一、证明题 1.证明:由曲面S 所包围的立体V 的体积等于 V= ()??+β+αS ds r cos z cos y cos x 31其中αcos ,βcos , cpsr 为曲面S 的外法线方向余弦. 2.若S 为封闭曲面,L 为任何固定方向,则 ()??S ds L ,n cos =0 其中n 为曲面S 的外法线方向. 3. 证明 公式 ???V r dx dydz =()??S ds n ,r cos 21 其中S 是包围V 的曲面,n 为S 的外法线方向. r=222z y x ++,r=(x,y,z). 4.证明: 场A=()(z y x 2yz ++,()z y 2x zs ++, ())z 2y x x y ++是有势场并求其势函数. 二、计算题 1.计算下列第一型曲面积分: (1) ()??++S ds z y x ,其中S 为上半球面 222z y x ++=2a 0z ≥; (2) () ??+S 22ds y x ,其中S 为主体1z y x 22≤≤+的边界曲面; (3) ?? +S 22ds y x 1,其中S 为柱面222R y x =+被平面Z=0,Z=H 所截取的P 分; (4) ??S xyzds ,其中S 为平面在第一卦限中的部分.

2.计算??S 2ds z ,其中S 为圆锥表面的一部分. S:?? ???θ=θ?=θ?=cos r z sin sin r y sin cos r x D:???π≤?≤≤≤20a r 0 这里θ为常数(0<θ<2 π). 3.计算下列第二型曲面积分 (1) ()?? -S dydz z x y +dzdx x 2+()dx dy x z y 2+,其中S 为x=y=z=0,x=y=z=a 平成所围成的正方体并取处侧为正向; (2)()()()??+++++S dxdy x z dzdx z y dydz y x ,其中S 是以原点中心,边长为2的正方体 表面并取外侧正向; (3)??++S zxdxdy yzdzdx xydydz ,其中S 是由平面x=y=z=0和x+y+z=1所围的四面体 表面并取外侧为正向; (4) ??S yzdzdx ,其中S 是球面,222z y x ++=1的上半部分并取外侧为正向; (5)?? ++S 222dxdy z dzdx y dydz x ,其中S 是球面()2a x - +()2b y -+()2c x -=R 2并取外侧为正向. 4.设某流体的流速为V=(x,y,0),求单位时间内从球面x 2+y 2 +z 2=4的内部流过球面的流量 5.计算第二型曲面积分 I=()??S dydz x f +()dzdx y g +()dx dy z h 其中S 是平行分面体(a x 0≤≤,b y 0≤≤,c z 0≤≤)表面并取外侧,f(x),g(y),h(z)为S 上的连续函数, 6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x 2+y 2 +z 2=a 2,z=0的磁通量, 7.应用高斯公式计算下列曲面积分: (1) ??++S sydxdy zxdzds yzdydz ,其中S 为单位球面x 2+y 2+z 2=1的外侧; (2) ??++S 222dxdy z dzds y dydz x ,其中S 是立方体≤0x,y,z a ≤的表面取外侧; (3) ??++S 222dxdy z dzds y dydz x ,其中S 为锥面x 2+y 2 =z 2与平面z=h 所围的空间区域(h z 0≤≤)的表面方向取外侧; (4) ??++S 332dxdy z dzds y dydz x ,其中S 是单位球面x 2+y 2+z 2=1的外侧; (5) ??++S dxdy 2ydzds xdydz ,其中S 为上半球面Z=222y x a --的外侧.

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生. 入学考试自命题试题数学分析 一、 求极限1 111lim(1...)23n n I n →∞=++++ 解: 一方面显然1I ≥ 另一方面111 1...23n n ++++≤,且1lim 1n n n →∞= 由迫敛性可知1I =。 注:1 lim 1n n n →∞ =可用如下两种方式证明 1) 1n h =+,则22 (1)2(1)1(2)2n n n n n n n h h h n n -=+≥+ ?≤≥ 即lim 0n n h →∞ =,从而1lim 1n n n →∞ = 2) =有lim 11n n n n →∞==-。 二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。 证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则 2316P x xy y ?=+?,2316Q x xy x ?=+?? P Q y x ??=?? Pdx Qdy ∴+是某个函数的全微分 设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+ 2232238(,)4()x x y xy x y x y x y y ?∴Φ=+?Φ=++ 32328()812y y x x y y x x y ye ?'?Φ=++=++ ()12()12(1)y y y ye y y e C ??'?=?=-+ 322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数) 三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 学院 班级 学号(后两位) 姓名 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为 ()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????=dx x g dx x f dx x g x f ( ). 3. 若()? +∞ a dx x f 绝对收敛,()?+∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必 然条件收敛( ). 4. 若()? +∞ 1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散于 正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).

二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑ ∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B. 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛;

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理及其应用 一、 填空题 1.若0,0>>b a 均为常数,则=??? ? ? ?+→x x x x b a 3 2 lim ________。 2.若2 1 sin cos 1lim 0 =-+→x x b x a x ,则=a ______,=b ______。 3.曲线x e y =在0=x 点处的曲率半径=R _________。 4.设2442 -+=x x y ,则曲线在拐点处的切线方程为 ___________。 5.= -+→x e x x x 10 )1(lim ___________。 6.设) 4)(1()(2 --=x x x x f ,则0)(='x f 有_________个根, 它们分别位于________ 区间; 7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的 __________=ξ; 8.函数3 )(x x f =与2 1)(x x g +=在区间[]2,0上满足柯西定 理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ; 10.函数 2 )(x e x f x =的单调减区间是__________; 11.函数x x y 33 -=的极大值点是______,极大值是

_______。 12.设x xe x f =)(,则函数) () (x f n 在=x _______处取得 极小值_________。 13.已知bx ax x x f ++=23 )(,在1=x 处取得极小值2-, 则=a _______,=b _____。 14.曲线2 2)3(-=x k y 在拐点处的法线通过原点,则 =k ________。 15.设)2,1()1()(Λ=-?=n x n x f n ,n M 是)(x f 在[]1,0上的最 大值,则=∞ →n n M lim ___________。 16.设)(x f 在0 x 可导,则0)(0 ='x f 是)(x f 在点0 x 处取得 极值的______条件; 17.函数x bx x a x f ++=2 ln )(在1=x 及2=x 取得极值,则 ___ ___,==b a ; 18. 函数 3 2 2 3 )(x x x f -=的极小值是_________; 19.函数x x x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在?? ??? ?2,0π上的最大值为______, 最小值为_____; 21. 设点 ) 2,1(是曲线 b a x y +-=3)(的拐点,则 ______ _____,==b a ; 22. 曲线x e y =的下凹区间为_______,曲线的拐点为

浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?== 1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--= 1 111)(2)(2])1[(])1[(! !21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2) (2 ])1[(])1[(] )1[(])1[(=

数学分析_各校考研试题及答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y ,v=x-y ,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值范围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感谢小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤? 证:因f(x)在[a,b]可导,则由拉格朗日中值定理,存在

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析试题及答案4

(十四) 《数学分析Ⅱ》考试题 一 填空(共15分,每题5分): 1 设=∈-=E R x x x E sup ,|][{则 1 , =E inf 0 ; 2 设 =--='→5 ) 5()(lim ,2)5(5 x f x f f x 则54; 3 设?? ?>++≤=0 , )1ln(,0, sin )(x b x x ax x f 在==a x 处可导,则0 1 , =b 0 。 二 计算下列极限:(共20分,每题5分) 1 n n n 1 )1 31211(lim ++++ ∞→ ; 解: 由于,n n n n 1 1)131211(1≤++++≤ 又,1lim =∞→n n n 故 。1)131211(lim 1 =++++∞→n n n 2 3 )(21lim n n n ++∞→; 解: 由stolz 定理, 3 )(21lim n n n ++∞→33)1()(lim --=∞→n n n n ) 1)1()(1(lim -+-+ -- =∞ →n n n n n n n n ) 1)1(2))(1(() 1(lim --+---+=∞→n n n n n n n n n .3 2)1)11(21 11lim 2=-- +- + =∞ →n n n n 3 a x a x a x --→sin sin lim ;

解: a x a x a x --→sin sin lim a x a x a x a x --+=→2sin 2cos 2lim .cos 2 2sin 2 cos lim a a x a x a x a x =--+=→ 4 x x x 10 ) 21(lim + →。 解: x x x 10 )21(lim +→.)21(lim 2 2 210e x x x =?? ??? ?+=→ 三 计算导数(共15分,每题5分): 1 );(),1ln(1)(22x f x x x x f '++-+= 求 解: 。 1 11 11 1 1221122)(2 2 2 22 2+-= +- +=++++ - +='x x x x x x x x x x x x f 2 解: 3 设。 求)100(2 ,2sin )23(y x x y -= 解: 由Leibniz 公式 )23()2(sin )23()2(sin )23()2(sin 2)98(2 1002)99(11002)100(0100)100(' '-+'-+-=x x C x x C x x C y 6)2sin(26)2sin(2100)23)(2sin(22 98982991002999922100100?+++?+-+=?πππx x x x x x x x x x 2sin 2297002cos 26002sin )23(298992100?-?--= 。 ]2cos 12002sin )22970812[(2298x x x x --= 四 (12分)设0>a ,}{n x 满足: ,00>x ,2,1,0),(211 =+= +n x a x x n n n ;sin cos 33 表示的函数的二阶导数求由方程???==t a y t a x , tan sin cos 3cos sin 3)cos ()sin (22 33t t t a t t a t a t a dx dy -=-=''=。t t a t t a t dx y d sin cos 3sec )cos (sec 223222='-=

华东师大数学分析答案

第四章 函数的连续性 第一 连续性概念 1.按定义证明下列函数在其定义域内连续: (1) x x f 1 )(= ; (2)x x f =)(。 证:(1)x x f 1 )(=的定义域为 ),0()0,(+∞-∞=D ,当D x x ∈0,时,有 001 1x x x x x x -=- 由三角不等式可得:00x x x x --≥ , 故当00x x x <-时,有 02 01 1x x x x x x x x ---≤- 对任意给的正数ε,取,010 2 0>+= x x εεδ则0x <δ,当 D x ∈ 且δ<-0x x 时, 有 ε<-= -0 011)()(x x x f x f 可见 )(x f 在0x 连续,由0x 的任意性知:)(x f 在其定义域内连续。 (2) x x f =)(的定义域为),,(+∞-∞对任何的),(0+∞-∞∈x ,由于 00x x x x -≤-,从而对任给正数ε,取εδ=,当δ<-0x x 时, 有 =-)()(0x f x f 00x x x x -≤-ε< 故 )(x f 在0x 连续,由0x 的任意性知,)(x f 在),(+∞-∞连续。 2.指出函数的间断点及类型: (1)=)(x f x x 1 + ; (2)=)(x f x x sin ; (3)=)(x f ]cos [x ; (4)=)(x f x sgn ; (5)=)(x f )sgn(cos x ; (6)=)(x f ???-为无理数为有理数x x x x ,,;(7)=)(x f ??? ? ???+∞ <<--≤≤--<<∞-+x x x x x x x 1,11 sin )1(17,7 ,71

相关文档
相关文档 最新文档