文档库 最新最全的文档下载
当前位置:文档库 › 科里奥利力影响及应用

科里奥利力影响及应用

科里奥利力影响及应用
科里奥利力影响及应用

科里奥利力影响及应用

1、科里奥利力产生的影响

●卡皮罗现象

20 世纪 40 年代科学家卡皮罗在每次实验后,把污水倒入水槽时发现在漏水

口处形成的旋涡总按固定的方向旋转,这个现象引起了他的注意。于是在水流下时

他故意用手指向相反方向搅动,但手离开后旋涡又恢复原来的旋转方向。这是否与

漏水口的形状有关?于是他做了许多不同形状的漏水口,但试验结果总是相同。他

对此困惑不解,于是他到世界各地去做同样的试验,使他大为惊奇的是在南半球水

流旋涡的方向与北半球刚好相反,在北半球是逆时针的而在南半球是顺时针的,

在赤道附近两种情况几乎各有一半。卡皮罗喜出望外,他终于找到了结论,旋涡

的方向与在地球上所处位臵有关。后来人们把这种现象称为卡皮罗现象。

卡皮罗现象是地球在自转过程中由于惯性引起的一种所谓科里奥利力造成的。

在北半球这个偏向力是向右的,它会使得水在向下流时形成逆时针方向的旋涡。在

南半球则刚好相反为顺时针方向。在自然界里卡皮罗现象的另一形式是龙卷风。

●大气环流

大气运动的能量来源于太阳辐射,气压梯度力是大气运动的源动力。全球共有赤道低压带,南、北半球纬度 30°附近的副热带高压带,南、北半球纬度 60°附

近的副极地低压带,南、北半球的极地高压带等七个气压带。气压带之间在气压梯

度力和地转偏向力的作用下形成了低纬环流圈、中纬环流圈和高纬环流圈。由于受

地转偏向力的作用,南北向的气流却发生了东西向的偏转。北半球地面附近自北向

南的气流,有朝西的偏向。在气压带之间形成了六个风带,即南、北半球的低纬信

风带,南、北半球的中纬西风带,南、北半球的极地东风带。

●傅科摆

傅科摆是科里奥利力在摆动中的表现. 在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动. 在南半球安置的傅科摆, 在每次摆

动时均偏左, 致使摆动平面沿逆时针方向转动。

●对分子光谱的影响

科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动

之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生

能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。

●气旋和反气旋

气旋与反气旋是大气中最常见的运动形式,也是影响天气变化的重要天气系统。

在气压梯度力和地转偏向力的共同作用下,大气并不是径直对准低气压中心流动,

也不是沿辐射方向从高气压中心流出。低气压的气流在北半球向右偏转成按逆时

针方向流动的大旋涡,在南半球向左转成按顺时针方向流动的大旋涡,大气的这种

流动很象江河海流中水的旋涡,所以又叫气旋。夏秋季节,在我国东南沿海经常出

现的台风,就是热带气旋强烈发展的一种形式。高气压的气流在北半球按顺时针方

向旋转流出,在南北半球按逆时针方向旋转流出,高气压的这种环流系统叫反气旋。

2、科里奥利力的应用

●科氏质量流量计

是一种用于直接测量质量流量的流量计,它在原理上消除了温度、压力、流体状态、密度等参数的变化对测量精度的影响,可以适应气体、液体、两相流、高黏

度流体和糊状介质的测量,是一种高精度的适应范围很广的测量方法,只是科氏质

量流量计的精度要随纬度变化面调整.它还具有压力损失小,自排空,保持清洁等众

多特点,是流量测量的发展方向之一.

科氏质量流量计的原理,实质是利用一个弹性体的共振特性:对有流体流动和无流体流动的振动金属管元件,测定其动态响应特性,求出此谐振系统的相位差与

质量流量之间的关系.而有流体流动的金属管元件谐振的动态响应特性,与无流体

流动的金属管的动态响应特性之间的差别是由于科氏效应起的.所谓科氏效应,是

指当质点在一个转动参考系内作相对运动时,会产生一种不同于通常离心力的惯性

力作用在此质点上.其大小与方向可用2mv? 表示,利用上述原理的弹性元件构

成的流量计就称为科氏质量流量计.

●陀螺仪

陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。旋转中的陀螺仪会对各种形式的直线运动产生反映,通过记录陀螺仪部件受到的科里奥利力可以进行运动的测量与控制。

浅论科里奥利力与漩涡方向的关系

浅论科里奥利力与漩涡方向的关系 谷俊青PB05000805 如果大家把澡盆放满水后拔去塞子,仔细观察一下,也许会因为见到的结果各不相同而议论纷纷。但是在北半球,一般较多的是向左旋的情况。实际上,在水流出来的时候确实有一股想使它向左旋转的倾向或影响力,总之,在北半球,所有的澡盆里都存在着具有这样作用的自然力。(20世纪40年代科学家卡皮罗在每次实验后,把污水倒入水槽时发现在漏水口处形成的旋涡总按固定的方向旋转,这个现象引起了他的注意。于是在水流下时他故意用手指向相反方向搅动,但手离开后旋涡又恢复原来的旋转方向。这是否与漏水口的形状有关?于是他做了许多不同形状的漏水口,但试验结果总是相同。他对此困惑不解,于是他到世界各地去做同样的试验,使他大为惊奇的是在南半球水流漩涡的方向与北半球刚好相反,在北半球是逆时针的而在南半球是顺时针的,在赤道附近两种情况几乎各有一半。卡皮罗喜出望外,他终于找到了结论,在原漩涡的方向与在地球上所处位置有关。后来人们把这种现象称为卡皮罗现象。) 很容易的,我们想到了科里奥利力。地球的自转使得在北半球上的物体均受到它的向右作用,由于它的存在,北半球火车由南向北快速行驶时右边轨道上所受的压力要大些,由南向北的河流东岸受冲刷较厉害,而南半球恰恰相反。这些现象都可用科里奥利力来解释。 不妨设在地球的北半部存在一个盛满温度均匀的水(可以看作其不受热对流的影响)的较大容器,水处于对地球相对静止的状态,空气流动及其它干扰因素均忽略不计:取一小段离塞子(容器下部)最近的一小段水柱,可视其为质点。当塞子拔掉的瞬间,这段小水柱由于受液体压强的作用,从而有向下运动的趋势。 F分=mgcosθ; 从而北半球的物体受到向右的偏向力 该水柱受到与斜线方向垂直向右的偏向力:F偏=mrv*ω(此时v很小,接近于0);

浅谈科里奥利力在自然界和人类生活中的影响

浅谈科里奥利力在自然界和人类生活中的影响 摘要:分析了科里奥利力的产生原理,并给出其计算公式。举例说明了科里奥利力在自然界及人类生活中的影响。并与地质学专业相联系,说明科里奥利力在地质 作用中可能的影响。旨在引导人们了解科里奥利力,从而更好地将其应用到实 际的生活生产中去,并继续研究探索,发现更多的奥秘。 关键词:科里奥利力、惯性力、偏转 0 引言 地球是一个转动的参照系,在地球表面或内部以某一速度运动的物体,如果其运动 方向与地轴转动方向不平行,则会受到科里奥利力(简称“科氏力”)的作用。科里奥利力在自然界以及人们的生活中都有着重要的影响以及应用。了解其原理有助于我们更好地利用它或减小它带来的不利影响。 1 原理分析 科里奥利力来自于物体运动所具有的惯性,在旋 转体系中进行直线运动的质点,由于惯性,有沿着原 有运动方向继续运动的趋势,但是由于体系本身是旋 转的,在经历了一段时间的运动之后,体系中质点的 位置会有所变化,而它原有的运动趋势的方向,如果 以旋转体系的视角去观察,就会发生一定程度的偏离。 运动物体在转动体系中受到的科里奥利力为:(示意图 如右) 其中为物体的质量,为小球相对于转动系的速度,为转盘旋转的角速度。 由于地球的旋转,在北半球物体运动会受到向右的科里奥利力,而在南半球则向左。 2 应用 不论是在自然界、生活中、或在军事等领域,科里奥利力在很多方面都扮演者重要的角色。 在自然界中:气流涡旋的形成便是空气在向气压中心运动时受到科里奥利力的作用偏离了直线运动轨迹,从而旋转着向低压中心运动,形成了涡旋。而在南北半球,由于受到科里奥利力作用方向不同,北半球是逆时针的,南半球则相反。在北半球河流由于受到科里奥利力的作用也会对右岸产生更强的侵蚀作用。 在生活中:由于科里奥利力的影响,北半球的双轨铁路由于右侧受到更大的压力,导致右轨的磨损程度明显大于左轨。同样,傅科摆也可以用科里奥利力来解释:傅科摆是科里奥利力在摆动中的表现。在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动。在南半球则与之相反。 在军事中:由于竖直方向上的运动也会受到科里奥利力的作用,自由落体的物体落地点会偏东,而竖直上抛的物体则会偏西。因此在炮弹的投掷或发射中应当考虑到这一因素的影响。 次外,在地质构造运动中,科里奥利力也是有着一定影响的。例如:据前人研究,在断层错动中会产生科里奥利应力。而对于断层错动产生的科里奥利法向应力是否会影响到主震地震矩的释放,目前并没有定论。因此这也需要我们这些后继者继续努力,去做进一步的研究,发现更多的科学奥秘。

什么是科里奥利力

科里奥利力是在转动系统中出现的一种效应。法国工程师、数学家科里奥利(1792-1843)首先描述了这种力并用数学公式表示出来。当物体运动的参考系统为转动物体时(运动方向不沿转动轴),就出现科里奥利力。认识它对气象学、弹道学和海洋学的研究是极其重要的。科里奥利力的作用在生活中处处可见,自然界中人能接触到的科里奥利力表现在它决定风的方向以及飓风和龙卷风的旋转。地球是一个转动体系,它转动的角速度是不变的。但是地球各处运动的线速度因纬度高低而不同。因此,物体在地球上沿南北方向运动时就受到科里奥利力的作用。 换句话说,北(南)半球上的物体在沿经线运动时,就受到向右(左)的科里奥利力的作用,物体偏向东(西),因此,南北走向的河流东岸冲刷较多。 受河岸被冲刷的启发,有人建议采取适当的睡觉方式,使身体内的主要血管沿南北方向,血流就会增强对管壁的冲刷作用,使刚刚沉积在血管壁上的胆固醇被血流冲刷下来,这样就可以延缓血管的硬化,达到延年益寿的目的。 科里奥利曾任巴黎综合工科学校分析和力学副教授。1835年,在他发表的论文《论物系相对运动的方程组》中指出,在一个旋转面上,除了物体运动的通常效应外,还有与运动方向成直角的惯性力作用于物体。这种力作用的结果,是使物体本来应走的直线变成了曲线。第一次世界大战时,英德双方在福克兰群岛(约南纬50度)附近的海面上,展开了一场有名的海战。战斗的紧要关头,英军瞄准好的炮弹,像着了魔似的不可思议都落在离德国军舰左方约100码的地方。后经调查才发现,其原因就是英国在本土上校准大炮的瞄准器时,忽略了南北半球科里奥利力方向相反这一情况。 同是一战时期,德军用巨型加农炮在距巴黎70英里处轰击巴黎,如果用通常瞄准法,炮弹本该偏离目标1英里以上,但德军考虑了科里奥利力的作用,作了修正瞄准,结果炮弹准确地打到了巴黎市内。 在地球北半球出现低气压区时,周围高气压区的空气就会刮进来,使气压平衡。从南向北的方向的风,本应刮进低气压中心,可是由于科里奥利力的存在,风总是偏东,而从北向南的风又总是偏西,这样风不能直接刮进低气压中心,形成了台风眼,以台风眼为中心,风是逆时针方向刮。 一般南北方向的风都会受到科里奥利力的作用。从日本九州往西的帆船被风送往西南方向。因此,日本自古以来就和中国东南部、东南亚国家的贸易繁盛。在文化等方面深受中国和东南亚各国的影响,科里奥利力在这方面起了很大作用。 因重力而振动的振子,振动面不变。由于地球自转,摆的振动面会慢慢转动,这是科里奥利力在起作用。1851年法国科学家付科在巴黎大教堂穹顶下吊了一个重28公斤的铁球,悬挂的钢丝长67米,付科以此证明了地球的自转。这种摆被称为付科摆。 浴缸排水时,因受到科里奥利力的作用,水会发生旋转。北半球所有的浴缸排水时都是沿逆时针方向打旋。当然,很难使每次实验都达到预想的效果,因为普通浴缸不是为了显示科里奥利力而设计的。浴缸放水时打旋的方向还取决一些不可控制的因素。 一块石头从高塔上落下,不少人认为会垂直落地,其实不然,在北半球石头下落就相当于从南往北走,除了受重力作用,还要受到科里奥利力的作用。石头落下不是垂直而是偏向东方,有人计算过,从333米高塔落下的石头应该偏东10.5厘米左右。 伸开双臂作旋转运动的滑冰表演者,突然手臂一收拢,旋转就加快了。原来当伸开旋转的手臂收拢时,就好像在地球上从南向北走一样,受到了科里奥利力的作用,因此,旋转加快了。以上是部分有关科里奥利力的作用的例子,如果你留心,还能发现更多。

浅谈地转偏向力的影响

浅谈地转偏向力的影响 黄琪1142041084 生命科学学院2011级生态专业 摘要:水平地转偏向力亦称地偏力,因为地球自转而产生的以地球经纬网为参照系的力。地转偏向是科氏力(科里奥利力)在沿地球表面方向的一个分力。对于自然界和人们的生活有着潜移默化的影响,从气流洋流的流向,到皮鞋的磨损都与地转偏向力有关。 关键词:地转偏向力北半球大气运动手性植物洋流冲积平原 1.地转偏向力简介 由于地球自转而产生作用于运动物体的力,称为地转偏向力,简称偏向力。它只在物体相对于地面有运动时才产生(实际不存在),只能改变水平运动物体运动的方向,不能改变物体运动的速率。地转偏向力可分解为水平地转偏向力和垂直地转偏向力两个分量。由于赤道上地平面绕着平行于该平面的轴旋转,空气相对于地平面作水平运动产生的地转偏向力位于与地平面垂直的平面内,故只有垂直地转偏向力,而无水平地转偏向力。由于极地地平面绕着垂直于该平面的轴旋转,空气相对于地平面作水平运动产生的地转偏向力位于与转动轴相垂直的同一水平面上,故只有水平地转偏向力,而无垂直地转偏向力。在赤道与极地之间的各纬度上,地平面绕着平行于地轴的轴旋转,轴与水平面有一定交角,既有绕平行于地平面旋转的分量,又有绕垂直于地平面旋转的分量,故既有垂直地转偏向力,也有水平地转偏向力。 2.产生的原因及计算方式 2.1产生原因

George-Gate的《定性分析地转偏向力》一文从科里奥利力的角度分析得出:对于水平运动的物体,在北半球,其所受的地转偏向力指向运动方向的右手边,在南半球,地转偏向力指向运动方向的左手边;对于在竖直方向运动的物体,无论在哪个半球,若物体竖直向上运动,则地转偏向力指向正西方,若物体竖直向下运动,则地转偏向力指向正东方。对于一个作一般运动的物体,可将其速度分解成竖直方向和水平方向两个分量,分别求出两分速度对应的地转偏向力后对两力求矢量和。 由于除南北两极外,各纬度的角速度都一样,从北向南飞的时候,南边的圈大,即越向南纬线越长,所以线速度大,所以在北边的时候具有的一个小的线速度与南边的线速度相比就显的慢了,所以其就由于惯性表现出往右偏。向北也一样,由快的地方到慢的地方,速度“超前”了,前进方向上也就向右偏了。 沿纬线向东西方向飞(这里要分两种情况讨论,1:由西向东,2:由东向西),这时候由于万有引力的方向指向地心,而纬圈转的方向指向的圆心并不是地心,所以由于这个角度,万有引力不能完全提供你围着纬线的圆心转的那个向心力,所以一综合:情况1下:严格按照纬度方向运动的物体会向赤道方向受到一个重力的分力。情况2中:严格按照纬度方向运动的物体同样会受到向着赤道的分力。这种情况2不符合所谓的北半球都向右偏离。个人认为:由于无法做到完全按纬度,实际情况中,所有运动肯定与纬线方向有夹角,一旦有夹角,就可以直接看南北方向的分量,而这一分量会向右偏。 赤道不受地转偏向力正是因为地心正好就是纬圈旋转的圆心,二者重合了,正好重力可以抵消掉向外的力。最后,南北两极地转偏向力最大。

科里奥利力与季风气候

科里奥利力(地转偏向力) 定义:由于地球自转运动而作用于地球上运动质点的偏向力。 是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力来自于物体运动所具有的惯性。 产生原因简述如下:物体为保持水平惯性运动,经纬网因随地球自转而产生相对加速度。 存在条件:非赤道地区对于地面拥有水平运动方向速度分量的物体大小: f=2mvωsinφ(后附证明) m为物体质量 f为地转偏向力的大小 v为物体的水平运动速度分量 ω为地球自转的角速度 sin是正弦函数 φ为物件所处的纬度 方向 垂直于物体速度的水平分量方向,北半球向右,南半球向左 物理学中的科里奥利力 在旋转体系中进行直线运动的质点,由于惯性,有沿著原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。 当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 科里奥利力实际上是不存在的,是由于人处在转动系中时所认为的匀速直线运动与惯性系中的匀速直线运动不同所致。对于转动系中的人来说,匀速直线运动是指物体相对于转盘的速度不变的运动。而对于在惯性系中的人来说,匀速直线运动是指相对地面速度不变的运动。于是可以通过按照两个参考系的匀速直线运动的标准分别计算极短时间dt内的位移,然后再在转动系中分析这两个位移的差异,进而求出科里奥利力。 关于科里奥利力的较严格的数学证明 首先将运动分为纬线(速度记为vx,正方向与地球自转方向相同)和经线(速度记为vy,正方向自南向北),并设地球半径为R,地球角速度为ω,物体质量为m,纬度为θ(北纬正值,南纬负值),一切计算忽略公转。 1.纬线方向 若物体静止,则其相对于太阳速度为v0=ω*R*cos θ……① 受向心力fn0=v0^2/(R*cos θ)*m……② 又此时相对地球静止,因此所受合力即为向心力fn0,该力与大地平行方向上的分力即为向心力在与大地平行方向上的分力,也即fn0*sin θ 当物体沿纬线方向以速度vx运动时,相对于太阳速度为v=vx+v0 受向心力fn'=(vx+v0)^2/(R*cos θ)*m……③ 此时所受地球的引力、支持力等合力在与大地平行方向上不变,仍为fn0*sin θ。但向心力已变为fn'*sin θ。 若以地球为非惯性参考系,则该物体受到惯性力:fn=fn'*sin θ-fn0*sin θ……④ 由①②③④得:fn=(2vx*v0+vx^2)/(R*cos θ)*m 又因为vx<

谈谈科里奥利力的影响

谈谈科里奥利力的影响 摘要相对于地球运动的物体会受到科里奥利力的作用, 本文对地球上物体受科里奥利力影响的各种现象加以描述。包括水平运动物体的偏转,落体偏东,傅科摆和对分子光谱的影响。 关键词科里奥利力,水平运动物体的偏转,落体偏东,傅科摆,分子光谱 一引言 在地球上, 相对于地球运动的物体(运动方向平行于地轴时除外) 会受到一种惯性力的作用, 这种惯性力是以首先研究它的法国数学家科里奥利的名字命名的, 叫做科里奥利力,由于科里奥利力垂直于物体的运动方向, 所以不能影响物体运动速度的大小, 但它可以改变物体的运动方向。 科里奥利力的计算公式如下: F=2mv×ω F=-2mω×v.(from Wiki) 式中F为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。 二科里奥利力的影响 (一)水平运动物体的偏转 地球上一切运动的物体, 如气流、海洋、河流、交通工具及飞行物等, 除了运动方向平行于地轴外,都要受到科里奥利力的作用.如将科里奥利力分解成竖直方向和水平方向的两 个力,则垂直分力使运动物体的重力略有改变(增加或减少) , 水平分力可能使物体运动方 向发生变化(北半球偏右, 南半球偏左, 赤道上不偏) .地球上高、中、低纬度的三圈大气环流、洋流系统的形成, 气旋与反气旋的旋转, 大河两岸的不对称, 都同地转偏向力的作用有关. 它们既是地球自转的后果, 也是地球自转的证据. (二)落体偏东 落体偏东(或抛体偏西) 是科里奥利力对沿垂直方向运动物体作用的结果。落体偏东的数值以赤道最大, 向两极减小至0. 总的说来, 数值都很小. 例如, 在纬度400 的地方, 在 离地面200 m 高处自由下落的物体, 偏东的数值约为4175 cm , 加上其它因素(如风) 的干扰, 难于察觉。在很深的矿井中所做的落体实验, 除赤道上证明是偏东外, 在北南半球由于地球自转惯性离心力的影响, 分别是偏东略南和偏东略北. (三)傅科摆 傅科摆是科里奥利力在摆动中的表现. 在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动. 在南半球安置的傅科摆, 在每次摆动时均偏左, 致使摆 动平面沿逆时针方向转动. (四)对分子光谱的影响 科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。 三小结 目前对科里奥利力的研究已基本有了定论, 其产生的原因、大小、方向及其性质都已基本没有争议,科里奥利效应是自然界非常重要的一种效应,在人类生产生活中有着重要应用。 参考文献 [1]吴新华,李宏伟.浅谈科里奥利力的影响及应用.河北北方学院学报(自然科学版) [J] .2008 .2:36~38.

下面用科里奥利力向大家详细介绍一下有关傅科摆的问题

科里奥利现象和傅科摆小论文 小论文人员分配: 组长:耿蕾 主讲:耿蕾 查资料:杜欣赵华鞠大升 写论文:鞠大升赵华杜欣耿蕾 我们生活在一个物质的世界,人类从古至今在不停地对身边的一切进行探索,从小的现象得到启发,进而上升到理论,直至推动整个社会的发展。 科里奥利现象和科里奥利力是常常发生在我们的事, 傅科摆是科里奥利力的一个重要应用。 (一)科里奥利现象和科里奥利力 我们现在从一个简单的例子说起。如图1.设在以角 速度ω沿逆时针方向转动的水平圆盘上,沿同一半径坐 着两个儿童,童A靠外,童B靠内,二者离转轴O的距 离分别为V A和V B,童A以相对于圆盘的速度V’沿半径 方向向童B抛出一球。如果圆盘是静止的,则经过一段 时间△t=(V A-V B)/V’后,球会到达童B,但结果是球 图1:水平转盘 到达了童B转动的前方一点B’,对这个现象可如下分析, 由于圆盘在转动,故球离开童A的手时,除了具有径向速度V’外,还具有切向速度V tA,而童B 的切向速度为V tB,由于童B的位置靠近圆心,所以V tA>V tB,在垂直于AB的方向上,球运动得比B远些。这是在盘外不转动的惯性系观察到的情形。 对于以圆盘为参考系的B,他只看到A以初速度向他抛来一球,但球并未沿直线到达他,而是向球球运动的前方的右侧偏去了,这一结果的分析发现,地球在具有径向初速度V’的同时,还具有了垂直于这一方向而向右的加速度a’,应用牛顿第二定律对于加速度的解释,既然球出手后在水平方向上没有受到“真实力”的作用,那么球一定受到了一个垂直于速度V’而向右的惯性力Fc。这种在转动参考系中观察到的运动物体(由于转动参考系中各点的线速度不同而产生)的加速现象中科里奥利效应,产生此效应的虚拟的惯性力叫科里奥利力。 利用此例可导出科里奥利力的定量公式。以转动系为参考系,球从A到达B’的时间是△t’=(V A-V B)/V’。在△t’时间内球偏离AB的距离BB’=(V tA-V tB)△t’=ω(V A-V B)△t’= V’ω(△t’)2,在△t’很小的情况下,可以认为沿BB’的运动是匀加速运动而初速为0,以a’表示以加速度应用BB’=1/2 a’(△t’)2,与上一结果比较可得:a’=2V’ω。在此转动参考系内形式地应用牛顿第二定律,可得科里奥利力大小为F C=ma’=2m V’ω。在此例中,圆盘沿逆时针方向转动,科里奥利力方向指向质点运动的右方。同理,如果圆盘沿顺时针方向转动,则科里奥利力的方向指向质点运动的左方。 一般地可以证明,当质量为m的质点相对于转动参考系(角速度矢量为ω)的速度为V时,则在转动参考系内观察到的科里奥利力为 Fc=2m V ×ω。(1) 转动参考系上物体运动时受另一种惯性力(科里奥利力)的作用现象是法国一位工程师和物理学家科里奥利发现的。我们的地球就是一个转动参考系,所以在地面上运动的物体一般都受科里奥利力的作用。1851年,法国科学家傅科做了一个著名的实验,他从巴黎葬院的穹顶上悬挂了一副67米长的绳索,下面吊着一个28公斤重的摆锤。随着每一次摆动,地上巨大的沙盘便留下摆

科氏力公式推导

科氏力成因:非惯性系坐标系统下产生的附加作用力。 如图所示, 设在距圆心为r 的时刻,径向速度为v 沿Y 轴正向,切向速度为r ω沿轴X 正向。此时, X 轴的速度为0x v =r ω, Y 轴的速度为0y v v =, 则经历短暂时间dt 后,转盘转动角度=t θω, X 轴的速度为x v =()()()sin cos v dt r vdt dt ωωω++, Y 轴的速度为 ()()()cos sin y v v dt r vdt dt ωωω=++, 方法一:因为dt 是极小量,故()sin dt dt ωω=,()cos 1dt ω=,上两式变为 X 轴的速度为x v =()v dt r vdt ωω++, Y 轴的速度为()y v v r vdt dt ωω= ++, 故有 X 轴加速度为()02x x x v dt r vdt r v v a v dt dt ωωωω++??===, Y 轴加速度为()()0222y y y v v v r vdt dt v a r vdt r O dt dt dt ωωωωω?++?===+=+。

方法二:直接求极限, X 轴加速度为()()()00 0sin cos 2lim lim x x x dt dt v dt r vdt dt r v v a v dt dt ωωωωω→→++??===, Y 轴加速度为()()()0200cos sin lim lim y y y dt dt v v v dt r vdt dt a r dt dt ωωωω→→?++= ==。 切向加速度x a 即为科氏加速度,柯氏力2F m v ω=,当转动角速度矢量ω与质点线速度v 不垂直时,应将速度v 往垂直于ω的方向作投影,设夹角,v ωθ→→=,投影量为sin v θ,此时科氏力为2sin 2F m v m v ωθω→→==×切, 此外仍有径向向心加速度2y a r ω=,向心力2F m r ω=向。

科里奥利力

匀速转动系统中科里奥利力的推导 建立如上图所示的转动系统。记静止坐标系为参照系S ,转动坐标系xoy 为转动参照系S ’。两个参照系有共同的轴ok ,且xoy 坐标系作匀速圆周运动,角速度为。 假设有一个点P (质量为m )在运动,其相对o 的位移为??r xi yj =+ 。这里需要注 意,xoy 坐标系是转动的,也就是说?i 和?j 是岁时间改变的:???di i j dt ω== ,???dj j i dt ω==- 。 现在,我们就可以通过对r 求两次导来求得质点P 的加速度了: ??()????dr d xi yj v xi yj x j y i dt dt ωω+===++- 222??????????????()()2()dv a xi x j yj y i x j x i y i y j dt xi yj yj xi xj yi ωωωωωωωω==++-+---=+-++- 上式中分三项,(1)x 和y 是P 相对转动参照系S ’的轴向加速度,合计为??a xi yj '=+ ,称 为相对加速度;(2)2??()yj xi ω-+=2r ω-? ,沿径矢r 指向o ,是由于xoy 系绕轴转动以角 速度ω转动引起的,称为向心加速度;(3)??2()xj yi ω- = 2v ω'-? ,由xoy 系统转动的角速度ω (=?k ω)和P 在xoy 中运动的速度v ' (=??xi yj + )共同决定,方向垂直于ω 和v ' 所决 定的平面,2v ω'-? 称为科里奥利加速度,相应的有科里奥利力为 2mv ω'? 。

注:如果xoy坐标系是作变加速圆周运动,则在计算结果中会出现包含 d dt ω ω= 的项,这一 下称为切向加速度(这里不做详细推导)。

科里奥利力及其应用

科里奥利力 1 引言 科里奥利力(Coriolis force),简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力是以牛顿力学为基础的。1835年,法国气象学家和工程师科里奥利(Gaspard-Gustave Coriolis)提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。 2 物理学中的科氏力 科里奥利力来自于物体运动所具有的惯性,在旋转体 系中进行直线运动的质点,由于惯性的作用,有沿着原有 运动方向继续运动的趋势,但是由于体系本身是旋转的, 在经历了一段时间的运动之后,体系中质点的位置会有所 变化,而它原有的运动趋势的方向,如果以旋转体系的视 角去观察,就会发生一定程度的偏离。如右图1所示,当 一个质点相对于惯性系做直线运动时,相对于旋转体系, 其轨迹是一条曲线。立足于旋转体系,我们认为有一个力 驱使质点运动轨迹形成曲线,这个力就是科里奥利力。 根据牛顿力学的理论,以旋转体系为参照系,这种质点的直线运动偏离原有方向的倾向被归结为一个外加力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力性质相似,都不是真实存在的力,而是惯性作用在非惯性系内的体现。科里奥利力的计算公式如下: F c=?2mω×v 式中F c为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。 特殊的是,在地球上,拥有水平于地面方向运动分量的物体受里奥利力大小为:F=2mvωsin? 式中F为地转偏向力的大小;m为物体质量;v为物体 的水平运动速度分量;ω为地球自转的角速度;?为物 件所处的纬度。受力方向北半球向物体运动的右侧,南 半球向物体运动的左侧。 3 生活中的科氏力 3.1 柏而定律 该定律是自然地理中一条从实际观察总结出来的著 名规律,即北半球河流右岸比较陡削,南半球则左岸比

浅谈科里奥利力的影响及应用

第24卷第1期 2008年2月河北北方学院学报(自然科学版)Journal of H ebei No rth University (N atural Science Edition)V ol 24N o 1Feb 2008 来稿日期:20071127 基金项目:滨州学院资助项目(BZXYZDXK200610) 作者简介:吴新华(1979 ),男,山东泰安人,滨州学院物理与电子科学系,硕士. 浅谈科里奥利力的影响及应用 吴新华1,李宏伟2 (1 滨州学院物理与电子科学系,山东滨州256600;2 滨州学院教务处,山东滨州256600) 摘要:相对于地球运动的物体会受到科里奥利力的作用,对地球上物体受科里奥利力影响的3种主要的表 现形式 水平运动物体的偏转、落体偏东问题和傅科摆,以及科里奥利力的应用(主要是科氏质量流量计) 进行了论述和探讨,并对其应用前景进行展望.其中主要是利用非惯性系下的求解动力学问题的方法推出了落 体偏东的具体数值. 关键词:科里奥利力;落体偏东;傅科摆;质量流量计 中图分类号:O 313 文献标识码:A 文章编号:1673 1492(2008)01 0036 03 在地球上,相对于地球运动的物体(运动方向平行于地轴时除外)会受到一种惯性力的作用,这种惯性力是以首先研究它的法国数学家科里奥利的名字命名的,叫做科里奥利力 [1~2].由于科里奥利力垂直于物体的运动方向,所以不能影响物体运动速度的大小,但它可以改变物体的运动方向,本文主要论述和 讨论了受科里奥利力影响的3种表现形式和它的实际应用.1 科里奥利力的影响 通过定性或定量来研究科里奥利力的影响,下面对受科里奥利力影响的3种表现形式 水平运动物体的偏转、落体偏东和傅科摆进行论述. 1 1 水平运动物体的偏转 地球上一切运动的物体,如气流、海洋、河流、交通工具及飞行物等,除了运动方向平行于地轴外,都要受到科里奥利力的作用. 如将科里奥利力分解成竖直方向和水平方向的两个力,则垂直分力使运动物体的重力略有改变(增加或减少),水平分力可能使物体运动方向发生变化(北半球偏右,南半球偏左,赤道上不偏).人们可以假定自己位于地球之外,以惯性系作为参考,来研究地球上运动物体的方向偏转.不过此时便不存在科里奥利力这样的惯性力了.由于物体同时参与两种运动(相对与地球的运动和随地球的转动),按照运动合成的观点,物体偏离一种运动的目标便是自然的事情了. 地球上高、中、低纬度的三圈大气环流、洋流系统的形成,气旋与反气旋的旋转,大河两岸的不对称,都同地转偏向力的作用有关.它们既是地球自转的后果,也是地球自转的证据. 1 2 落体偏东 落体偏东(或抛体偏西)是科里奥利力对沿垂直方向运动物体作用的结果。落体偏东的数值以赤道最大,向两极减小至0.总的说来,数值都很小.例如,在纬度400的地方,在离地面200m 高处自由下落的物体,偏东的数值约为4 75cm ,加上其它因素(如风)的干扰,难于察觉。在很深的矿井中所做的落体实验,除赤道上证明是偏东外,在北南半球由于地球自转惯性离心力的影响,分别是偏东略南和偏东略北. 对于不参与地球自转的外观测者,可用地球自转在不同纬度上线速度的不同来解释落体偏东现象,不 36

对科氏力与科氏加速度的理解(WLEI)

对科氏力与科氏加速度的理解 从字面意思来看,一般人很容易认为科氏力是导致科氏加速度的原因,然而这却是一个十分错误的理解。实际上科氏力与科氏加速度本质上是没有联系的,如果硬说有联系,也无非是二者的方向恰好相反而已。下面我将对这两个概念进行具体阐述。 科氏力:科氏力是一种本质上不存在的力,就像离心力一样,没有施力物体。它的提出主要是为了说明一种运动现象,以便于对该运动进行分析和计算。那么科氏力要说明的一种运动现象是什么样的呢?假设一个旋转的圆盘在做定轴转动,圆盘上的一个小球在惯性空间中作直线运动,那么小球的运动相对于圆盘坐标系就是在做曲线运动,则在圆盘坐标系里为了解释这种曲线运动是如何产生的,于是便引入了科氏力的概念。 设小球的质量为m ,惯性空间速度为V ,圆盘转速为ω,则科氏力可表示为 =2()F m V ω??科 括号内表示V 与ω的矢量积,方向按右手坐标系判定。 科氏加速度:科氏加速度是由于作直线运动的物体同时又做牵连的旋转运动而产生的。科氏加速度本质上也没有施力物体,引入科氏加速度主要是为了解释在惯性空间坐标系里的物体运动方向和大小发生改变的现象。设物体相对于旋转体运动速度为r V ,牵连转速为ω,那 么科氏加速度可表示为 =2r a V ω?科,方向按右手坐标系判定。 科氏力与科氏加速度的区别: (1) 二者适用的坐标系不同:科氏力适用于旋转体坐标系,而科氏加速度适用于惯性空 间坐标系。 (2) 二者所用变量不同:科氏力公式中的线速度V ,是相对于惯性空间坐标系的;而科 氏加速度公式中的r V ,是相对于旋转体坐标系的。 (3) 二者的公式中矢量积的两个变量的位置是相反的,故导致了方向的相反。 相关物理现象分析: 1)、北半球河流的右岸比左岸侵蚀的严重: 由于地球本身自转,故其就类似于一个旋转体,河流中河水类似于旋转体上小球。在旋转坐标系中,采取科氏力的概念,由于地球是两极略扁的球体,故在北半球可近似认为旋转角速度方向指向天空,根据右手定则,科氏力的方向总在河流流向的右侧,即在科氏力的作用下,河水对右岸的冲击力比左岸的大,所以北半球河流右岸侵蚀严重。 同理,南半球由于旋转方向反向,所以河流左岸比右岸的侵蚀情况严重。 2)北半球大气涡流逆时针旋转: 气象图中大气涡流都是由气象卫星在太空拍摄的,立足于惯性空间坐标系,故此处引入科氏加速度概念。根据科氏加速度的公式,根据右手定则,大气在流动时相对于惯性空间总会向左侧偏移,于是小范围持续的左侧偏移便成了逆时针旋转。 同理,南半球大气漩涡按顺时针旋转。

一种推导科里奥利加速度的简单方法

一种推导科里奥利加速度的简单方法第一封信 在许多普通物理教材中对科里奥利力都避而不谈。大概都是因为科里奥利加速度太抽象,其推导又很复杂所致。我最近找到一个简单的方法,不仅使科里奥利加速度更加直观,而且其推导也极为简单,只要知道如何根据定义来推导质点做圆周运动时的加速度a=ωv 的方法就可以了。现介绍如下。 设质点以速度v ,在以角速度ω转动的参照系中,垂直于转动轴的平面里,从A 点通过转轴O 向B 点运动时(如图中的绿线所示),由于转盘转过了θ角,而实际到达了B ’点,如图所示。在此过程中,开始时刻质点既有指向转轴的相对速度v 又跟随转盘以角速度ω旋转的牵连速度v t 所以其速度方向为AC 。当A 点距离转轴足够近时其牵连速度v t 足够小,其合速度的大小仍为v 。随着质点的运动,转盘不断旋转。所以质点的运动实际为一圆弧。其速度方向时刻与圆弧相切。到达B ’点时,同样具有相对于转轴的相对速度v ,又有跟随转盘旋转的牵连速度v t 。可以看出其所对应的圆周角∠ADB ’,等于转盘转过的角度θ。而质点的圆周运动所转过的角度即其所对应的圆心角∠AO ’B ’等于转盘所转过角度θ的2倍,即其速度该变量为2v v θ?=?,所以其加速度为a=2ωv .此即科里奥利加速度,又称旋转加速度。其方向是与其速度v 垂直指向圆心O ’的。当物体在其他点运动时,则可以把转动参照系移到该点,而成为不仅有转动且有圆周运动的参照系。则可得到物体不仅具有科里奥利加速度且有向心加速度。若物体不是在垂直于转轴的平面内,而是其运动方向与转轴有夹角θ,则其科里奥利加速度为a 科=2ωvsin θ。 首先要说的是,对科里奥利加速度的推导,一般是在理论力学中进行的,这种推导是建立在矢量分析的基础之上的。而在普通物理教材中对科里奥利加速度都避而不谈,因为大一的学生刚刚学习了数学分析。在我所接触到的普通物理教材中只有福里斯的普通物理中有关于科里奥利加速度的讨论。当然在目前把微积分的基本方法下放的高中的情况下,大一的普通物理是如何讲的,我不太清楚。不过我想仍然不应超出数学分析的水平。你上次在教科所见面时,提到在普通物理中关于科里奥利加速度的推导。我不知道你所说的是哪一本普通物理。我的出发点,就是在普通物理的水平上来推导科里奥利加速度。为此,我把福里斯的普通物

科里奥利力及自然界中的科里奥利效应

科里奥利力及自然界中的科里奥利效应 北京理工大学,马凡杰, 02111001 ,1120100239 摘要:解释科里奥利力的成因、自然界中的现象,说明其应用与危害。 关键词:科里奥利力;旋转体系;偏转 无论是央视的《城市之间》,还是芒果台的《快乐大本营》,我们常常在节目中看到这样的游戏项目:选手奔跑着穿过旋转着的游戏台,却一个个以奇怪的姿势摔倒,引来哄堂大笑;也许你会觉得他们的平衡感实在不佳,并自豪地认为自己绝对没有问题,但只有亲身体验过后,你才会知道小脑的无辜——都是科里奥利力在作怪! 一、何谓科里奥利力? 科里奥利力(Coriolis Force),简称科氏力,1835年由法国物理学家科里奥利第一次详细进行了阐述。科氏力源于物体运动所具有的惯性,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。根据牛顿力学的理论,为了在非惯性参照系中使用牛顿运动第二定律,我们需要假想一个附加力——惯性力;当以旋转体系为参照系时,质点的直线运动偏离原有方向的倾向同样被归结为一个外加(惯性)力的作用,这就是科里奥利力。从物理学的角度考虑,科里奥利力与离心力一样,都不是真实存在的力,而是惯性作用在非惯性系内的体现。 形象的解释也许更便于理解:当你站在旋转中的游戏台的中央,沿着阻力最小的方向“缓慢”(以确保不会摔倒——或者说保持“平衡”)走向边缘后再返回,你会发现自己在旋转方向上被越推越远,走过的路径大体上是一个圆形。这是由于人处在转动系中时所认为的匀速直线运动与惯性系中的匀速直线运动不同所致。对于转动系中的人来说,匀速直线运动是指物体相对于转盘的速度不变的运动。而对于在惯性系中的人来说,匀速直线运动是指相对地面速度不变的运动。由此,我们也可借此求得科氏力的公式: 式中为科里奥利力;为质点的质量;为质点在旋转体系中的运动速 度;为旋转体系的角速度。 二、生活中的科氏力 现实生活中的许多自然现象都是科里奥利力在开玩笑。由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响——就像游戏中的旋转台。地球科学领域中的“地转偏向力”就是科

有关惯性力的论述

20406080一月 二月 三月四月 亚洲区欧洲区北美区

20406080一月 二月 三月四月 亚洲区欧洲区北美区 有关惯性力以及科里奥利力的论述 【摘要】: 惯性力是指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就仿佛有一股方向相反的力作用在该物体上,因此称之为惯性力,而科里奥利力也不存在,是惯性的结果。 【关键词】: 惯性,惯性力,科里奥利力,惯性参考系,非惯性参考性。 【引言】: 惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。它概念的提出是因为非惯性系中,牛顿运动定律并不适用。但是为了思维上的方便,可以假象在这个非惯性系中,除了相互作用所引起的力之外还受到一种由于非惯性系而引起的力——惯性力。 如果物体相对于匀角速度转动的参考系而言,不是静止的,而是在做相对运动,那么在该转动参考系中的观测者看来,物体除了受到惯性离心力的作用外,还将受到另外一种附加的力——科里奥利力的作用。 【内容】: 一、首先论述一下惯性力 1、 举个例子,当我们乘坐汽车时,如果汽车急刹车,我们会不自主的向前倾,感觉仿佛有一个力把你向前推,但是这个力并不真正存在,人们把这个力认为是惯性力。

20406080一月 二月 三月四月 亚洲区欧洲区北美区 事实是:汽车刹车时轮胎与地面摩擦而使汽车减速,实际上并没有力推乘 客,这只是惯性在不同坐标系统下的现象。 2、 假如这里脱离了任何天体的引力,飞船在靠惯性飞行。那么飞船里的人和一切物体都处于“失重”状态,可以飘在空中,从手里松开的任何东西也不会往下落。如果飞船又开动了火箭,以一定的加速度 向前飞行,那么飞船里的人又感到有了“重量”,原来在空中漂浮的东西又纷纷加速下落,这说的是物体受到惯性力加速下落的情形。 3、 惯性力的引入是牛顿力学的一大耻辱,它是为了弥补在非惯性参考系中物体的运动不满足牛顿运动定律而引入的假想力。 4、 设想有一静止的火车,车厢内一光滑桌子上放有一个小球,小球本来是静止的;现在火车开始加速启动,在地面上的人(显然他选用了一个惯性参考系——地面)看来,小球并没有运动,但是在火车上的人看

科里奥利力影响及应用

科里奥利力影响及应用 1、科里奥利力产生的影响 ●卡皮罗现象 20 世纪 40 年代科学家卡皮罗在每次实验后,把污水倒入水槽时发现在漏水 口处形成的旋涡总按固定的方向旋转,这个现象引起了他的注意。于是在水流下时 他故意用手指向相反方向搅动,但手离开后旋涡又恢复原来的旋转方向。这是否与 漏水口的形状有关?于是他做了许多不同形状的漏水口,但试验结果总是相同。他 对此困惑不解,于是他到世界各地去做同样的试验,使他大为惊奇的是在南半球水 流旋涡的方向与北半球刚好相反,在北半球是逆时针的而在南半球是顺时针的, 在赤道附近两种情况几乎各有一半。卡皮罗喜出望外,他终于找到了结论,旋涡 的方向与在地球上所处位臵有关。后来人们把这种现象称为卡皮罗现象。 卡皮罗现象是地球在自转过程中由于惯性引起的一种所谓科里奥利力造成的。 在北半球这个偏向力是向右的,它会使得水在向下流时形成逆时针方向的旋涡。在 南半球则刚好相反为顺时针方向。在自然界里卡皮罗现象的另一形式是龙卷风。 ●大气环流 大气运动的能量来源于太阳辐射,气压梯度力是大气运动的源动力。全球共有赤道低压带,南、北半球纬度 30°附近的副热带高压带,南、北半球纬度 60°附 近的副极地低压带,南、北半球的极地高压带等七个气压带。气压带之间在气压梯 度力和地转偏向力的作用下形成了低纬环流圈、中纬环流圈和高纬环流圈。由于受 地转偏向力的作用,南北向的气流却发生了东西向的偏转。北半球地面附近自北向 南的气流,有朝西的偏向。在气压带之间形成了六个风带,即南、北半球的低纬信 风带,南、北半球的中纬西风带,南、北半球的极地东风带。 ●傅科摆 傅科摆是科里奥利力在摆动中的表现. 在北半球安置的傅科摆, 在每次摆动时均偏右, 致使摆动平面沿顺时针方向转动. 在南半球安置的傅科摆, 在每次摆 动时均偏左, 致使摆动平面沿逆时针方向转动。 ●对分子光谱的影响 科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动 之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生 能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。 ●气旋和反气旋 气旋与反气旋是大气中最常见的运动形式,也是影响天气变化的重要天气系统。 在气压梯度力和地转偏向力的共同作用下,大气并不是径直对准低气压中心流动, 也不是沿辐射方向从高气压中心流出。低气压的气流在北半球向右偏转成按逆时 针方向流动的大旋涡,在南半球向左转成按顺时针方向流动的大旋涡,大气的这种 流动很象江河海流中水的旋涡,所以又叫气旋。夏秋季节,在我国东南沿海经常出 现的台风,就是热带气旋强烈发展的一种形式。高气压的气流在北半球按顺时针方 向旋转流出,在南北半球按逆时针方向旋转流出,高气压的这种环流系统叫反气旋。

关于地转偏向力的总结学习

自然地理中的地转偏向力学习 一、学习背景(整体看) 依据《普通高中地理课程标准(实验)》和往年的《地理高考考试大纲》可知,我们应重视对地理基础知识的学习,要整体把握地理原理和地理规律,整体了解一些基本的地理过程。具备良好的地理素养对于树立正确的世界观、人生观和价值观都很有帮助。 高中地理课程总体分为必修和选修两块,必修的内容分为必修1(自然地理)、必修2(人文地理)和必修3(区域地理)。其中地理1(以人教版为例)的知识结构是: 必修1自然地理基础知识的囊括的内容有: (1)基本原理:太阳辐射对地球的影响,地球运动的地理意义,地球的圈层结构,大气受热过程,天气系统的特点,全球气候变化,地表形态变化的原因,自然灾害发 生的原因等。 (2)基本规律:气压带、风带的分布和移动规律,洋流的分布规律,地理环境地域分

异规律等。 (3)基本过程:地壳内部物质循环、大气环流、水循环、大洋环流等。 在以上教材知识点编排的背景下,今天我想带大家学习的是关于必修1“地球的运动”这一节中首次提到的“地转偏向力”。 别看它只是一段话,就以为它没有内容,其实关于地转偏向力的产生还是很有意思一个知识点。在历史上早有一些伟大的人早对它进行过猜想和论证,代表人物有牛顿和科里奥利。 艾萨克·牛顿: 1643.1.4-1727.3.31,英国人,他研究领域涉及物理学、数学、天文学、科学等,他也在前人开普勒的基础上提出过万有引力定律和牛顿运动定律。 牛顿万有引力定律:任意两个质点有通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 牛顿第一定律:一切物体在没有受到力或合力为零的作用时,总保持静止状态或匀速直线运动状态。

相关文档