文档库 最新最全的文档下载
当前位置:文档库 › 燃气管网水力计算图的计算机生成_彭继军

燃气管网水力计算图的计算机生成_彭继军

燃气管网水力计算图的计算机生成_彭继军
燃气管网水力计算图的计算机生成_彭继军

收稿日期:2003-01-03作者简介:彭继军(1978-),男,江西宜春人,山东建筑工程学院空调工程系硕士研究生,学士,研究方向:燃气燃烧与输配.

文章编号:1003-5990(2003)01-0058-05

燃气管网水力计算图的计算机生成

彭继军1,田贯三1,刘燕2

(1.山东建筑工程学院空调工程系,山东济南250014;2.北京燃气集团,北京100011)

摘要:首先对直接驱动绘图机绘图的缺点及自动绘图的优点进行了叙述,接着对使用AutoLISP 技术自动生成燃气管网水力计算图的方法、特点进行了详细的探讨,最后以一工程为例,对该自动生成燃气管网水力计算图方法进行了更为详尽地阐述。首先采用管网拓扑结构数据形成管网拓扑结构图层,然后与水力计算数据文件耦合形成完整水力计算结果图层。首次利用LISP 语言开发了燃气管网水力计算图自动生成程序。关键词:AutoLISP ;燃气管网;自动生成中图分类号:TU996.62 文献标识码:A

The computer forming method of the waterpower

calculation drawing in gas networks

PENG Ji -Jun 1,TIAN Guan -san 1,LIU Yan 2

(1.Dept .of Air -conditioning Engineering ,Shandon g Universit y of Architecture and Engineering ,Jinan 250014,China ;2.Beijing Gas Group ,Beijing 100011,China )

A bstract :The shortcomings of the direct -driven graph plotter and the excellence of automatical drawing were firstly narrated .Then ,the method of forming the gas -network drawings using AutoLISP technology ,which was put for ward in this paper ,and its characteristics were discussed in detail Finally ,the method was expatiated further using an engineering example .A topology structure -dra wing layer was generated acc ording to the topolo -gy structure data .Then by coupling with the result of waterpower calculation ,a full dra wing la yer is formed .The program ,which is used to dra w the waterpower calculation dra wing in gas networks automatically ,is writ -ten in LISP langua ge for the first time .Key words :AutoLISP ;gas networks ;automatic formation

0 引言

随着计算机技术的发展,计算机软件在燃气工程设计的应用越来越广。对燃气管网进行水力分析是燃气管网设计、改扩建和运行调度管理的基本依据。欧美、日本等国家对城市燃气管网水力分析结果进行数字式记录文档,并输入数字化背景图,两者实现了自动映像生成水力计算图的图示化水平,就

是把燃气管网水力分析软件得到节点压力、节点流量、管段流量和流速等参数自动绘制在燃气管网的拓扑结构图所对应的节点和管段上。这一技术的应

用提高了燃气管网设计质量和运行调度水平,对安全可靠供气,降低运行成本有重大意义。相对而言,我国的燃气行业起步晚,水平低,在燃气管网的计算机绘图方面比较落后,这一技术还未得到应用。目前国内的燃气管网水力分析软件得到节点压力、节

第18卷第1期2003年3月 山东建筑工程学院学报JOUR NAL OF SH ANDONG UNIVERSITY OF ARCHITECTURE AND E NGINEERING Vol .18

No .1

Mar .2003

点流量、管段流量和流速等参数后,一般要靠手工绘制水力计算图或人工用计算机绘制水力计算图。人工绘制水力计算图存在下列缺点:(1)绘制图形的工作量大,尤其是对象北京等特大城市的燃气管网来说,其工作量更大,难以对每个可行方案都绘制出水力计算图,只能绘制几个设计者或运行管理者认为较好的方案的水力计算图,有可能把最好的方案漏掉;(2)对于结构相同,运行参数不同的水力计算方案,其不同之处是管网的运行参数不一样,图形的拓扑结构几乎是一样的。因此,采用人工绘制水力计算图,大部分时间都是在拓扑结构图上重复标注运行参数,而这些工作交给计算机去做,绘图效率可极大提高;(3)一旦改变管网的拓扑结构,节点数和管段数均发生改变,就要重新绘制管网的拓扑结构图,使人工绘图的工作量大幅增加。随着我国城市能源结构的调整,城市燃气管网已成为重要的城市基础设施,这一问题已成为城市燃气管网建设和运行管理中亟待解决的问题。采用计算机自动绘图技术可解决这一问题,本文研究探讨采用AutoLISP技术来解决这一问题。

1 直接驱动绘图机绘图的缺点

文献[1]对依据网络数据和计算结果编程直接驱动绘图机绘制管网水力计算图进行了探讨,这样的方法固然能使整个绘图过程时间较短,系统的结构也简单,但是它存在两点严重不足:(1)不能在绘制图形开始前在屏幕上显示或预览整个图形,检查其错误,其结果往往造成图纸绘好一半或全部绘好后才发现错误,浪费时间和图纸;(2)不便于对水力计算图纸进行修改。例如:文本标注,大版面图纸拼接,局部绘图和比例变换等,所以没在实际工程中推广应用。为了解决直接用绘图机绘图的缺点,本文采用间接的方法绘图,即用AutoLI SP技术在计算机屏幕上先形成和显示图形,对其进行修改达到满意的程度后再在图纸上绘出图形。这就是本文要研究的计算机自动绘图。

2 自动绘图的优点

在管网水力计算得出结果后,利用计算机自动生成水力计算图主要有以下几个优点:

(1)大大减少了绘制图形的工作量,提高了效率;

(2)克服了直接驱动绘图机绘水力计算图的缺点;

(3)修改或者重新绘制方便、快捷,方便对多个方案进行分析比较;

(4)相对于手工绘制的图形来说,计算机自动绘制的图整洁干净;

(5)利用网络拓扑关系绘制的图形直观准确,方便评价燃气管网的设计质量和确定输配管网系统调度方案;

(6)能够把科学计算的结果如温度场和速度场通过网络拓扑关系表达在图形中,使结果更加形象生动。

3 自动绘图的基本思想

燃气管网水力计算图在绘制之前必须知道管网拓扑结构数据和管网水力计算结果,拓扑结构数据包括管段数、节点数、各节点的坐标,管网水力计算结果包括管网中各管段的管径、管长、管段流量和各节点流量、压力等数据。这些数据可以在绘图时直接输入,也可以编写小段程序生成一定格式的数据文件,还可以直接利用管网水力计算程序的结果数据形成的数据文件。由于一般管网管段数和节点数较多,因此绘制水力计算图所要求的数据量大,在实际工程中采用人工直接输入法是不可行的。因此本文探讨的自动绘制水力计算图的基本思想是:第一步是形成绘图数据文件,这些数据是按一定格式存储的;第二步就是利用AutoLISP语言编写的程序读取以上保存的数据;第三步是用LISP语言编写绘图程序,在屏幕上绘制所要的图形;第四步是对绘制好的图形进行修改、保存等操作。以下为了方便说明,本文从第二步数据文件的读取开始介绍燃气管网水力计算图的计算机自动生成。

3.1 数据文件的读取

本文的绘图程序是用AutoLI SP语言编写的,要用的数据文件是外部参数文件。依照外部参数文件提供的参数生成图形,是AutoLISP的一种典型实用模式,这类文件的基本格式必须要满足用AutoLISP 程序读取的要求:

(1)必须是ASCII码型的文本文件;

59

 第1期 彭继军等:燃气管网水力计算图的计算机生成

(2)整个文件应是结构类型的,结构的格式可以自定义。

以下是两种参数文件的读取方法。

①一行一个数据格式

这种格式是最基本的格式。读取数据时,应当跳过用做标记的文件行,有选择地把相关数据文件中的有关数据取出。例如:假设某实验要求按相等的时间间隔测试温度和压力,将测试值画在图中,外挂数据文件为00.T&P,格式如下:

2002.5.24.20:25 测试开始的时间

180 温度

该例子是典型的一行一个数据的格式,其代码从略。

②AutoLISP程序专用的外部数据文件

这样的数据文件是为AutoLISP应用程序定制的,文件记录的结构最好是能够转换“表”类型数据的类表格式:(12345“6”)。由于AutoLISP文件函数的功能局限,读入后是带括号的字串,用(read)函数处理它就能转换成标准的“表”,如此就可以用AutoLISP最擅长的表处理功能函数来使用这些数据。有些数据文件虽然可以在一个记录行的头尾加上括号,但是字串类型的内容无法用双引号作界限(在程序中加入双引号很麻烦),如:

……

(342647)

……

此时在用(read)后表中的内容没有变化,但是所有原来按字符写的数据类型都成了SYM(符号),也不能按字符串使用,此时,可以用(vl-prin1-to-string)函数,其AutoLISP程序略。

③读入外部数据文件的结束处理问题

数据文件是按照一定的格式存储的,如果我们要随心所欲地读取其中的数据,就必须做好读完的识别和处理工作。对于整个文件的全部读完的识别和处理,如果文件有确定的行数可以用以下的模式: (打开文件)

(repeat文件行数)

……

(关闭文件)

如果文件的格式是确定的,但行数不确定,为了控制整个文件的读完,可以用函数(While(setq r (read-line f))……)。对于文件中确定片段读完的识别和处理,就必须有一个“片段尾”的识别问题。片段尾标记可以自己设定,但是不能和正常记录中可能出现的内容重复,每读入一行就判断一下是否是相关的结构片段的尾标,是:一个片段读完,转入下一个片段;否:继续本结构的读取。另外,为了今后系统维护,应该保留一个详细说明的数据文件结构样板文件,来说明这类数据文件的各个结构的先后顺序、格式及对应的尾标。

3.2 数据文件的形成

从以上数据文件的读取可以看出,由于读取数据格式的限制,保存的数据文件也应按照相对应的格式。因此,保存数据的格式也可以是以上提到的几种,一行一个数据格式、类表格式或者是混合格式。本文采用的就是混合格式,绘图数据是本课题组开发的“燃气管网设计软件”的结果,软件菜单上有一“绘图”项,点击该项就会自动生成绘图文件,同时自动打开ACAD窗口,进行绘图。

3.3 AutoLISP语言编写绘图程序

由于AutoLI SP语言几乎可以应用AutoC AD的所有功能,所以在编写绘制燃气管网水力计算图程序时,一种很好很简单的方法就是编写程序来模拟手工绘图的过程。简而言之就是把手工绘图过程和命令串起来就可以形成用AutoLI SP语言编写的绘制燃气管网水力计算图的程序。当然,这个程序不是那些过程和命令的简单相加,还应该包括其它的一些处理。

以下介绍本文编写绘图程序的大致思路:首先是确定绘制图形所用的图纸规格,是0号图纸还是1号、2号……;其次是确定选定图纸的边框,即:确定屏幕的绘图范围;再次是确定绘图的比例系数。这里绘图的比例系数是为了使绘制的燃气管网水力计算图整体上成比例关系(更加美观)而确定的。它包括节点圆半径的比例系数、字体大小的比例系数、标注线长短的比例系数以及管线粗细的比例系数等系数。这些系数使整个图纸看上去趋于美观,而不至于因选择不同规格的图纸而使整个图形的比例失调,比如节点圆太大或太小,标注的字体太大或太小等;接着就是根据从数据文件中读出的数据以及网络拓扑理论画节点圆和有向管线;然后就是在不同的图层标注文本,如管长、管径、管段流量和节点压力等文本,还有图例。图例的形成可以先用Auto-CAD画好,做一个图形库,然后利用图的块文件操

60

山东建筑工程学院学报 2003年 

作,也可以编写代码直接绘制。这两种方法都可以,但是笔者建议用后者。因为图纸的规格有好几种,

为了整个图纸的美观,在调用后时常要进行放大或缩小,而放大或缩小的系数和前面提到的各种比例系数往往不一致,因此会影响美观。而编写代码绘制图例可以采用相同的比例系数,所以绘制好的水力计算图会更加协调美观。最后就是进行修改,使图的效果更加令人满意。程序的流程图如图1所示

图1 程序框图

为了更加详细地介绍本文采用的燃气管网水力计算图的计算机自动生成方法,下面举一个简单的例子来说明从数据文件的保存到图形绘制的整个过程。

4 AutoLISP 绘图实例

例:某一低压燃气管网,共有9个节点、11条管段、1个气源。

本例中的数据文件是由本课题组编制的燃气管网设计软件形成的,其保存的格式是:

9111低压0

(44296992617)(35345261788)

(150150150200150200200200200150150)

(300400608600600400400461450344354)

(123.9597.43119.05539.98100.57626.01646.16238.26210.6477.8166.84)

(1.951.531.874.771.585.545.712.111.861.221.05)(66.0157.16124.4469.4490.75411.04435.8581.4663.7232.9125.84)

(160.45268.7243318.6198334.95143.8144.65-2214)(1007.51088.96964.561030.56973.41064.151000.43974.591500)

(0-1000300700700700344300)(045010501050105045000450)

每一行数据代表的意义是:第一行,节点数;第二行,管段数;第三行,给定压力气源数;第四行,压力级别;第五行,给定流量气源数;第六行,管段的始节点号;第七行,管段的终节点号;第八行,管径;第九行,管长;第十行,管段流量;第十一行,流速;第十二行,管段压力降;第十三行,节点流量;第十四行,节点压力;第十五行,节点的横坐标值;第十六行,节点的纵坐标值。前五个数据是按照一行一个数据的结构形式保存的,因此也要按前面介绍的相应的读取方式读出数据,后面的数据是按照类表形式保存的,因此应按照类表方式的读取方式读出数据。

值得注意的是,由于各种系数的存在,上面的数

据在形成表以后,在绘制图形时,某些数据不能直接利用,而是要经过一定的处理。比如说节点坐标,其值是固定的,但是选择不同的图纸后,由于要使得图纸美观,因此绘图时的实际坐标值要相应的放大或缩小,也就是要乘一定的系数。由于LISP 语言处理或编辑表数据功能的局限,不能像其它语言那样很方便地改变表中的数值,而是要编写小段代码。修改表中数据的思路是:从表中取出要修改的值,修改该值,把修改的值与表的剩下部分重新形成新表。其代码从略。

从数据文件中读出数据并进行了必要的修改后,接下来就是依据管径的不同绘制不同粗细的管线,然后在不同的图层上标注文本和图例,显示绘制的图形。仅有管线和节点圆的拓扑结构图形图层如图2所示,有文本标注和图例的完整管网水力计算图形图层如图3所示。

本文采用的这种水力计算图的计算机生成方法不局限于管线是垂直和水平的情况,它能依管线的倾斜而以相同角度的倾斜度标注数据和文字说明。

61 第1期 彭继军等:燃气管网水力计算图的计算机生成

图2 拓

扑关系图

图3 管网水力计算图

5 结论

目前,国内燃气管网水力计算和绘制水力计算图是分开进行的,在完成管网设计计算工作后,手工

绘制管网水力计算图或人工采用计算机绘图效率低,并存在许多缺陷。本文对采用AutoLI SP 技术后,燃气管网水力计算图的计算机生成方法、特点进行了详细的探讨。在现有的计算机软件和硬件技术前提下,首次运用LISP 语言开发燃气管网水力计算图绘制程序,自动绘制燃气管网水力计算图,直观、可

修改性强,极大减少了从管网水力计算结果到绘制图纸的工作量和时间,提高了工作效率,为开发综合燃气管网分析软件,评价燃气管网设计质量和确定最佳运行方案奠定了基础。参考文献:

[1] 韩显军.城市燃气管网优化设计及计算机绘图[D ].天津大学

研究生毕业论文,1991.

[2] 陈伯雄.Visual LISP for AutoCAD2000程序设计[M ].北京:机械

工业出版社,2000.

[3] 清源计算机工作室.AutoCAD 2000i 应用开发与实例[M ].北京:

机械工业出版社,2001.

[4] 刘志刚,叶以农,孙爱充,等.AutoCAD 2000Vis ual LISP 开发人员

指南[M ].北京:中国电力出版社,2001.189-191.

[5] 希望图书创作室.Aut oCAD R13使用大全[M ].北京:科学出版

社,1997.

[6] 哈尔滨建筑工程学院.燃气输配[M ].北京:中国建筑工业出版

社,1995.

62 山东建筑工程学院学报 2003年 

低压燃气管道水力计算公式

低压燃气管道水力计算 公式 -CAL-FENGHAI.-(YICAI)-Company One1

燃气管道输送水力计算 一、适用公式 燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。 但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。 二、低压燃气管道水力计算公式: 1、层流状态 R e≤2100 λ=64/R e R e=dv/γ ΔP/L=×1010(Q0/d4)γρ0(T/T0) 2、临界状态 R e=2100~3500 λ=+(R e-2100)/(65 R e-1×105) ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)] (Q02/d5)ρ0(T/T0) 3、紊流状态 R e≥3500 1)钢管λ=[(Δ/d)+(68/ R e)] ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0) 2)铸铁管λ=[(1/d)+4960(dγ/ Q0)] ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h) d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s) Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数 T——燃气绝对温度(K) T0——273K v——管内燃气流动的平均速度(m/s) (摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)

城市燃气输配管网系统的水力计算分析

城市燃气输配管网系统的水力计算分析 摘要:本文主要介绍了城市燃气输配管网水力计算的意义和计算方法并以实例分析运用和验证了方法的使 用。 关键词:燃气输配管网、水力计算。 1水力计算分析的意义 管网的水力分析是城市管网科学管理的基础,其任务是在输入节点流量及管长、管材、管径的情况下了解管网各管段的实际流量分配,各节点的压力,以及气源的工作情况,即了解整个管网的实际运行工况,从而得到科学、精确的信息.这样既为改建!扩建管网设计提供准确的数据资料,避免工程的盲目性。同时,也为城市管网的科学管理提供数据信息,以便有关部门对管网突发事件作出快速反应、能否正确地进行水力计算,直接影响到输配系统的经济性和可靠性。 2水力计算 2.1燃气管网的水力计算基本公式 2.1.1气体管段流量的基本方程 天然气在管内流动时,沿着气体流动方向,压力下降,密度减少,流速不断增大,温度同时也在变化,决定燃气流动状态的参数有:压力p 、密度ρ、流速v 。为求解这些参数有三个基本方程:连续性、运动方程和气体状态方程。气体流动方程如下。 利用牛顿运动方程、质量连续性方程、气体状态方程,并假设: a 地下燃气管道的温度变化不大,可以假定燃气在管内等温流动。 b 地下燃气管道的标高变化较小,可以不计算管道纵轴方向的重力作用分力。 得可压缩气体的不稳定流动方程组 运动方程 (2.1) 连续性方程 气体状态方程P zg RT ρ= τ---时间; x---离管道始端的距离; v---τ时刻x 处燃气的速度; P---τ时刻x 处燃气的压力; () () 22 2P x x d ρυρυλυρτ???+++=???()0x ρυρτ??+=??

燃气管道水力计算

1.高压、中压燃气管道水力计算公式: Z T T d Q L P P 0 5 210 2 2 2 110 27.1ρ λ ?=- 式中:P 1 — 燃气管道起点的压力(绝对压力,kPa ); P 2 — 燃气管道终点的压力(绝对压力,kPa ); Q — 燃气管道的计算流量(m 3/h ); L — 燃气管道的计算长度(km ); d — 管道内径(mm ); ρ — 燃气的密度(kg/m 3);标准状态下天然气的密度一般取0.716 kg/m 3。 Z — 压缩因子,燃气压力小于1.2MPa (表压)时取1; T — 设计中所采用的燃气温度(K ); T0 — 273.15(K )。 λ— 燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: 25 .06811.0??? ? ??+ =e R d K λ K — 管道内表面的当量绝对粗糙度(mm );对于钢管,输送天然 气和液化石油气时取0.1mm ,输送人工煤气时取0.15mm 。 R e — 雷诺数(无量纲)。流体流动时的惯性力Fg 和粘性力(内摩擦 力)Fm 之比称为雷诺数。用符号Re 表示。层流状态,R e ≤ 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力1P ,燃气管道的计算长度L ,燃气密度ρ,燃气温度T ,压缩因子Z 为已知量,燃气管道终点的压力2P ,燃气管道的计算流量Q ,燃气管道内径d 为参量,知道其中任意两个,都可计算其中一个未知量。 如燃气管道终点的压力2P 的计算公式为: ZL T T d Q P P 0 5 210 2 1210 27.1ρ ?-= 某DN100中压输气管道长0.19km ,起点压力0.3MPa ,最大流量1060 m 3/h ,输气温度为20℃,应用此公式计算,管道末端压力2P =0.29MPa 。

城镇燃气设计规范

《城镇燃气设计规范》 10.2.14 燃气引入管敷设位置应符合下列规定: 1 燃气引入管不得敷设在卧室、卫生间、易燃或易爆品的仓库、有腐蚀性介质的房间、发电间、配电间、变电室、不使用燃气的空调机房、通风机房、计算机房、电缆沟、暖气沟、烟道和进风道、垃圾道等地方。 2 住宅燃气引入管宜设在厨房、走廊、与厨房相连的封闭阳台内(寒冷地区输送湿燃气时阳台应封闭)等便于检修的非居住房间内。当确有困难,可从楼梯间引入,但应采用金属管道和且引入管阀门宜设在室外。 3 商业和工业企业的燃气引入管宜设在使用燃气的房间或燃气表间内。 4 燃气引入管宜沿外墙地面上穿墙引入。室外露明管段的上端弯曲处应加不小于DN1 5 清扫用三通和丝堵,并做防腐处理。寒冷地区输送湿燃气时应保温。引入管可埋地穿过建筑物外墙或基础引入室内。当引入管穿过墙或基础进入建筑物后应在短距离内出室内地面,不得在室内地面下水平敷设。 10.2.15 燃气引入管穿墙与其他管道的平行净距应满足安装和维修的需要,当与地下管沟或下水道距离较近时,应采取有效的防护措施。 10.2.16 燃气引入管穿过建筑物基础、墙或管沟时,均应设置在套管中,并应考虑沉降的影响,必要时应采取补偿措施。 套管与基础、墙或管沟等之间的间隙应填实,其厚度应为被穿过结构的整个厚度。套管与燃气引入管之间的间隙应采用柔性防腐、防水材料密封。 10.2.17 建筑物设计沉降量大于50mm时,可对燃气引入管采取如下补偿措施: 1 加大引入管穿墙处的预留洞尺寸。 2 引入管穿墙前水平或垂直弯曲2 次以上。 3 引入管穿墙前设置金属柔性管或波纹补偿器。 10.2.18 燃气引入管的最小公称直径应符合下列要求: 1 输送人工煤气和矿井气不应小于25mm; 2 输送天然气不应小于20mm; 3 输送气态液化石油气不应小于15mm。 10.2.19 燃气引入管阀门宜设在建筑物内,对重要用户还应在室外另设阀门。

城镇燃气管道布置设计要素分析

城镇燃气管道布置设计要素 城镇燃气管道布线的依据 城镇燃气管道布线时,必须考虑到下列基本情况: ( l )城镇燃气门站、储配站的位置; ( 2 )管道中燃气的压力。高压燃气管道不宜进入城镇四级地区; ( 3 )城镇燃气各级调压站的位置; ( 4 )街道其他地下管道的密集程度与布置情况; ( 5 )街道交通量和路面结构情况,以及运输干线的分布情况; ( 6 )所输送燃气的含湿量,必要的管道坡度,街道地形变化情况; ( 7 )与该管道相连接的用户数量及用气量情况,该管道是主要管道还是次要管道; ( 8 )线路上所遇到的障碍物情况; ( 9 )土壤性质、腐蚀性能和冰冻线深度; ( 10 )该管道在施工、运行和万一发生故障时,对城镇交通和人民生活的影响。城镇燃气管道平面布置时需考虑因素 城镇燃气管道平面布置时,要考虑下列各点: ( l )要使主要燃气管道工作可靠,燃气应从管道的两个方向得到供应,为此,管道应尽可能逐步连成环形; ( 2 )次高压、中压管道最好不要沿车辆来往频繁的城镇主要交通干线敷设,否则对管道施工和检修造成困难,来往车辆也将使管道承受较大的动荷载。对于低压管道,有时在不可避免的情况下,征得有关方面同意后,可沿交通干线敷设;( 3 )燃气管道不得在堆积易燃、易爆材料和具有腐蚀性液体的场地下面通过。燃气管道不宜与给水管、热力管、雨水管、污水管、电力电缆、电信电缆等同沟敷设。在特殊情况下,当地沟内通风良好,且电缆系置于套管内时,可允许同沟敷设; ( 4 )燃气管道可以沿街道的一侧敷设,也可以双侧敷设。在有有轨电车通行的街道上,当街道宽度大于20m 或管道单位长度内所连接的用户分支管较多等情况下,经过技术经济比较,可以采用双侧敷设; ( 5 )燃气管道布线时,应与街道轴线或建筑物的前沿相平行,管道宜敷设在人行道或绿化地带内,并尽可能避免在高级路面的街道下敷设; ( 6 )燃气管道布线时应在门站、储配站、调压站进出口、分支管起点、主要河流、主要道路、铁路两侧设置阀门,次高压、中压管道上每2km 左右设分段阀门。高压燃气干管上,分段阀门最大间距为:以四级地区为主的管段不应大于8km ;以三级地区为主的管段不应大于13km ,以二级地区为主的管段不应大于24km;以一级地区为主的管段不应大于32km ( 7 )在空旷地带敷设燃气管道时,应考虑到城镇发展规划和未来的建筑物布置的情况; ( 8 )为了保证在施工和检修时互不影响,也为了避免由于漏出的燃气影响相邻管道的正常运行,甚至逸入建筑物内,地下各级压力燃气管道与建筑物、构筑构基础以及其他各种管道之间应保持的最小水平净距分别列于表 4.1-15-1 、表

【精品】燃气管网水力计算数学模型及水力计算程序的编制

燃气管网水力计算数学模型及水力计算程序的编制 摘要:利用VisualC++6。0和有限元节点法编制了燃气管网水力计算程序,水力计算全部实现界面化。数学模型中采用了前苏联谢维列夫的摩阻系数公式.采用高斯——赛德尔迭代法解线性方程组,提高了收敛速度。探讨了利用矩阵调行技术解决多气源管网水力计算问题。 关键词:燃气管网水力计算 1引言 随着我国燃气事业的发展,用气城市越来越多,用气量也越来越大,燃气管网相应的变得越来越普及和庞大,其结构也越来越复杂。在管网的新建和扩建中,准确、迅速的燃气管网水力计算是实现高质量的管网设计、施工以及运行调度的必要条件.目前国内存在的大多数水力计算程序,原始数据的准备以文本形式为主,管网的编号也是人工操作,非常麻烦,容易出错;解水力计算线性方程组以雅克比法占多数,收敛速度慢,而且在处理多气源管网时也不是十分方便。 本文从水力计算模型出发,采用有限元节点法,利用VisualC++6.0编制燃气管网水力计算程序。管网初始数据的准备通过界面直观输入;利用高斯-—

赛德尔求解管网线性方程组;通过矩阵调行的方法处理所选基准点不位于最大编号的问题;同时对于多个给定压力的气源点,通过调行和对方程组进行常数项修正来解决。 2数学模型 在使用以下燃气管道水力计算公式时有如下假设条件:燃气管道中的气体运动是稳定流;燃气在管道中的流动时的状态变化为等温过程;燃气状态参数变化符合理想气体定律。 2。1燃气管道水力计算公式 2.1.1对于低压燃气管道 (1) 2。2.2对于中高压燃气管道 (2) (1)、(2)式中: ——压力降(Pa),(注意:在高压管网中表示2次方量);

燃气水力计算

Excel 在燃气管道水力计算中的应用 摘要:利用Excel 的控件和函数功能,制作了枝状燃气管道的计算程序。 关键词:Excel 燃气管道 水力计算 0引言 在燃气管道设计中,水力计算是非常重要的一部分,它不仅能保证我们的设计安全合理,同时可使我们的设计更为经济。但手工计算必须需要经过预选管径、判别流动状态、选择计算公式和校核压力降这几步来反复试算,过程极其烦琐和复杂,效率低下,也容易出错。很多同行使用各种计算机语言编写了水力计算程序,大多采用VB 、VC 等高级语言。但以上程序制作过程复杂,需要懂得专业的计算机编程知识,而且定制和更改过程复杂,一般设计人员难以操作。本文介绍了一种利用公办软件Excel 制作水力计算程序的方法,过程简单,界面友好,定制和更改方便。 1制作思路 1.1水力计算依据 燃气管道水力计算的流程见图一: 图一 燃气管道水力计算流程 根据《城镇燃气设计规范》(GB50028-93)(以下简称“规范”),低压燃气管道的水力计算公式如下: 05271026.6T T d Q l p ρλ?=? (1) 由上式可以看出影响压降的参数有: L -燃气管道的计算长度,km ; Q -燃气管道的计算流量,m 3/h ; d -管道内径,mm ; ρ-燃气的密度,kg/m 3;

λ-燃气管道的摩擦阻力系数; T-设计中采用的温度(K);T0=273.15K。 其中λ按流动状态分为以下三种计算公式: a.当Re≤2100时,属层流状态:λ=64/Re; b.当Re=2100~3500时,属临界状态:λ=0.03+(Re-2100)/(65Re-100000) c.当Re>3500时,属湍流状态, 对于钢管和PE管λ=0.11(K/d+68/Re)0.25 对于铸铁管λ=0.102236(1/d+5158dv/Q)0.284 =0.102236(1/d+1824.9Re)0.284 可见λ又与以下参数有关 ν-标准状态下燃气的运动粘度,m2/s; K -管壁内表面的当量绝对粗糙度,mm。 在计算低压燃气管道阻力损失时,还应考虑因高程差而引起的燃气附加压力。规范中给出低压管道附加压力的计算公式为: ΔH=10×(ρk-ρ)×h 式中: △H-燃气的附加压力,Pa; 可见影响压降的参数还有 ρk -空气的密度,kg/m3;取1.29kg/m3 ρ-燃气的密度,kg/m3;h -管道的终、起点高程差,m。 综上所述,影响压降的参数有L、Q、d、ρk、ρ、ν、K。将这些参数分类,其中ρk、ρ、ν、K这些是与气体性质及管材不同而变化的物性参数;而L、Q、d 是跟管段相关的参数,不同管段有不同的L、Q、d值。那么由公式可以知道,当物性参数ρk、ρ、ν、K固定即选定气体及管材后,压降只与L、Q、d的值不同而不同;当管段的L、Q、d值不变时,换用不同气种或选用不同管材会得到不同压降。基于以上分析,我们的程序也应该做成参数驱动的参数化的程序,即计算结果随着参数的改变而自动改变。 1.2程序制作 1.2.1界面制作 图2为水力计算程序的界面:

水力计算教材

燃气工程庭院户内水力计算 重庆市川东燃气工程设计研究院 齐海鸥 2010.01

= 6.26 ?10λ 5ρ dv 0.25 Q 2 ) Q d 1 一、水力计算基础知识 水力计算的目的:树立“成本意识”,合理的确定管网的管径、流量、压力 (压力降)。 由于项目公司所做设计多为小区内的燃气管道,因此这里主要介绍小区庭 院燃气管道水力计算、户内燃气管道水力计算、商业用户燃气管道水力计算。 1、水力计算步骤 (1)选择一条最不利管路(离已知压力点最远的一条管路),标好节点及 管道长度; (2)确定节点流量; (3)初选管径,再进行校核并修改; (4)完善水力计算图(标管径,压力降,节点压力)。 2 、水力计算的基本公式 (1)总压力降=局部压力降+沿程压力降 (简化计算:总压力降=1.05~1.1 倍沿程压力降) (2)压力降计算公式: A 、低压管道计算公式 ?P l 7 Q 2 d T T 0 B 、中压管道计算公式 P 2 - P 22 L = 1.4 ?109 ( K d + 192.2 5 ρ T T 0 C 、速度控制 低压管道流速控制在 5m-8m (经济流速为 6m ),中压管道流速控制在 10- 16m 。 3、燃气小时计算流量的确定 燃气管道及设备的通过能力都应按燃气计算月的小时最大流量进行计算。 小时计算流量的确定,关系着燃气输配系统的经济性和可靠性。确定燃气小时 计算流量的方法有两种:不均匀系数法和同时工作系数法。

(1)不均匀系数法 适用于城镇燃气分配管道计算流量,对于整个城市管网的水力计算一般用此方法。计算公式如下: Q h=(1/n)·Q a 式中:Q h—燃气小时计算流量(m3/h); Q a—年燃气用量(m3/a); n—燃气最大负荷利用小时数(h);其值n=(365×24)/K m K d K h K m—月高峰系数。计算月的日平均用气量和年的日平均用气量之比; K d—日高峰系数。计算月中的日最大用气量和该月日平均用气量之比; K h—小时高峰系数。计算月中最大用气量日的小时最大用气量和该日小时平均用气量之比; 居民生活和商业用户用气的高峰系数,应根据该城镇各类用户燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料,经分析研究确定。当缺乏用气量的实际统计资料时,结合当地具体情况,可按下列范围选用。月高峰系数取1.1~1.3;日高峰系数取1.05~1.2;小时高峰系数取 2.2~ 3.2。 工业企业和燃气汽车用户燃气小时计算流量,宜按每个独立用户生产的特点和燃气用量(或燃料用量)的变化情况,编制成月、日、小时用气负荷资料确定。 采暖通风和空调所需燃气小时计算流量。可按国家现行的标准《城市热力网设计规范》CJJ34有关热负荷规定并考虑燃气采暖通风和空调的热效率折算 确定。 (2)同时工作系数法 在设计庭院燃气支管和室内燃气管道时,燃气的小时计算流量,应根据所有燃具的额定流量及其同时工作系数确定。计算公式如下: Q h=K t(∑KNQ n)(公式1)式中Q h—燃气管道的计算流量(m3/h);

燃气管网水力计算方法

《现代燃气工程》结课论文 ------------------------------------------------------------------------ 题目:燃气管网水力计算 姓名:王朋飞 学号:S2******* 教师:范慧方

引言 随着能源结构的不断改变,燃气开发规模和应用规模的不断扩大。城市燃气管网是现代化城市人民生活和工业生产的一种主要能源配送方式,燃气输配管网的设计和运行要求对系统进行水力计算,获取必要的参数。 燃气输配管网系统由高度整体化的管网所组成,在系统内燃气压力和流量变化很大,需要通过水力计算来确定管网中每一管段的尺寸(如管径、管径)、材质等参数以及压缩机的台数功率以保证既向用户合理地供应天然气,又能降低操作管理费用。[1] 同时,考虑在满足用户用气量的前提下,当某一条或几条管道的使用有一定的压力要求时,水力计算数据可确定在这种最大承受压力下管道各个节点的压力,从而保证管网的正常运行。另外,水力计算也用于调整各个调压阀的出口压力来适应事故工况下输送压力的要求。 随着燃气事业的发展,燃气输配管网系统也日趋庞大和复杂,为了掌握燃气在管道内的运行规律,合理地确定管道系统的设计和改造方案,保证管道系统的优化运行,提高管道系统的调度管理水平,解决管网流动的动态特性,在一些比较大型的城市燃气管网的水力计算分析中,必须要依靠相关的计算分析软件进行,以减少手工量和人工误差。

1燃气管网水力计算 燃气是可压缩流体,一般情况下管道内燃气的流动是不稳定流,由压送机站开动压缩机不同台数的工况以及用户用气量变化的工况,这些因素都导致了燃气管道内燃气压力和流量的变化。管内燃气沿程压力下降会引起燃气密度的减小。但是在低压管道中燃气密度变化可以忽略不计。所以,除了单位时间内输气量波动大的超高压天然气长输管线要用不稳定流进行计算外,在大多数情况下,设计燃气管道时都将燃气流动按稳定流计算。此外,很多情况下,燃气管道内的流动可认为是等温的,其温度等于埋管周围土壤的温度。燃气管网按照敷设形式可分为两大类:枝状管网和环状管网。[2]下面就分别介绍两种形式的管网的水力计算特点和方法。 1.1枝状管网水力计算 1.1.1枝状管网水力计算特点 枝状管网是由输气管段和节点组成。任何形状的枝状管网,其管段数P 和节点数m 的关系均符合: 1P m =- 燃气在枝状管网中从气源至各节点只有一个固定流向,输送至某管段的燃气只能由一条管道供气,流量分配方案也是唯一 的,枝状管道的转输流量只有一个数值,任意 管段的流量等于该管段以后(顺气流方向)所 有节点流量之和,因此每一管段只有唯一的流 量值,如图1所示。 管段3-4的流量为: 10985443q q q q q Q ++++=- 管段4-8的流量为: 109884q q q Q ++=-

《城镇燃气规划规范》GB/T 51098-2015

《城镇燃气规划规范》GB/T 51098-2015 目录 1总则 2术语 3基本规定 4用气负荷 4.1 负荷分类 4.2 负荷预测 4.3 规划指标 5燃气气源 6燃气管网 6.1 压力级制 6.2 管网布置 6.3 水力计算 7调峰及应急储备 7.1 调峰 7.2 应急储备 8燃气厂站 8.1 一般规定 8.2 天然气厂站 8.3 液化石油气厂站 8.4 汽车加气站 8.5 人工煤气厂站 9运行调度系统 附录A 城镇燃气规划编制需调研收集的资料及规划编制内容 附录B 燃气设施用地指标 本规范用词说明 引用标准名录 1总则 1 总则 1.0.1 为提高城镇燃气规划的科学性、合理性,贯彻节能减排政策,保障供气安 全,促进燃气行业技术进步,指导城镇燃气工程建设,制定本规范。 1.0.2 本规范适用于城市规划或镇规划中的燃气规划的编制。 1.0.3 城镇燃气规划应结合社会、经济发展情况,坚持安全稳定、节能环保、节 约用地的原则,以城市、镇的总体规划和能源规划为依据,因地制宜进行编制。

1.0.4 城镇燃气规划除应符合本规范外,尚应符合国家现行有关标准的规定。 2术语 2 术语 2.0.1 集中负荷concentrated load 大型工业用户、燃气电厂、大型燃气锅炉房等对管网布局和稳定运行构成较大影响的负荷。 2.0.2 可中断用户interruptible customer 在系统事故、气源不足或供气高峰等特定时段内,可中断供气的用户。 2.0.3 不可中断用户uninterruptible customer 停止供气将严重影响生活秩序或威胁设备及人身安全的用户。 2.0.4 非高峰期用户off-peak customer 在低于城镇燃气管网年平均日供气量时才用气的用户。 2.0.5 负荷曲线load curve 在一定时间内,一类或多类用户负荷叠加后的用气量变化曲线,包括:年负荷曲线、周负荷曲线、日负荷曲线。年负荷曲线反映月负荷波动,周负荷曲线反映日负荷波动,日负荷曲线反映小时负荷波动。 2.0.6 小时负荷系数hourly load coefficient 年平均小时用气量与高峰小时用气量的比值。 2.0.7 日负荷系数daily load coefficient 年均日负荷与高峰日负荷的比值,表示负荷变化的程度。数值越接近于1,表明用气越均衡。 2.0.8 最大负荷利用小时数the maximum load utilization hours 年总用气量与高峰小时用气量的比值。 2.0.9 最大负荷利用日数the maximum load utilization days 年总用气量与高峰日用气量的比值。 2.0.10 用气结构structure of gas consumption 不同种类燃气用户年用气量占年总用气量的百分比。 2.0.11 年负荷增长率yearly load growth rate 当年用气增长量与上年用气量的比值。 2.0.12 负荷密度load density

燃气管道水力计算

目录 目录 (1) 常用水力计算Excel程序使用说明 (1) 一、引言 (1) 二、水力计算的理论基础 (1) 1.枝状管网水力计算特点 (1) 2.枝状管网水力计算步骤 (2) 3.摩擦阻力损失,局部阻力损失和附加压头的计算方法 (2) 3.1摩擦阻力损失的计算方法 (2) 3.2局部阻力损失的计算方法 (3) 3.3附加压头的计算方法 (4) 三、水力计算Excel的使用方法 (4) 1.水力计算Excel的主要表示方法 (5) 2.低压民用内管水力计算表格的使用方法 (5) 2.1计算流程: (5) 2.2计算模式: (6) 2.3计算控制: (6) 3.低压民用和食堂外管水力计算表格的使用方法 (7) 3.1计算流程: (7) 3.2计算模式: (7) 3.3计算控制: (7) 4.低压食堂内管水力计算表格的使用方法 (8) 4.1计算流程: (8) 4.2计算模式: (8) 4.3计算控制: (9) 5.中压外管水力计算表格的使用方法 (9) 5.1计算流程: (9) 5.2计算模式: (9) 5.3计算控制: (10) 6.中压锅炉内管水力计算表格的使用方法 (10) 6.1计算流程: (10) 6.2计算模式: (10) 6.3计算控制: (11) 四、此水力计算的优缺点 (11) 1.此水力计算的优点 (11) 1.1.一个文件可以计算不同气源的水力计算 (11) 1.2.减少了查找同时工作系数,当量长度的繁琐工作 (12) 1.3.进行了计算公式的选择 (12) 1.4.对某些小细节进行了简单出错控制 (12) 2.此水力计算的缺点 (12) 2.1不能进行环状管网的计算 (12)

城镇燃气用不锈钢管道相关国家规范的要求.docx

6燃气管道和调压设施 6.1 一般规定 6.1.2 燃气管道的设计使用年限不应小于 30 年。 《城镇燃气设计规范》GB50028-2006 第 10 章燃气的应用 10. 2. 3室内燃气管道宜选用钢管,也可选用铜管、不锈钢管、铝塑复合管和连接用软 管,并应分别符合第10. 2.4~ 10. 2. 8 条的规定。 10. 2. 6 室内燃气管道选用不锈钢管时应符合下列规定: 1薄壁不锈钢管: 1)薄壁不锈钢管的壁厚不得小于0. 6mm(DN15及以上 ) ,其质量应符合现行国家标准《流体 输送用不锈钢焊接钢管》 GB/T 12771 的规定; 2) 薄壁不锈钢管的连接方式,应采用承插氩弧焊式管件连接或卡套式管件机械连接,并宜优先选用承插氩弧焊式管件连接。承插氩弧焊式管件和卡套式管件应符合有关标准的规定。 GB50028第 378 页对不锈钢管规定的要求,管道的连接方式一般可以分为以下六大类:螺纹连接、法兰连接、焊接连接、承插连接、粘接连接、机械连接(如胀接、压接、卡压、卡 套等)。 10.2.12 室内燃气管道的阻力损失,可按本规范第6.2.5 条和第 6.2.6 条的规定计算。室内燃气管道的局部阻力损失宜按实际情况计算。 10.2.29燃气水平干管和高层建筑立管应考虑工作环境温度下的极限变形,当自然补偿不能满足要求时,应设置补偿器;补偿器宜采用Ⅱ形或波纹管形,不得采用填料型。 3 薄壁不锈钢管和不锈钢波纹管必须有防外部损坏的保护措施。 《城镇燃气室内工程施工与质量验收规范》CJJ94-2009 2术语 城镇燃气室内工程indoor gas engineering 指城镇居民、商业和工业企业用户内部的燃气工程系统,含引入管到各用户燃具和用气设备 之间的燃气管道( 包括室内燃气道及室外燃气管道) 、燃具、用气设备及设施。 室内燃气管道internal gas pipe 从用户引入管总阀门到各用户燃具和用气设备之间的燃气管道。 引入管 service pipe 室外配气支管与用户室内燃气进口管总阀门( 当无总阀门时,指距室内地面高处) 之间的管道。含沿外墙敷设的燃气管道。配气支管指最靠近燃气用户的室外燃气配气管道。 4室内燃气管道安装及检验 一般规定 燃气管道穿过建筑物基础、墙和楼板所设套管的管径不宜小于表的规定;高层建筑引入管 穿越建筑物基础时,其套管管径应符合设计文件的规定。 表燃气管道的套管公称尺寸 燃气管DN10 DM15 DN20 DN25 DN32 DN40 DN50 DN65 DN80 DN100 DN150

低压燃气管道水力计算公式

燃气管道输送水力计算 一、适用公式 燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。 但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。 二、低压燃气管道水力计算公式: 1、层流状态R e≤2100 λ=64/R e R e=dv/γ ΔP/L=1.13×1010(Q0/d4)γρ0(T/T0) 2、临界状态R e=2100~3500 λ=0.03+(R e-2100)/(65 R e-1×105) ΔP/L=1.88×106[1+(11.8 Q0-7×104dγ)/(23.0Q0-1×105dγ)](Q02/d5)ρ0(T/T0) 3、紊流状态R e≥3500 1)钢管λ=0.11[(Δ/d)+(68/ R e)]0.25 ΔP/L=6.89×106[(Δ/d)+192.26(dγ/ Q0)]0.25(Q02/d5)ρ0(T/T0)2)铸铁管λ=0.102[(1/d)+4960(dγ/ Q0)]0.284 ΔP/L=6.39×106[(1/d)+4960(dγ/ Q0)]0.284(Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa)L——管道计算长度(m)λ——燃气管道的摩阻系数Q0——燃气流量(Nm3/h) d——管道内径(mm)ρ0——燃气密度(kg/Nm3) γ——0℃和101.325kPa时的燃气运动粘度(m2/s) Δ——管壁内表面的绝对当量粗糙度(mm)R e——雷诺数 T——燃气绝对温度(K)T0——273K v——管内燃气流动的平均速度(m/s) (摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)

城镇燃气管道设计技术规定

城镇燃气管道设计技术规定 邯郸市瑞达设计有限公司 二O一三年十月

城镇燃气管道设计技术规定 1 设计规定 1.1 设计准则 (1)城镇燃气输配系统压力级制和总体布置应该根据城镇地理环境、燃气供应来源和供气压力、用户需求和用户分布、原有燃气设施状况等因素合理确定。 (2)燃气管道的设计使用年限不应小于30年。 (3)城镇燃气管道应按设计压力分级进行建设、运行维护和使用。管道的管径应本着合理利用压力降的原则,在水力计算的基础上确定。 (4)不同压力级制的燃气管道之间应通过调压装置连接。 (5)燃气管道与附件的材质应根据管道的使用条件确定,其性能应符合国家现行相关标准的规定。 (6)钢质燃气管道和钢质附属设备应根据环境条件和管道的重要程度采取腐蚀控制措施。 (7)当高层建筑内使用燃气作为燃料时,应采用管道供气。 (8)在管道安装结束后,应进行管道吹扫、强度试验和严密性试验,并应符合国家现行标准的规定。 1.2输配管道 (1)燃气管道与建(构)筑物及其他管道之间应保持一定的距离,并应符合国家有关标准的规定。液态液化石油气管道不得穿越居住

区。 (2)地下燃气管道不得从建筑物和地上大型构筑物的下面穿越,但架空的建筑物和大型构筑物除外。 (3)地下燃气管道应根据冻土层、路面荷载和道路结构层确定其埋设深度。当埋设深度不能满足技术要求时,应采取有效的安全防护措施。 (4)当燃气管道架空敷设时,应采取防止车辆冲撞等外力损害的有效防护措施。 (5)当地下燃气管道穿过排水管沟、热力管沟、电缆沟、联合地沟、隧道及其他沟槽时,应采取防止燃气泄露到沟槽中的措施。 (6)当燃气管道穿越铁路、公路、河流和城镇组要干道时,应采取不影响交通、水利设施和保证燃气管道安全的防护措施。 (7)在设计压力大于或等于0.01MPa的燃气管道上,应根据检修和事故处置的要求设置分段阀门。 (8)在燃气管道的建设和维护过程中,应保证施工人员及其周边环境的安全。 (9)对停用或废弃的燃气管道应采取有效措施,保障其安全性。(10)新建的下列燃气管道必须采用外防腐层辅以阴极保护系统的腐蚀控制措施: (a)设计压力大于0.4MPa的燃气管道; (b)公称直径大于或等于100mm,且设计压力大于或等于0.01MPa 的燃气管道。

燃气用气量和计算流量、燃气管道水力计算及附录

12.3燃气用气量和计算流量 12.3.1燃气用气量 民用建筑燃气用气量包括:居民生活用气量、商业用气量、采暖及通风空调用气量。 1用户的燃气用气量,应考虑燃气规划发展量,根据当地的用气量指标确定。 2居民生活和商业的用气量指标,应根据当地居民生活和商业用气量的统计数据分析确定。当缺乏实际统计资料时,结合当地情况参考选用附录D中附表D.1-1、附表D.1-2、附表D.1-3、附表D.1-4数据。 3采暖用气量,可根据当地建筑物耗热量指标确定(方案和初步设计阶段也可按附录D中附表D.1-5中数据估算)。 4通风空调用气量,取冬季热负荷与夏季冷负荷中的大值确定(方案和初步设计阶段也可按附录D中附表D.1-6中数据估算)。 5居住小区集中供应热水用气量,参照《建筑给水排水设计规范》GB50015中的耗热量计算。 12.3.2燃气计算流量 1燃气管道的计算流量,应为小时最大用气量。 2居民生活和商业用户 1)已知各用气设备的额定流量和台数等资料时,小时计算流量按以下方法确定:

①居民生活用燃气计算流量: Q h=∑kNQ n(12.3.2-1) 式中Q h——居民用户燃气计算流量(m3/h); k——用气设备同时工作系数,可参照附录E中附表E.1-1、附表E.1-2的数据; N——同种设备数目; Q n——单台用气设备的额定流量(m3/h)。 ②商业用户(包括宾馆、饭店、餐馆、医院、食堂等)的燃气计算流量,一般按所有用气设备的额定流量并根据设备的实际使用情况确定。 2)当缺乏用气设备资料时,可按以下方法估算燃气小时计算流量(0℃,101325Pa,以下同): Q hl=(1/n)Q a (12.3.2-2) n=(365×24)/K m K d K h (12.3.2-3) 式中Q hl——燃气小时计算流量(m3/h); Q a——年燃气用量(m3/a); n ——年燃气最大负荷利用小时数(h); K m——月高峰系数,计算月的日平均用气量和年的日平均用气量之比; K d——日高峰系数,计算月中的日最大用气量和该月日平均用气量之比;

城镇燃气管道计算

城镇燃气管道计算 目录 低压燃气管道采用什么水力计算公式? 高、次高、中压燃气管道采用什么水力计算公式? 城镇燃气管道水力计算中摩擦阻力系数久如何计算? 城镇燃气管道的局部阻力如何计算? 城镇燃气管网与分配管道流量如何计算? 城镇燃气环状管网的计算步骤如何? 城镇燃气管网计算采用什么计算机软件? 城镇燃气高压管道的壁厚如何计算? 城镇燃气高压管道的强度设计系数F 应如何确定? 城镇燃气高压管道穿越铁路、公路和人员集中场所以及门站、储配站、调压站内管道强度设计系数F 应如何确定? 高压燃气管道焊接支管连接口的补强应符合哪些规定? 高压燃气管道附件的设计和选用应符合哪些规定?

低压燃气管道采用什么水力计算公式? 低压燃气管道单位长度的摩擦阻力损失按下式计算: 2750 6.2610v q P T L d T λρ?=? ( 4.1.36 ) 式中 △P - 燃气管道摩擦阻力损失,Pa ; λ― 燃气管道摩擦阻力系数; L ― 燃气管道的计算长度,m ; q v - 燃气管道的计算流量,m3/h ; d ― 管道内径,mm ; ρ― 燃气的密度,kg/m 3; T ― 设计中所采用的燃气温度,K ; T 0 -273.15 , K 。 高、次高、中压燃气管道采用什么水力计算公式? 高、次高、中压燃气管道水力计算公式如下: 222101250 1.2710v q P P T Z L d T λρ-=? ( 4.1.37 ) 式中 Pl ― 燃气管道起点压力,绝压KPa ; P2 ― 燃气管道终点压力,绝压KPa ; Z ― 压缩系数,当燃气压力<l.2MPa ( G )时z 取l ; L ― 燃气管道计算长度,km ; λ ― 燃气管道摩擦阻力系数。 城镇燃气管道水力计算中摩擦阻力系数久如何计算? 燃气管道的摩擦阻力系数λ可按柯列勃洛克(F.Colebrook )公式计算。 2lg 3.7K d ?= ? ( 4.1.38 ) 式中 lg ― 常用对数; K ― 管壁内表面的当量绝对粗糙度,其大小与管道材质、制管工艺、施工焊接情况、燃气质量、管材存放年限和条件等因素有关。一般采用旧钢管的K 值。当输送天然气与气态液化石油气时取0.1mm ,输送人工燃气时取0.15; Re ― 雷诺数。 城镇燃气管道的局部阻力如何计算? 由于管道摩擦阻力系数λ是反映燃气沿着管道长度方向流的阻力系数。在燃气管道压力损失计算中,尚需考虑流体在流经管道扩大、缩小、弯头、三通及阀门等配件的局部阻力损失。局部阻力可按下式计算:

燃气管道水力计算

燃气管道水力计算 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

1.高压、中压燃气管道水力计算公式: 式中:P 1 —燃气管道起点的压力(绝对压力,kPa); P 2 —燃气管道终点的压力(绝对压力,kPa); Q —燃气管道的计算流量(m3/h); L —燃气管道的计算长度(km); d —管道内径(mm); ρ—燃气的密度(kg/m3);标准状态下天然气的密度一般取0.716 kg/m3。 Z—压缩因子,燃气压力小于1.2MPa(表压)时取1; T—设计中所采用的燃气温度(K); T — 273.15(K)。 λ—燃气管道的摩擦阻力系数; 其中燃气管道的摩擦阻力系数λ的计算公式: K —管道内表面的当量绝对粗糙度(mm);对于钢管,输送天然气和液化石油气时取0.1mm,输送人工煤气时取0.15mm。 R e —雷诺数(无量纲)。流体流动时的惯性力Fg和粘性 力(内摩擦力)Fm之比称为雷诺数。用符号Re表示。层流状态,R e 2100;临界状态,R e =2100~3500;紊流状态,R e >3500。 在该公式中,燃气管道起点的压力 1 P,燃气管道的计算长度L,燃气密度ρ,燃气温度T,压缩因子Z为已知量,燃气管道终点的压力2 P,燃气管道的计算流量Q,燃气管道内径d为参量,知道其中任意两个,都可计算其中一个未知量。

如燃气管道终点的压力 P的计算公式为: 2 某DN100中压输气管道长0.19km,起点压力0.3MPa,最大流量1060 m3/h,输气温度为20℃,应用此公式计算,管道末端压力 P=0.29MPa。 2 2.低压燃气管道水力计算公式: 式中:P —燃气管道的摩擦阻力损失(Pa); Q —燃气管道的计算流量(m3/h); L —燃气管道的计算长度(km); λ—燃气管道的摩擦阻力系数; d —管道内径(mm); ρ—燃气的密度(kg/m3); Z—压缩因子,燃气压力小于1.2MPa(表压)时取1; T—设计中所采用的燃气温度(K); — 273.15(K)。 T

城镇燃气用不锈钢管道相关国家规范的要求

《城镇燃气技术规范》GB50494—2009 6.1.2燃气管道得设计使用年限不应小于6燃气管道与调压设施?6.1一般规定? 30年。 《城镇燃气设计规范》 GB50028—2006 第10章燃气得应用 10。2.3 室内燃气管道宜选用钢管,也可选用铜管、不锈钢管、铝塑复合管与连接用软管,并应分别符合第10.2.4~10.2。8条得规定. 10.2.6 室内燃气管道选用不锈钢管时应符合下列规定: 1 薄壁不锈钢管: 1)薄壁不锈钢管得壁厚不得小于0。6mm(DN15及以上),其质量应符合现行国家标准《流体输送用不锈钢焊接钢管》GB/T 12771得规定; 2)薄壁不锈钢管得连接方式,应采用承插氩弧焊式管件连接或卡套式管件机械连接,并宜优先选用承插氩弧焊式管件连接。承插氩弧焊式管件与卡套式管件应符合有关标准得规定. GB50028第378页10、2、6对不锈钢管规定得要求,管道得连接方式一般可以分为以下六大类:螺纹连接、法兰连接、焊接连接、承插连接、粘接连接、机械连接(如胀接、压接、卡压、卡套等)。 10.2.12 室内燃气管道得阻力损失,可按本规范第6.2.5条与第6。2.6条得规定计算。 室内燃气管道得局部阻力损失宜按实际情况计算。 10。2。29 燃气水平干管与高层建筑立管应考虑工作环境温度下得极限变形,当自然补偿不能满足要求时,应设置补偿器;补偿器宜采用Ⅱ形或波纹管形,不得采用填料型。 3 薄壁不锈钢管与不锈钢波纹管必须有防外部损坏得保护措施。 《城镇燃气室内工程施工与质量验收规范》CJJ94-2009 2 术语 2、0、1 城镇燃气室内工程indoor gas engineering 指城镇居民、商业与工业企业用户内部得燃气工程系统,含引入管到各用户燃具与用气设备之间得燃气管道(包括室内燃气道及室外燃气管道)、燃具、用气设备及设施。 2、0、2室内燃气管道internal gas pipe 从用户引入管总阀门到各用户燃具与用气设备之间得燃气管道。 2、0、3 引入管 service pipe 室外配气支管与用户室内燃气进口管总阀门(当无总阀门时,指距室内地面1、Om高处)之间得管道。含沿外墙敷设得燃气管道。配气支管指最靠近燃气用户得室外燃气配气管道。 4 室内燃气管道安装及检验 4、1 一般规定 4、1、5 燃气管道穿过建筑物基础、墙与楼板所设套管得管径不宜小于表4、1、5得规定;高层建筑引入管穿越建筑物基础时,其套管管径应符合设计文件得规定. 表4、1、5 燃气管道得套管公称尺寸

城市中低压燃气管网水力计算软件的开发

城市中低压燃气管网水力计算软件的开发 【摘要】以AutoCAD为平台,采用AutoCADObjectARX的二次开发技术实现对燃气管网水力计算图的数据自动化处理,包括建立管网节点和管段信息的拓扑关系、读取Excel表中的管网数据并显示到图中,以获得管网的可视化;采用C#语言,编制了中低压燃气管网水力计算软件。 【关键词】AutoCADObjectARX;水力计算软件 前言 随着天然气在城市燃气的大力推广应用,城市燃气管网的规模越来越大,在进行规划、设计和管网运行时,水力计算需要处理的数据越来越多。准确、快速地生成水力计算图,实现水力计算与管网AutoCAD图形的无缝结合成为提高燃气管网水力计算效率的重要途径[1-4]。为准确、快速的生成水力计算图及进行水力计算,本文开发了城市中低压燃气管网水力计算软件GASNET。软件包含了两个模块,以AutoCAD为平台开发的ARX模块和采用C#语言开发的水力计算模块。 1 燃气管网图的ObjectARX二次开发 本文采用ObjectARX技术针对AutoCAD进行二次开发,目的是开发一个ARX模块,当AutoCAD载入该模块后,仅需人工输入管网图上所有节点的节点号,即可实现对燃气管网图的数据自动化处理。 ObjectARX是AutoDesk公司针对AutoCAD平台上的二次开发而推出的一个开发软件包,能真正快速的访问AutoCAD图形数据库。使用ObjectARX编程的函数的执行速度可以大大提高。(1)管网节点数据的处理 ARX模块功能需求:对于水力计算图中的管网节点,一般有三个信息需要在图中显示:节点号、节点流量和节点压力。将这些节点信息保存在一个Excel表中,通过ARX模块可把Excel 表中的节点信息显示到管网图中相应的节点上。 算法:打开管网图后,运行MLeader命令对管网图上的节点进行标识,添加相应的节点号。提取管网图中每个节点的节点号,判断是否有重复的节点号,如有,则报错,提醒操作人员修改;如无,则读取Excel表中的节点信息,并依次绘制到管网图中的相应节点上。 (2)管网管段数据的处理 ARX模块功能需求:对于水力计算图中的管网管段,一般有6个信息需要在图中显示:管段号、管材、管径、管段长度、管段流量和管段压力降。将这些信息保存在Excel表中,通过ARX模块可把Excel表中的管段信息显示到图中相应的管段上。 算法:为方便管段数据的处理,ARX模块要为图中所有的节点和管段建立拓扑关系。①找到图中所有的节点和管段,为每个节点找到与其相连接的管段,并保存信息;②为每个管段找到与其连接的管段,并保存信息;③给定任意两个节点,查找其相连的路径,如果此路径上的管段路线上还有其他的节点,则这两个节点之间定义为没有相连管段;否则,此路径上的管段定义为相连管段。 ARX模块可实现的功能:遍历管网图中所有节点,找出所有节点之间的相连管段并编制管段号;记录连接管段的两个节点号和自动测量管段长度;将管网的管段号、管段长度、管段起点号及管段终点号等数据保存到Excel表中,以备水力计算软件调用;将水力计算软件生成的Excel表中的数据绘制到管网图的相应管段上,以生成水力计算图。

相关文档
相关文档 最新文档