文档库 最新最全的文档下载
当前位置:文档库 › 细胞生物学第四版试题简要题库

细胞生物学第四版试题简要题库

细胞生物学第四版试题简要题库
细胞生物学第四版试题简要题库

题库(70%)

第一章绪论

一、名词解释

细胞生物学:是研究和揭示细胞基本生命活动规律的科学,它从显微、亚显微与分子水平上研究细胞结构与功能、细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号传导,细胞基因表达与调控,细胞起源与进化等重大生命过程。

二、填空题

1、细胞分裂有直接分裂、减数分裂和有丝分裂三种类型。

2、细胞学说、能量转化与守恒和达尔文进化论并列为19世纪自然科学的“三大发现”。

3、细胞学说、进化论和遗传学为现代生物学的三大基石。

4、细胞生物学是从细胞的显微、亚显微和分子三个水平,对细胞的各种生命活动展开研究的科学。

5、第一次观察到活细胞有机体的人是荷兰学者列文虎克。

三、问答题:

1、当前细胞生物学研究中的3大基本问题是什么?

答:①基因组是如何在时间与空间上有序表达的?

②基因表达产物是如何逐级组装成能行使生命活动的基本结构体系及各种细胞器的?这种自组装过程的调控程序与调控机制是什么?

③基因及其表达的产物,特别是各种信号分子与活性因子是如何调节诸如细胞的增殖、分化、衰老与凋亡等细胞最重要的生命活动过程?

2、细胞生物学的主要研究内容有哪些?

答:①生物膜与细胞器②细胞信号转导③细胞骨架体系④细胞核、染色体及基因表达⑤细胞增殖及其调控⑥细胞分化及干细胞生物学⑦细胞死亡⑧细胞衰老⑨细胞工程⑩细胞的起源与进化

3、细胞学说的基本内容是什么?

答:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。

②每个细胞作为一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命有所助益。

③新的细胞可以通过已存在的细胞繁殖产生。

第二章细胞的统一性与多样性

一、名词解释

1、细胞:生命活动的基本单位。

2、病毒(virus):非细胞形态生命体,最小、最简单的有机体,必须在活细胞体内复制繁殖,彻底寄生性。

3、原核细胞:没有核膜包裹的和结构的细胞,细菌是原核细胞的代表。

4、质粒:细菌的核外DNA。裸露环状DNA分子,可整合到核DNA中,常做基因工程载体。

二、选择题

1、在真核细胞和原核细胞中共同存在的细胞器是( D )

A. 中心粒

B. 叶绿体

C. 溶酶体

D. 核糖体

2、在病毒与细胞起源的关系上,下面的哪种观点越来越有说服力( C )

A. 生物大分子→病毒→细胞

B. 生物大分子→细胞和病毒

C. 生物大分子→细胞→病毒

D. 都不对

3、原核细胞与真核细胞相比较,原核细胞具有( C )

A.基因中的内含子

B. DNA复制的明显周期性

C.以操纵子方式进行基因表达的调控

D.转录后与翻译后大分子的加工与修饰

4、下列没有细胞壁的细胞是( A )

A、支原体

B、细菌

C、蓝藻

D、植物细胞

5、SARS病毒是( B )。

A、DNA病毒

B、RNA病毒

C、类病毒

D、朊病毒

6、原核细胞的呼吸酶定位在( B )。

A、细胞质中

B、细胞质膜上

C、线粒体内膜上

D、类核区内

7、逆转录病毒是一种(D )。

A、双链DNA病毒

B、单链DNA病毒

C、双链RNA病毒

D、单链RNA病毒

三、填空题

1. 细菌的细胞质膜的多功能性是区别于其他细胞质膜的一个十分显著的特点。

2.真核细胞的基本结构体系包括以脂质及蛋白质为基础的细胞膜结构系统、以核酸和蛋白质为主要成分的遗传信息传递系统与表达系统和有特异蛋白质装配构成的细胞骨架系统。

3、原核细胞和真核细胞核糖体的沉降系数分别为 70S 和80S 。

4、细胞的形态结构与功能的相关性和一致性是很多细胞的共同特点。

5、与动物细胞相比较,植物细胞所特有的结构与细胞器有细胞壁、液泡、叶绿体;而动物细胞特有的结构有中心粒。

6. DNA病毒的核酸的复制与转录一般在细胞核中,而RNA病毒核酸的复制与转录一般在细胞质中。

7.目前在细胞与病毒的起源与进化上,更多的学者认为生物大分子先演化成细胞,再演化成病毒。

8.根据核酸类型的不同,引起人类和动物产生疾病的病毒中,天花病毒、流感病毒属于 DNA 病毒;引起艾滋病的HIV属于 RNA 病毒。

四、判断题

1、病毒的增殖又称病毒的复制,与细胞的一分二的增殖方式是一样的。×

2、细菌核糖体的沉降系数为70S,由50S大亚基和30S小亚基组成。√

3、细菌的DNA复制、RNA转录与蛋白质的翻译可以同时同地进行,即没有严格的时间上的阶段性及空间上的区域性。√

4. 病毒是仅由一种核酸和蛋白质构成的核酸蛋白质复合体。×

5. 蓝藻的光合作用与某些具有光合作用的细菌不一样,蓝藻在进行光合作用时不能放出氧气,而光合细菌则可以放出氧气。×

6. 古核生物介于原核生物与真核生物之间,从分子进化上来说古核生物更近于真核生物。√

五、翻译

1、virus 病毒

2、viroid 类病毒

3、HIV 艾滋病毒

4、bacteria 细菌

六、问答题:

1、如何理解“细胞是生命活动的基本单位”这一概念?

答:①细胞是构成有机体的基本单位

②细胞是代谢与功能的基本单位

③细胞是有机体生长与发育的基本单位

④细胞是繁殖的基本单位,是遗传的桥梁

⑤细胞是生命起源的归宿,是生物进化的起点

⑥细胞是物质结构、能量与信息过程精巧结合的综合体

⑦细胞是高度有序的,具有自组装能力的自组织体系。

2、简述原核细胞与真核细胞最根本的区别。

答:①基因组很小,多为一个环状DNA分子

②没有以膜为基础的各类细胞器,也无细胞核膜

③细胞的体积一般很小

④细胞膜的多功能性

⑤DNA复制、RNA转录与蛋白质的合成的结构装置没有空间分隔,可以同时进行,转录与翻译在时间空间上是连续进行的。

3、为什么说支原体是最小最简单的细胞?

答:一个细胞生存与增殖必须具备的结构装置与技能是:细胞膜、DNA与RNA、一定数量的核糖体以及催化主要酶促反应所需的酶,可以推算出一个细胞所需的最小体积的最小极限直径为140nm~200nm,而现在发现的最小的支原体的直径已经接近这个极限,因此比支原体更小更简单的结构似乎不能满足生命活动的需要。

4、简述细胞的基本共性。

答:①相似的化学组成

②脂-蛋白体系的生物膜

③相同的遗传装置

④一分为二的分裂方式

5、简述病毒在细胞内的复制过程。

答:①DNA病毒:侵染细胞后进入细胞核【除痘病毒】,在病毒DNA的指导下利用宿主细胞的代谢系统转录、翻译病毒的“早期蛋白”;早期蛋白主要功能是调节病毒基因的表达以及病毒DNA的复制,在不同程度上影响宿主DNA复制与转录;病毒DNA复制之后表达晚期蛋白,晚期蛋白是病毒包装过程中所需要的蛋白。

②RNA病毒:一般在细胞质内复制,RNA(+)病毒的RNA本身就可以作为模板,利用宿主的代谢系统翻译出病毒的早期蛋白,而RNA(-)病毒必须以本身RNA为模板,利用病毒本身携带的RNA聚合酶合成病毒的mRNA;早期蛋白抑制宿主DNA的复制与转录,催化病毒基因组RNA的合成;病毒mRNA与宿主的核糖体相结合翻译出病毒的结构蛋白的等晚期蛋白;新复制的RNA 与病毒蛋白组装。

③反转录病毒:在宿主细胞核中复制,以病毒的RNA为模板在病毒自身携带的逆转录酶作用下合成病毒DNA分子,整合到宿主DNA,以次段整合DNA为模板,合成新的病毒基因组RNA和mRNA,后者与核糖体相结合,翻译出各种病毒蛋白,其中包括病毒的反转录酶,最后装配子代病毒。

第三章细胞生物学研究方法

一、名词解释

分辨率:能区分开两个质点间的最小距离。

原位杂交:用标记的核酸探针通过分子杂交确定特异核苷酸序列在染色体上或在细胞中的位置的方法。

放射自显影:放射性同位素的电离射线对乳胶的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。

细胞融合:两个或多个细胞融合成一个双核或多核的现象。

细胞克隆:用单细胞克隆培养或通过药物筛选的方法从某一细胞系中分离出单个细胞,并由此增殖形成的,具有基本相同的遗传性状的细胞群体。

细胞系:原代细胞传40~50代次,并且仍保持原来染色体的二倍体数量及接触抑制的行为,这种传代细胞称作细胞系。

细胞株:有特殊的遗传标记或性质,这样的细胞系可以成为细胞株。

原代细胞:从有机体取出后立即培养的细胞

传代细胞:进行传代培养后的细胞

单克隆抗体:产生抗体的淋巴细胞同肿瘤细胞融合

荧光漂白恢复技术:使用亲脂性或亲水性的荧光分子,如荧光素、绿色荧光蛋白等与蛋白或脂质偶联,用于检测所标及分子在活体细胞表面或细胞内部的运动及其迁移率。

二、填空题

1. 光学显微镜的组成主要分为光学放大系统、照明系统和镜架及样品调节系统三大部分。

2.目前,植物细胞培养主要有单倍体细胞培养和原生质体培养两种类型。

3. 电子显微镜使用的是电磁透镜,而光学显微镜使用的是玻璃透镜。

4.体外培养的细胞,不论是原代细胞还是传代细胞,一般不保持体内原有的细胞形态,而呈现出两种基本形态即成纤维样细胞和上皮样细胞。

5. 荧光共振能量转移技术可用于检测某一细胞中两个蛋白质分子是否存在直接的作用。

6.在电镜制样技术中,通常用的技术有超薄切片技术,由此获得的切片厚度一般为40-50nm;冷冻蚀刻技术主要用来观察膜断裂面上的蛋白质颗粒的膜表面形貌特征。

7. 在活细胞内研究蛋白质相互作用常用的技术是酵母双杂交技术。

8.可用于验证细胞膜的流动性的技术是荧光漂白恢复技术。

9.细胞生物学研究常用的模式生物有大肠杆菌、酵母、线虫、

果蝇、斑马鱼、小鼠、拟南芥。

三、判断题

1. 荧光显微镜技术是在光镜水平,对特异性蛋白质等大分子定性定位的最有力的工具。×

2.扫描电子显微镜不能用于观察活细胞,而相差或微分干涉显微镜可以用于观察活细胞。√

3.体外培养的细胞,一般仍保持机体内原有的细胞形态。×

四、选择题

1.由小鼠骨髓瘤细胞与某一B淋巴细胞融合后形成的细胞克隆所产生的抗体称( A )。

A、单克隆抗体

B、多克隆抗体

C、单链抗体

D、嵌合抗体

2.提高普通光学显微镜的分辨能力,常用的方法有( A )

A、利用高折射率的介质(如香柏油)

B、调节聚光镜,加红色滤光片

C、用荧光抗体示踪

D、将标本染色

3.冰冻蚀刻技术主要用于( A )

A、电子显微镜

B、光学显微镜

C、微分干涉显微镜

D、扫描隧道显微镜

4.分离细胞内不同细胞器的主要技术是( A )

A、超速离心技术

B、电泳技术

C、层析技术

D、光镜技术

5.Feulgen反应是一种经典的细胞化学染色方法,常用于细胞内( C )

A、蛋白质的分布与定位

B、脂肪的分布与定位

C、DNA的分布与定位

D、RNA的分布与定位

6.流式细胞术可用于测定( D )

A、细胞的大小和特定细胞类群的数量

B、分选出特定的细胞类群

C、细胞中DNA、RNA或某种蛋白的含量

D、以上三种功能都有

7.直接取材于机体组织的细胞培养称为( B )。

A、细胞培养

B、原代培养

C、传代培养

D、细胞克隆

8. 扫描电子显微镜可用于(D )。

A、获得细胞不同切面的图像

B、观察活细胞

C、定量分析细胞中的化学成分

D、观察细胞表面的立体形貌

9. 细胞培养时,要保持细胞原来染色体的二倍体数量,最多可传代培养( B)代。

A、10~20

B、40~50

C、20~30

D、90~100

10. 在杂交瘤技术中,筛选融合细胞时常选用的方法是(C)。

A、密度梯度离心法

B、荧光标记的抗体和流式细胞术

C、采用在选择培养剂中不能存活的缺陷型瘤系细胞来制作融合细胞

D、让未融合的细胞在培养过程中自然死亡

五、问答题:

1.简述超薄切片的样品制片过程包括哪些步骤?

答:固定、包埋、切片、染色

2.试述光学显微镜与电子显微镜的区别。

答:

分辨本领光源透镜真空成像原理光学显微镜200nm 可见光玻璃不要求样本对光的吸收形成明暗反差和颜色变化电子显微镜0.2nm 电子束电磁要求样品对电子的散射和透射形成明暗反差

3.细胞组分的分离与分析有哪些基本的实验技术?哪些技术可用于生物大分子在细胞内的定性与定位研究?

答:组分分离:超离心技术

生物大分子定位与定性研究:免疫荧光技术、免疫电镜技术、放射自显影技术、原位杂交技术

第四章细胞质膜

一、名词解释

细胞质膜:指围绕在细胞最外层,由脂质、蛋白质和糖类组成的生物膜。

生物膜:细胞内的膜系统与细胞质膜。

脂质体:根据磷脂分子可在水相中形成稳定的脂双层膜的现象而制备的人工膜。

红细胞影:哺乳动物成熟的红细胞经低渗处理后,质膜破裂,同时释放出血红蛋白和胞内其他可溶性蛋白,这时红细胞仍然保持原来的基本形状和大小。

膜骨架:指细胞质膜下与膜蛋白相连的由纤维蛋白组成的网架结构。它从力学上参与维持细胞质膜的形状并协助质膜完成多种生理功能。

二、填空

1、胆固醇是动物细胞质膜膜脂的重要组分,它对于调节膜的流动性,增强膜的稳定性以及降低水溶性物质的通透性都有重要作用。

2、质膜的流动镶嵌模型强调了膜的流动性和膜蛋白分布不对称。

3、证明膜的流动性的实验方法有荧光抗体免疫标记和荧光漂白恢复技术。

4、构成膜的基本成分是膜脂,体现膜功能的主要成分是膜蛋白。

5、就溶解性来说,质膜上的外周蛋白是水溶性,而整合蛋白是脂溶性。

6、在生物膜中,饱和脂肪酸含量越多,相变温度愈高,流动性越低

三、选择

1、红细胞膜骨架蛋白的主要成分是( A )

A、血影蛋白

B、带3蛋白

C、血型糖蛋白

D、带7蛋白

2、有关膜蛋白不对称性的描述,不正确的是( C )

A、膜蛋白的不对称性是指每一种膜蛋白分子在细胞膜上的分布都具有明确的方向性

B、膜蛋白的不对称性是生物膜完成时空有序的各种生理功能的保障

C、并非所有的膜蛋白都呈不对称分布

D、质膜上的糖蛋白,其糖残基均分布在质膜的ES面。

3、1972年,Singer 和 Nicolson提出了生物膜的( C )

A、三明治模型

B、单位膜模型

C、流体镶嵌模型

D、脂筏模型

4、目前被广泛接受的生物膜分子结构模型为( C ):

A、片层结构模型

B、单位膜结构模型

C、流动镶嵌模型

D、板块镶嵌模型

5、细胞外小叶断裂面是指( C ):

A、ES

B、PS

C、EF

D、PF

6、荧光漂白恢复技术验证了( B )

A、膜蛋白的不对称性

B、膜蛋白的流动性

C、脂的不对称性

D、以上都不对

7、最早证明膜是有脂双层组成的实验证据是( C ):

A、对红细胞质膜的显微检测

B、测量膜蛋白的移动速度

C、从血细胞中提取脂质,测定表面积,在于与细胞表面积比较

D、以上都是

四、判断

1、相对不溶于水的亲脂性小分子能自由穿过细胞质膜√

2、在生物膜中,不饱和脂肪酸含量越多,相变温度愈低,流动性越大。√

3、细胞膜上的膜蛋白是可以运动的,其运动方式与膜脂相同。×

4、相变温度以下,胆固醇可以增加膜的流动性;相变温度以上,胆固醇可限制膜的流动性。×

5、原核生物和真核生物细胞质膜内都含有胆固醇。×

6、膜的流动性不仅是膜的基本特征之一,同时也是细胞进行生命活动的必要条件。√

7、质膜对所有带电荷的分子都是不通透的。×

8、人鼠细胞的融合实验,不仅直接证明了膜蛋白的流动性,同时也间接证明了膜脂的流动性。√

9、膜蛋白的跨膜区均呈α螺旋结构。×

10、若改变处理血的离子强度,则血影蛋白和肌动蛋白都消失,说明这两种蛋白不是内在蛋白。√

五、问答

1、生物膜的基本特征是什么?这些特征与它的生理功能有什么关系?

答:生物膜的基本特征:流动性、膜蛋白的不对称性

关系:①由于细胞膜中含有一定量的不饱和脂肪酸,所以细胞膜处于动态变化中,与之相适应的功能是,物质的跨膜运输、胞吞、胞吐作用、信号分子的转导

②细胞膜中的各组分的分布是不均匀额蛋白质,有的嵌入磷脂双分子层,有的与之以非共价键的形式连接都是适应功能的需要。

2、根据其所在的位置,膜蛋白有哪几种?各有何特点?

答:①外在(外周)膜蛋白:水溶性,靠离子键或其它弱健与膜表面的蛋白质分子或膜脂分子结合,易分离,如磷脂酶。

②脂锚定蛋白:通过糖脂或脂肪酸锚定,共价结合

③内在(整合)膜蛋白:水不溶性,形成跨膜螺旋,与膜结合紧密,需用去垢剂使膜崩解后才可分离。

3.何谓膜内在蛋白?膜内在蛋白以什么方式与膜脂相结合?

答:内在(整合)膜蛋白:水不溶性,形成跨膜螺旋,与膜结合紧密,需用去垢剂使膜崩解后才可分离。

①膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用

②跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过钙离子、镁离子等阳离子与带负电的磷脂极性头相互作用

③某些膜蛋白通过在细胞质基质一侧的半胱氨酸残基上共价结合的脂肪酸分子,插入脂双层之间,进一步加强膜蛋白与脂双层的结合力。

4、什么是去垢剂?常用的种类是什么?

答:去垢剂:是一端亲水,一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂

离子去垢剂:十二烷基硫酸钠(SDS)非离子去垢剂:TritonX-100

5、细胞质膜各部分的名称及英文缩写。

答:质膜的细胞外表面 ES细胞外小叶断裂面 EF

质膜的原生质表面 PS原生质小叶断裂面 PF

6、膜的流动性有何生理意义?有哪些影响因素?如何用实验去证明膜的流动性?

答:意义:物质的跨膜运输、胞吞、胞吐作用、信号分子的转导,生长细胞完成生长、增殖所必须的。

影响因素:脂肪酸链的长短;温度;胆固醇

证明实验:荧光抗体免疫标记实验、荧光漂白恢复技术

7、哺乳动物成熟的红细胞之所以成为研究质膜的结构及其与膜骨架的关系,主要原因是什么?

答:①没有细胞核和内膜系统

②细胞膜既有良好的弹性又有较高的强度

③细胞膜和膜骨架的蛋白比较容易纯化分析

六、实验设计与分析

如何用实验证明细胞膜的流动性?

答:荧光漂白恢复技术:利用荧光素标记细胞膜脂或膜蛋白,然后用高强度的激光束照射细胞膜表面某一区域(1~2um)使该区域的荧光淬灭(光漂白),由于膜的流动性,淬灭区域的高度逐渐增加,最后恢复到与周围的荧光强度相等(荧光恢复),根据荧光恢复的速率可推算出膜蛋白或膜脂的扩散速率。

第五章物质的跨膜运输

一、名词解释

载体蛋白:是一类膜内在蛋白,几乎所有类型的生物膜上存在的多次跨膜的蛋白质分子。通过与特定溶质分子的结合,引起一系列构想改变以介导溶质分子的跨膜转运。

通道蛋白:由几个蛋白亚基在膜上形成的孔道,能使适宜大小的分子及带电荷的溶质通过简单的自由扩散运动从膜的一侧到另一侧。

简单扩散:小分子物质以热自由运动的方式顺着电化学梯度或浓度梯度直接通过脂双层进出细胞,不需要细胞提供能量,也无需膜转运蛋白的协助

被动运输:指溶质顺着电化学梯度或浓度梯度,在膜转运蛋白协助下的跨膜转运方式,又叫协助扩散。

主动运输:物质逆浓度梯度或电化学梯度,由低浓度向高浓度一侧进行跨膜转运的方式,需要细胞提供能量,需要载体蛋白的参与。

胞吞作用:细胞通过质膜内陷形成囊泡,将胞外的生物大分子、颗粒性物质或液体等摄取到细胞内,以维持细胞正常的代谢活动。

胞吐作用:细胞内合成的生物分子和代谢物以分泌泡的形式与质膜融合而将内含物分泌到细胞表面或细胞外的过程。

ATP驱动泵:是ATP酶直接利用水解ATP提供的能量,实现离子或小分子逆浓度梯度或电化学梯度的跨膜运输。

胞饮作用:细胞对液体物质虎细微颗粒物质的摄入和消化过程,由质膜内陷形成吞饮小泡,将转运的物质包裹起来进入细胞质,被吞物质被细胞降解后利用。大多数的真核细胞都能通过胞饮作用摄入和消化所需的液体物质和溶质。

二、填空

1、Ca2+泵主要存在于细胞质膜和细胞器膜上,其功能是将Ca2+输出细胞或泵入内质网中储存起来,维持细胞质基质内低浓度的Ca2+。

2、小分子物质通过简单扩散、被动运输、主动运输等方式进入细胞内,而大分子物质则通过吞噬或胞饮作用进入细胞内。

3、H+泵存在于细菌、真菌、植物细胞的细胞膜上,将H+泵出细胞外或细胞器内,使周转环境和细胞器呈酸性。

4、协同运输是间接消耗ATP的主动运输方式,根据物质运输方向与离子沿梯度的转移方向,可分为同向协同运输和反向协同运输两种方式。

5、根据激活信号的不同,离子通道可分为___电压门通道___、__配体门通道_和应力激活通道。

6、根据胞吞的物质是否有专一性,将胞吞作用分为 受体介导 的胞吞作用和 非特异性 的胞吞作用。 三、选择

1、不属于主动运输的物质跨膜运输是( C )

A 、质子泵

B 、钠钾泵

C 、协助扩散

D 、膜泡运输

2、真核细胞的胞质中,Na +和K +

平时相对胞外,保持( C )。

A 、浓度相等

B 、[Na +]高,[K +

]低

C 、[Na +]低,[K +]高

D 、[Na +] 是[K +

]的3倍

3、植物细胞和细菌的协同运输通常利用哪一种浓度梯度来驱动( B )

A 、Ca 2+

B 、H +

C 、Na +

D 、K +

4、细胞内低密度脂蛋白进入细胞的方式为( D )

A 、协同运输

B 、协助扩散

C 、穿胞运输

D 、受体介导的胞吞作用 5、关于F-质子泵,正确的描述是( D )

A 、存在于线粒体和内膜系统的膜上

B 、工作时,通过磷酸化和去磷酸化实现构象改变

C 、运输时,是由低浓度向高浓度转运

D 、存在于线粒体内膜和叶绿体的类囊体膜上 6、下列物质中,靠主动运输进入细胞的物质是( D )

A 、H 20

B 、甘油

C 、O 2

D 、Na +

7、胞吞和胞吐作用是质膜中进行的一种( C )

A 、自由扩散

B 、协助扩散

C 、主动运输

D 、协同运输 8、关于钙泵的描述不正确的是( D )

A 、主要存在于线粒体膜、内质网膜和质膜上

B 、本质是一种钙ATP 酶

C 、质膜上钙泵的作用是将钙离子泵出细胞

D 、内质网膜上的钙泵的作用是将钙离子泵入细胞 9、小肠上皮吸收葡萄糖是通过( C )

A 、钠钾泵

B 、钠离子通道

C 、钠离子协同运输

D 、氢离子协同运输 10、下列各组分中,可通过自由扩散通过细胞质膜的一组是( B )

A 、H 20、CO 2、Na +

B 、甘油、苯、O 2

C 、葡萄糖、N 2、CO 2

D 、蔗糖、苯、Cl - 11、Na +-K +泵由α、β两个亚基组成,当α亚基上的( C )磷酸化才可能引起α亚基构象变化,而将Na +

泵出细胞外。 A 、苏氨酸 B 、酪氨酸 C 、天冬氨酸 D 、半胱氨酸 12、下列哪种运输不消耗能量( B )。

A 、胞饮作用

B 、协助扩散

C 、胞吞作用

D 、主动运输 四、判断

1、被动运输不需要ATP 及载体蛋白,而主动运输则需要ATP 及载体蛋白。×

2、P 、V 型质子泵在结构上与钙泵相似,在转运质子的过程中,涉及磷酸化和去磷酸化。×

3、通道蛋白介导的物质的运输都属于被动运输。√

4、质膜对所有带电荷的离子是高度不透性的。×

5、通道蛋白必须首先与溶质分子结合,然后才能允许其通过。×

6、动物细胞内低钠高钾的环境主要是通过质膜的离子通道来完成。√

7、载体蛋白允许溶质穿膜的速率比通道蛋白快得多。×

8、载体蛋白之所以由称通透酶,是因为它具有酶的一些特性,如对底物进行修饰。×

9、协助扩散是一种被动运输的方式,它不消耗能量,但要在通道蛋白或载体蛋白的协助下完成。√ 10、钠钾泵是真核细胞中普遍存在的一种主动运输方式。×

11、胞吞作用与胞吐作用是大分子物质与颗粒性物质的跨膜运输方式,也是一种主动运输,需要消耗能量。√ 12、主动运输是物质顺化学梯度的跨膜运输,并需要专一的载体参与。×

13、Ca 2+

是细胞内广泛存在的信使,细胞质中游离的Ca2+浓度比胞外高。×

14、Na +—K +

泵既存在于动物细胞质膜上,也存在于植物细胞质膜上。×

15、胞吞作用和胞吞作用都是通过膜泡运输的方式进行的,不需要消耗能量。× 五、问答

1、比较P-型离子泵、V-型质子泵、F-型质子泵和ABC 超家族。 答:

2、说明钠钾泵的工作原理及其生物学意义。

答:工作原理:在细胞内侧α亚基与钠离子相结合促进ATP 水解,α亚基上的天冬氨酸残基引起α亚基的构象发生变化,将钠离子泵出细胞外,同时将细胞外的钾离子与α亚基的另一个

类型 运输物质

结构与功能的特点

存在部位

P 型

钠离子、钾离子、钙离子、氢离子

含两个α亚基:磷酸化与去磷酸化

ATP 结合位点

含两个β亚基:调节作用, 产生磷酸化中间体、

维持膜电位;细胞渗透平衡;吸收营养;

钠钾离子泵:动物胞质膜

钙离子泵:真核细胞质膜、内质网、叶绿体、液泡膜

氢质子泵:真菌、细菌、植物质膜

V 型 氢质子,逆电化学梯度泵入细胞器 多个跨膜亚基,亚基部分可将ATP 水解, 维持胞基质PH 中性和细胞器内的PH 酸性

动物细胞的胞内体膜、溶酶体膜、破骨细胞、 肾小管细胞质膜、植物酵母、真菌液泡膜 F 型 氢质子,顺电化学梯度将氢质子

泵出细胞器

多个跨膜亚基,释放能量驱动质子泵合成ATP (氧化磷酸化、光合磷酸化)

线粒体内膜、叶绿体类囊体膜、细菌质膜

ABC 型

离子和各种小分子

2个跨膜结构 2个胞质侧ATP 结构域

细菌到人类各种生物体中

位点结合,使其去磷酸化,α亚基构象再度发生变化将钾离子泵进细胞,完成整个循环。钠离子依赖的磷酸化和钾离子依赖的去磷酸化引起构象变化有序交替发生。每一个循环消耗一个ATP分子泵出三个钠离子和泵进两个钾离子。

生物学意义:①维持细胞膜电位②维持动物细胞渗透平衡③吸收营养

3、比较载体蛋白与通道蛋白的异同

答:相同点:化学本质均为蛋白质、分布均在细胞的膜结构中,都有控制特定物质跨膜运输的功能。

不同点:载体蛋白:与特异的溶质结合后,通过自身构象的改变以实现物质的跨膜运输。

通道蛋白:①通过形成亲水性通道实现对特异溶质的跨膜转运

②具有极高的转运效率

③没有饱和值

④离子通道是门控的(其活性由通道开或关两种构象调节)

4、比较胞饮作用和吞噬作用的异同。

答:相同点:都是主动运输方式,逆浓度梯度或电化学梯度运输物质,都是从胞外运输到胞内

不同点:

类型胞吞物胞吞泡的大小转运方式

胞饮作用溶液小于150nm胞饮泡连续发生的组成型过程

吞噬作用大颗粒大于250nm吞噬泡受体介导的信号触发过程

5、试述大分子的受体介导的内吞途径及消化作用。

答:转运物与受体结合→胞吞泡(网格蛋白包被膜泡)→脱包被→脱包被转运泡→与胞内体融合→转运物与受体分离→转运至溶酶体→转运物被消化→机体利用→受体有三个去向:一是:返回原来的质膜结构域,重新发挥受体的作用(LDL受体)二是:进入溶酶体中被笑话掉,受体下行调节(与表皮生长因子EGF结合的细胞表面受体)三是:被运至细胞另一侧的质膜,跨细胞转运(母鼠的抗体从血液通过上皮细胞进入母乳中,乳鼠肠上皮细胞将抗体摄入体内)

6、比较组成型胞吐途径和调节型胞吐途径的特点及其生物学意义。

答:组成型胞吐途径:从高尔基体反面管网区TGN分泌的囊泡想质膜流动,并与之融合,成为质膜的组成或释放出去。

调节型胞吐途径:分泌细胞产生的分泌物储存在分泌泡内,当细胞在受到胞外信号刺激时,分泌泡与质膜融合并将内含物释放出去。

7、动物细胞、植物细胞和原生动物细胞应付低渗膨胀的机制有何不同?

答:①动物细胞若是离开机体基本无应付能力,但在弹性范围内可膨胀;若在机体内,依靠钠钾泵维持,整个机体会做出缓冲尽量减少损失

②植物细胞依靠其坚韧的细胞壁防止膨胀和破裂,能耐受较大的跨膜渗透差异,并具有相应的生理功能,如保持植物茎坚挺,调节气孔的气体交换

③原生动物的单细胞可通过伸缩泡调节,收集排除多余的水分。

8、细胞质基质中Ca2+浓度低的原因是什么?

答:①正常情况下,细胞膜对钙离子是高度不通透的;

②在质膜和内质网膜上有钙离子泵,能将钙离子从基质中泵出细胞外或泵进内质网腔中

③某些细胞的质膜有钠钙交换泵,能将钠离子通入到细胞内,而将钙离子从基质中泵出

④某些细胞的线粒体膜也能将钙离子从基质中转运到线粒体基质中。

第六章线粒体和叶绿体

一、名词解释

1、氧化磷酸化:电子从NADH或FADH2经呼吸链传递给氧形成水时,同时伴有ADP磷酸化形成ATP。

2、电子传递链(呼吸链):在线粒体内膜上存在有关氧化磷酸化的脂蛋白复合物,它们是传递电子的酶体系,由一系列可逆地接受和释放电子或氢质子的化学物质所组成在内膜上相互关联地有序排列。

3、ATP合成酶:ATP合成酶广泛存在于线粒体、叶绿体、异养菌和光合细菌中,是生物能量转换的核心酶。该酶分别位于线粒体内膜、类囊体膜或质膜上。参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下催化合成ATP。

4、光合磷酸化:由光照引起的电子传递与磷酸化作用相偶联而生成ATP的过程。

二、填空题

1、原核细胞的呼吸酶定位在_细胞质膜_上,而真核细胞则位于_线粒体膜__上。

2、线粒体的质子动力势是由__质子浓度梯度__和__H+跨膜电差_共同构成的。

3、线粒体的内膜通过内陷形成嵴,从而扩大了_内膜的表面积,增加了内膜的代谢效率__。

4、叶绿体的超微结构可以被分为_叶绿体膜_、__类囊体___和__叶绿体基质三个部分。

5、植物细胞中的叶绿体是由__原质体___分化而来。在叶绿体的分裂过程中,分裂环的缢缩是叶绿体分裂的细胞动和学基础。

6、光合作用单位是由__反应中心色素__和___捕光色素__组成的功能单位。

7、光合作用根据是否需要光可分为光反应和暗反应。

8、线粒体在超微结构上可分内膜、外膜、基质和膜间隙。

9、线粒体各部位都有其特异的标志酶,内膜是细胞色素氧化酶、外膜是单胺氧化酶、膜间隙是腺苷酸激酶。

10、叶绿体中每 3 个H+穿过叶绿体ATP合成酶,生成1个ATP分子,线粒体中每 2 个H+穿过ATP合成酶,生成1个ATP分子。

11、由线粒体异常病变而产生的疾病称为线粒体病,其中典型的是一种心肌线粒体病克山病。

12、光合作用的过程主要可分为三步:原初反应、电子传递和光合磷酸化和光碳同化。

13、在自然界中含量最丰富,并且在光合作用中起重要作用的酶是 Rubisco ,它的大亚基由叶绿体基因组编码,而小亚基由细胞核基因组编码。

14.当植物在缺乏NADP+时,会发生循环光合磷酸化。

15.线粒体和叶绿体一样,都是一种动态的细胞器,表现为分布和位置变化等。

三、选择题

1.叶绿体质子动力势的产生是因为( C )

A.膜间隙的pH值低于叶绿体基质的pH值;

B.膜间隙的pH值高于叶绿体基质的pH值;

C.类囊体腔的pH值低于叶绿体基质的pH值;

D.类囊体腔的pH值高于叶绿体基质的pH值。

2.下列那些组分与线粒体与叶绿体的半自主性相关( D )。

A、环状DNA

B、自身转录RNA

C、翻译蛋白质的体系

D、以上全是。

3.内共生假说认为叶绿体的祖先为一种( C )。

A、革兰氏阴性菌

B、革兰氏阳性菌

C、蓝藻

D、内吞小泡

4. 类囊体膜上电子传递的方向为( D )。

A.PSI → PSII → NADP+

B.PSI → NADP+→ PSII

C.PSI → PSII → H2O

D.PSII → PSI → NADP+

5.叶绿素是含有哪一类原子的卟啉衍生物( B )。

A.Mn2+

B.Mg2+

C.Ca2+

D.Fe2+

6.以下哪一种复合物不向线粒体膜间隙转移质子( B )。

A.复合物Ⅰ

B.复合物Ⅱ

C.复合物Ⅲ

D.复合物Ⅳ

7.细胞色素c氧化酶是( D )。

A.复合物Ⅰ

B.复合物Ⅱ

C.复合物Ⅲ

D.复合物Ⅳ

四、判断题

1、在真核细胞中ATP的形成是在线粒体和叶绿体细胞器中。×

2、线粒体和叶绿体都具有环状DNA及自身转录RNA与转译蛋白质的体系。√

3、ATP合成酶只存在于线粒体和叶绿体中。×

4 线粒体和叶绿体的DNA均以半保留的方式进行自我复制。√

五、问答题

1、为什么说线粒体和叶绿体是半自主性细胞器?

答:线粒体和叶绿体中有DNA、RNA、核糖体、氨基酸活化酶等,这两种细胞器均有自我繁殖所必须的基本组分,具有独立进行转录和翻译的功能。线粒体和叶绿体的绝大多数蛋白质是由核基因编码,在细胞质核糖体上合成,然后转移至线粒体或叶绿体内。这些蛋白质与线粒体或叶绿体的DNA编码的蛋白质协同作用。细胞核一方面提供了绝大部分的遗传信息,另一方面它具有关键的控制功能。即线粒体和叶绿体的自主程度是有限的,对核遗传系统有很大的依赖性,受核基因租及其自身基因组两套遗传系统的控制。

2. 试比较线粒体与叶绿体在基本结构方面的异同。

答:相同点:双层膜、外膜通透性高、含孔蛋白、内膜通透性低、均有膜间隙和基质

不同点:线粒体:内膜内陷成嵴,嵴上有基粒。内膜含有ATP合成酶,电子传递的复合体,为氧化磷酸化、ATP合成提供必要的保障。

叶绿体:内膜衍生而来的类囊体,外有类囊体膜,膜上有光合电子复合体,ATP合成酶,为光合磷酸化、ATP的合成提供必需的保障,内有类囊体腔

3. 试比较循环式和非循环式光合磷酸化的不同点。

答:非循环式:电子传递是一个开放的通道,产物出ATP外,还有NADPH(绿色植物)或NADH(光合细菌)

循环式:电子传递是一个闭合式回路,产物只有ATP。

4、试比较光合碳同化三条途径的主要异同点。

答:C3:CO2受体为RuBp。最初产物为甘油-3-磷酸。

C4:CO2受体为PEP。最初产物为草酰乙酸,固定在叶肉细胞中,脱羧在维管束鞘细胞中。

CAM:夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,参与C3反应,在叶肉细胞中。

5. 试比较线粒体的氧化磷酸化与叶绿体的光合磷酸化的异同点。

答:相同点:①需要完整的膜体系

②ATP的形成都是由H+移动所推动的

③叶绿体的CF1因子与线粒体的F1因子都具有催化ADP和Pi形成ATP的作用

不同点:①氧化磷酸化由物质氧化驱动电子传递,光合磷酸化由光能驱动

②氧化磷酸化耗氧,光合磷酸化放氧

③相关蛋白质复合物、酶不同

④叶绿体平均3个H质子穿过ATP合酶产生1个ATP,线粒体中平均2个H质子穿过ATP合酶产生1个ATP

6.简述线粒体与叶绿体的内共生起源学说和非共生起源学说的主要论点及其实验论据。

答:①内共生起源学说论:叶绿体起源于细胞内共生的蓝藻,其祖先是元和生物的蓝细菌即蓝藻;线粒体的祖先——原线粒体是一种革兰氏阴性菌

论据:①基因组和细菌基因组具有明显的相似性

②具备独立完整的蛋白合成系统

③分裂方式缢裂与细菌相似

④膜的性质与细菌相似

⑤其他佐证

②非共生起源学说论:真核细胞的前身是一个进化上比较高等的好氧细菌,解释了真核细胞核被膜的形成与演化的渐进过程,

没什么实验论据

第七章细胞质膜与内膜系统

一、名词解释

1、细胞质基质:真核细胞的细胞质中除去细胞器和内含物以外的、较为均质半透明的液态胶状物称为细胞质基质或胞质溶胶。

2、微粒体:为了研究ER的功能,常需要分离ER膜,用离心分离的方法将组织或细胞匀浆,经低速离心去除核及线粒体后,再经超速离心,破碎ER的片段又封合为许多小囊泡(直径约为100nm),这就是微粒体。

3、糙面内质网:细胞质内有一些形状大小略不相同的小管、小囊连接成网状,集中在胞质中,故称为内质网。内质网膜的外表面附有核糖体颗粒,则为糙面内质网,为蛋白质合成的部位。核糖体附着的膜系多为扁囊单位成分,普遍存在于分泌蛋白质的细胞中,其数量随细胞而异,越是分泌旺盛的细胞中越多。

4、内膜系统:细胞内在结构、功能乃至发生上相关的、由膜围绕的细胞器或细胞结构的统称,主要包括内质网、高尔基体、溶酶体、胞内体、分泌泡等。

5、分子伴侣:又称分子“伴娘”,细胞中,这类蛋白能识别正在合成的多肽或部分折叠的多肽,并与多肽的一定部位相结合,帮助这些多肽的转移、折叠或组装,但其本身并不参与最终产物的形成。

6、溶酶体:溶酶体几乎存在于所有的动物细胞中,是由单层膜围绕、内含多种酸性水解酶类、形态不一、执行不同生理功能的囊泡状细胞器,主要功能是进行细胞内的消化作用,在维

持细胞正常代谢活动及防御方面起重要作用。

7、残余小体:在正常情况下,被吞噬的物质在次级溶酶体内进行消化作用,消化完成,形成的小分子物质可通过膜上的载体蛋白转运至细胞质中,供细胞代谢用,不能消化的残渣仍留在溶酶体内,此时的溶酶体称为残余小体或三级溶酶体或后溶酶体。残余小体有些可通过外排作用排出细胞,有些则积累在细胞内不被排出,如表皮细胞的老年斑、肝细胞的脂褐质。

8、蛋白质分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。又称定向转运。

9、信号假说:1975年G.Blobel和D.Sabatini等根据进一步实验依据提出,蛋白合成的位置是由其N端氨基酸序列决定的。他们认为:?分泌蛋白在N端含有一信号序列,称信号肽,由它指导在细胞质基质开始合成的多肽和核糖体转移到ER膜;?多肽边合成边通过ER膜上的水通道进入ER腔。这就是“信号假说”。

10、共转移:肽链边合成边转移至内质网腔中的方式称为共转移。

11、后转移:蛋白质在细胞质基质中合成以后再转移到这些细胞器中,称为后转移。

12、信号肽:分泌蛋白的N端序列,指导分泌性蛋白到内质网膜上合成,在蛋白合成结束前信号肽被切除。

13、信号斑:在蛋白质折叠起来时其表面的一些原子特异的三维排列构成信号斑,构成信号斑的氨基酸残基在线性氨基酸序列中彼此相距较远,它们一般是保留在已完成的蛋白中,折叠在一起构成蛋白质分选的信号。

二、填空题

1、在糙面内质网上合成的蛋白质主要包括分泌蛋白、膜整合蛋白、细胞器驻留蛋白等。

2、蛋白质的糖基化修饰主要分为 N-连接和 O-连接;其中 N-连接主要在内质网上进行,指的是蛋白质上的天冬酰胺残基与 N乙酰葡萄糖胺直接连接,而 O-连接则是蛋白质上的丝氨酸或苏氨酸残基或羟赖氨酸或羟脯氨酸残基与 N-乙酰半乳糖胺直接连接。

3、肌细胞中的内质网异常发达,被称为肌质网。

4、原核细胞中核糖体一般结合在细胞质膜上,而真核细胞中则结合在粗面内质网上。

5、真核细胞中,光面内质网是合成脂类分子的细胞器。

6、内质网的标志酶是葡萄糖6-磷酸酶。

7、细胞质中合成的蛋白质如果存在信号肽,将转移到内质网上继续合成。如果该蛋白质上还存在停止转移序列,则该蛋白被定位到内质网膜上。

8、高尔基体三个功能区分别是顺面膜囊、中间膜囊和反面膜囊。

9、具有将蛋白进行修饰、分选并分泌到细胞外的细胞器是高尔基体。

10、被称为细胞内大分子运输交通枢纽的细胞器是高尔基体。

11、蛋白质的糖基化修饰中,N-连接的糖基化反应一般发生在内质网中,而O-连接的糖基化反应则发生在内质网和高尔基体中。

12、蛋白质的水解加工过程一般发生在高尔基体中。

13、从结构上高尔基体主要由单层扁平囊组成。

14、植物细胞中与溶酶体功能类似的结构是圆球体、中央液泡和糊粉粒。

15、根据溶酶体所处的完成其生理功能的不同阶段,大致可将溶酶体分为初级溶酶体、次级溶酶体和残余小体(三级溶酶体)。

16、溶酶体的标志酶是酸性磷酸酶。

17、被称为细胞内的消化器官的细胞器是溶酶体。

18、真核细胞中,酸性水解酶多存在于溶酶体中。

19、溶酶体酶在合成中发生特异性的糖基化修饰,即都产生 6-磷酸甘露糖。

20、电镜下可用于识别过氧化物酶体的主要特征是尿酸氧化酶常形成晶格状结构。

21、过氧化物酶体标志酶是过氧化氢酶。

22、植物细胞中过氧化物酶体又叫乙醛酸循环体。

23、信号假说中,要完成含信号肽的蛋白质从细胞质中向内质网的转移需要细胞质中的信号识别颗粒和内质网膜上的信号识别颗粒受体(停泊蛋白)的参与协助。

24、在内质网上进行的蛋白合成过程中,肽链边合成边转移到内质网腔中的方式称为共转移。而含导肽的蛋白质在细胞质中合成后再转移到细胞器中的方式称为后转移。

三、选择题

1、属于溶酶体病的是()。

A、台-萨氏病

B、克山病

C、白血病

D、贫血病

2、真核细胞中,酸性水解酶多存在于( D )。

A、内质网

B、高尔基体

C、中心体

D、溶酶体

3、真核细胞中合成脂类分子的场所主要是( A )。

A、内质网

B、高尔基体

C、核糖体

D、溶酶体

4、植物细胞中没有真正的溶酶体,( C )可起溶酶体的作用。

A、内质网

B、高尔基体

C、圆球体

D、乙醛酸循环体

5、被称为细胞内大分子运输交通枢纽大细胞器是( B )。

A、内质网

B、高尔基体

C、中心体

D、溶酶体

5、下列哪组蛋白质的合成开始于胞液中,在糙面内质网上合成()。

A、膜蛋白、核定位蛋白

B、分泌蛋白、细胞骨架

C、膜蛋白、分泌蛋白

D、核定位蛋白、细胞骨架

6、细胞内钙的储备库是( B )。

A、细胞质

B、内质网

C、高尔基体

D、溶酶体

7、矽肺是一种职业病,与溶酶体有关,其发病机制是( C )。

A、溶酶体的酶没有活性

B、溶酶体的数量不够

C、矽粉使溶酶体破坏

D、都不对

8、质子膜存在于( C )。

A、内质网膜上

B、高尔基体膜上

C、溶酶体膜上

D、过氧化物酶体膜上

9、下列蛋白质中,合成前期具有信号肽的是( C )。

A、微管蛋白

B、肌动蛋白

C、停泊蛋白

D、都不对

10、细胞核内的蛋白质主要通过()完成。)

A、跨膜运输

B、门控运输

C、膜泡运输

D、由核膜上的核糖体合成

四、判断题

1、细胞中蛋白质的合成都是在细胞质基质中进行的。( × )

2、溶酶体是一种异质性细胞器。(√)

3、由生物膜包被的细胞器统称为内膜系统。(×)

4、分泌功能旺盛的细胞,其糙面内质网的数量越多。(√)

5、氨基化是内质网中最常见的蛋白质修饰。(×)

6、O-连接的糖基化主要在内质网进行。(×)

7、在高尔基体的顺面膜囊上存在M6P的受体,这样溶酶体的酶与其他蛋白区分开来,并得以浓缩,最后以出芽的方式转运到溶酶体中。(×)

8、指导分泌性蛋白到糙面内质网上合成的决定因素是信号识别颗粒。(×)

五、简答题

1、信号假说的主要内容是什么?

答:分泌蛋白在N端含有一信号序列,称信号肽,由它指导在细胞质基质开始合成的多肽和核糖体转移到ER膜;多肽边合成边通过ER膜上的水通道进入ER腔,在蛋白合成结束前信号肽被切除。指导分泌性蛋白到糙面内质网上合成的决定因素是N端的信号肽,信号识别颗粒(SRP)和内质网膜上的信号识别颗粒受体(又称停泊蛋白docking protein, DP)等因子协助完成这一过程。

2、溶酶体是怎样发生的?它有哪些基本功能?

答:溶酶体几乎存在于所有的动物细胞中,是由单层膜围绕、内含多种酸性水解酶类、形态不一、执行不同生理功能的囊泡状细胞器,主要功能是进行细胞内的消化作用,在维持细胞正常代谢活动及防御方面起重要作用。(1)清除无用的生物大分子、衰老的细胞器及衰老损伤和死亡的细胞(自体吞噬)。(2)防御功能(病原体感染刺激单核细胞分化成巨噬细胞而被吞噬、消化)(异体吞噬)(3)其它重要的生理功能 a作为细胞内的消化器官为细胞提供营养b分泌腺细胞中,溶酶体摄入分泌颗粒参与分泌过程的调节;c参与清除赘生组织或退行性变化的细胞;d受精过程中的精子的顶体作用。

3、简述细胞质基质的功能。

答:物质中间代谢的重要场所;有细胞骨架的功能;蛋白质的合成、修饰、降解和折叠。

4、比较N-连接糖基化和O-连接糖基化的区别。

答:N-连接与O-连接的寡糖比较

特征N-连接O-连接

合成部位

合成方式

与之结合的氨基酸残基

最终长度

第一个糖残基

糙面内质网

来自同一个寡糖前体

天冬酰胺

至少5个糖残基

N-乙酰葡萄糖胺

糙面内质网或高尔基体

一个个单糖加上去

丝氨酸、苏氨酸、羟赖氨酸、羟脯氨酸

一般1-4个糖残基,但ABO血型抗原较长

N-乙酰半乳糖胺等

六、论述题

1、何为蛋白质分选?细胞内蛋白质分选的基本途径、分选类型是怎样的?已知膜泡运输有哪几种类型及其特点?

答:

蛋白质的分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。又称定向转运。细胞中蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中。

基本途径:

一条是在细胞质基质中完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体、细胞核及细胞质基质的特定部位,有些还可转运至内质网中;

另一条途径是蛋白质合成起始后转移至糙面内质网,新生肽边合成边转入糙面内质网腔中,随后经高尔基体转运至溶酶体、细胞膜或分泌到细胞外,内质网与高尔基体本身的蛋白成分的分选也是通过这一途径完成的。

蛋白质分选的四种基本类型:

1、蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。

2、膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。

3、选择性的门控转运:指在细胞质基质中合成的蛋白质通过核孔复合体选择性地完成核输入或从细胞核返回细胞质。

4、细胞质基质中的蛋白质的转运。

膜泡运输的类型及其特点:

?网格蛋白有被小泡的运输,负责蛋白质从高尔基体TGN向质膜、胞内体或溶酶体和植物液泡运输。从TGN区出芽并由网格蛋白包被形成转运泡。

?COPⅡ有被小泡的运输,负责从内质网到高尔基体的物质运输。由5种蛋白亚基组成的蛋白包被COPⅡ小泡,具有对转运物质的选择性并使之浓缩。选择性体现在a. COPⅡ小泡能识别并结合跨膜内质网胞质面一端的信号序列;b. 跨膜内质网蛋白的一端作为受体与ER腔的可溶性蛋白结合。

?COPⅠ有被小泡的运输,负责回收、转运内质网逃逸蛋白返回内质网。逃逸的内质网蛋白的回收是通过回收信号介导的特异性受体完成,这类受体能以COPⅠ有被小泡的形式捕获逃逸分子,并将其回收到内质网。

第八章蛋白质分选与膜泡运输

二、选择题

四、简答题

1、试述高尔基体的形态结构及其功能。

高尔基体为极性细胞器,其由扁平膜囊、大囊泡和小囊泡组成。高尔基体最富有特征性的结构是由一些(通常是4~8个)排列较为整齐的扁平膜囊堆叠在一起,构成了高尔基体的主体结构。扁囊多呈弓形,也有的呈半球形或球形。在扁平膜囊的两侧分别为:①顺式面(或形成面)—小囊泡,使扁平膜囊的膜成分不断得到补充。②反式面(或成熟面)—大囊泡,使物质通过胞吐分泌到细胞外。

高尔基体的功能:

高尔基体与糖蛋白的加工与运输:转移至内质网中的蛋白质进行糖基化修饰,即Asn-2分子N-乙酰葡萄糖胺-9分子甘露糖-3分子葡萄糖。在高尔基体中要对蛋白质的糖链进行进一步加工,切除5分子甘露糖,加上2分子N-乙酰葡萄糖胺、2分子半乳糖、2分子唾液酸,有时还要加上岩藻糖。从而完成了糖蛋白的合成。

高尔基体与溶酶体的形成:溶酶体酶(实质是糖蛋白),其糖链有含标志性基团甘露糖-6-磷酸,M6P。高尔基体反式膜囊上有M6P受体,可识别M6P。M6P受体结合具有M6P标记的溶酶体酶,并使之从反式面出芽成为特异性的运输囊泡,然后与一种酸性的晚胞内体融合。在酸性环境下,二者分离,M6P去磷酸化成为溶酶体的酶,最后形成溶酶体。M6P受体可以返回到高尔基体的反式膜囊上再利用。

高尔基体与多糖的合成:除了蛋白质的糖基化以外,高尔基体中也可以进行多糖的合成。动物细胞中合成的多糖主要是透明质酸,这是一种氨基聚糖,是细胞外基质的主要成分。植物细胞壁中的几种多糖包括纤维素、果胶,也是在高尔基体中合成的。

高尔基体形成植物细胞膜和细胞壁:高尔基体形成分泌一些含有糖类物质的小泡,小泡排列在分裂细胞的中央,逐渐缩合融合成大泡,形成细胞板。细胞被一分为二。在质膜外进行纤维素的合成以形成细胞壁。

2、内质网与蛋白质的合成、加工修饰和转运过程如何?

①蛋白质多肽链转移进入内质网腔中

内质网膜上存在信号肽识别颗粒(SRP)和SRP受体。SRP指导信号肽与SRP受体结合,使多肽链连接到RER膜上。SRP受体部位有一个转移器(易位子),它将SRP及其结合的蛋白质多肽链拉至其附近,SRP受体的GTP水解产生能量,使SRP被释放,露出多肽链。多肽链顺着转移器进入内质网腔中。多肽链进入内质网膜腔后,其前端的信号肽序列最终被信号肽酶降解。

②转移至内质网膜腔中的蛋白的折叠和组装

内质网腔中的一些分子,能够识别多肽链,帮助其转运、折叠和组装,但是并不参与多肽链最终产物的形成。如驻留蛋白,分子伴侣(hsp70)。

③转移至内质网膜腔中的蛋白的糖基化

在内质网中,以多帖醇作为载体,合成糖链。多萜醇---2分子N-乙酰葡萄糖胺---9分子甘露糖---3分子葡萄糖。糖基转移酶将糖链从多萜醇上解下,连接到蛋白质多肽链的天冬酰胺(Asn)的NH2上,称为N-连接的糖基化。

④转移至内质网膜腔中的蛋白的羟基化

新生肽的脯氨酸和赖氨酸要进行羟基化,形成羟脯氨酸和羟赖氨酸。

⑤内质网膜蛋白的形成

在转运过程中,信号序列的N-端始终朝向内质网的外侧,与转移器通道内的信号序列结合位点(受体)结合,其后的肽链以袢环的形式通过通道。多肽链进入内质网膜后,其前端的信号肽序列最终被信号肽酶降解。如果在多肽链上存在肽链停止转移信号(停止转移肽),当其识别转移器时,使多肽链停止向内质网中的转移,多肽链折叠形成膜蛋白。

⑥ER膜外侧的膜蛋白——脂锚定蛋白

新合成的蛋白质通过酰基化同ER膜上的糖脂结合,将自己锚定在ER膜上。形成的脂锚定糖蛋白通过进一步的运输成为ER膜外侧的膜蛋白。

五、论述题

1、何为蛋白质分选?细胞内蛋白质分选的基本途径、分选类型是怎样的?

答案要点:

蛋白质的分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。又称定向转运。

细胞中蛋白质都是在核糖体上合成的,并都是起始于细胞质基质中。基本途径:一条是在细胞质基质中完成多肽链的合成,然后转运至膜围绕的细胞器,如线粒体、叶绿体、过氧化物酶体、细胞核及细胞质基质的特定部位,有些还可转运至内质网中;另一条途径是蛋白质合成起始后转移至糙面内质网,新生肽边合成边转入糙面内质网腔中,随后经高尔基体转运至溶酶体、细胞膜或分泌到细胞外,内质网与高尔基体本身的蛋白成分的分选也是通过这一途径完成的。

蛋白质分选的四种基本类型:

(1)蛋白质的跨膜转运:主要指在细胞质基质合成的蛋白质转运至内质网、线粒体、叶绿体和过氧化物酶体等细胞器。

(2)膜泡运输:蛋白质通过不同类型的转运小泡从其糙面内质网合成部位转运至高尔基体进而分选运至细胞不同的部位。

(3)选择性的门控转运:指在细胞质基质中合成的蛋白质通过核孔复合体选择性地完成核输入或从细胞核返回细胞质。

(4)细胞质基质中的蛋白质的转运。

2、论述细胞内膜泡运输的概况、类型及各自的主要功能?

答案要点:膜泡运输是蛋白质分选的一种特有的方式,普遍存在于真核细胞中。在转运过程中不仅涉及蛋白质本身的修饰、加工和组装,还涉及多种不同的膜泡靶向运输及其复杂的调控过程。主要分为一下三种类型:

COPⅠ包被小泡:负责回收、转运内质网逃逸蛋白返回内质网。

COPⅡ衣被小泡:介导内质网到高尔基体的物质运输。

网格蛋白衣被小泡:介导质膜→胞内体、高尔基体→胞内体、高尔基体→溶酶体、植物液泡的物质运输

第九章细胞信号转导

二、选择题

1 在cAMP信号途径中,G蛋白的直接效应酶是( B )

A.蛋白激酶A

B.腺苷酸环化酶

C.蛋白激酶C

D.鸟苷酸环化酶

2 与G蛋白偶联的受体都是( D )次跨膜的膜整合蛋白?

A.2

B.3

C.5

D.7

3 下列哪种物种不是第二信号( C )

A.cAMP

B.cGMP

C.AC

D.NO

4受体的化学成分及存在部位分别是( A )

A.多为糖蛋白,存在于细胞膜或细胞核内

B.多为糖蛋白,存在于细胞膜或细胞质内

C.多为糖蛋白,只存在于细胞质中

D.多为糖蛋白,只存在于细胞膜上

5 下列哪一种物质与受体无关( C )

A.酪氨酸激酶

B.G蛋白

C.酸性水解酶

D.配体门通道

6 PIP2分解后生成的何种物质能促使钙离子的释放( A )

A.IP3

B.DAG

C.CaM

D.NO

7 关于配体哪一条是不正确的( D )

A.受体所接受的外界信号

B.包括神经递质

C.包括激素

D.包括第二信号

8 G蛋白处于活性状态的时候,其α亚单位( B )

A.与β、r亚单位结合,并与GTP结合

B.与β、r亚单位分离,并与GTP结合

C.与β、r亚单位结合,并与GDP结合

D.与β、r亚单位分离,并与GDP结合

四、简答题

1、由细胞膜表面受体介导的信号通路可以分为哪几种?各自有何特点?

亲水性化学信号分子(包括神经递质、蛋白激素、生长因子等)不能直接进入细胞,只能通过膜表面的特异受体传递信号,使靶细胞产生效应。膜表面受体主要有三类:①离子通道型受

体;②G蛋白耦联型受体;③酶耦联的受体。第一类存在于可兴奋细胞。后两类存在于大多数细胞,在信号转导的早期表现为激酶级联事件,即为一系列蛋白质的逐级磷酸化,籍此使信号逐级传送和放大。

一、离子通道型受体

离子通道型受体是一类自身为离子通道的受体,即配体门通道。主要存在于神经、肌肉等可兴奋细胞,其信号分子为神经递质。

神经递质通过与受体的结合而改变通道蛋白的构象,导致离子通道的开启或关闭,改变质膜的离子通透性,在瞬间将胞外化学信号转换为电信号,继而改变突触后细胞的兴奋性。如:乙酰胆碱受体以三种构象存在,两分子乙酰胆碱的结合可以使之处于通道开放构象,但该受体处于通道开放构象状态的时限仍十分短暂,在几十毫微秒内又回到关闭状态。然后乙酰胆碱与之解离,受体则恢复到初始状态,做好重新接受配体的准备。

离子通道型受体分为阳离子通道,如乙酰胆碱、谷氨酸和五羟色胺的受体,和阴离子通道,如甘氨酸和γ-氨基丁酸的受体。

二、G蛋白耦联型受体

三聚体GTP结合调节蛋白简称G蛋白,位于质膜胞质侧,由α、β、γ三个亚基组成,α和γ亚基通过共价结合的脂肪酸链尾结合在膜上,G蛋白在信号转导过程中起着分子开关的作用,当α亚基与GDP结合时处于关闭状态,与GTP结合时处于开启状态,α亚基具有GTP酶活性,能催化所结合的ATP水解,恢复无活性的三聚体状态,其GTP酶的活性能被RGS增强。RGS也属于GAP。

G蛋白耦联型受体为7次跨膜蛋白,受体胞外结构域识别胞外信号分子并与之结合,胞内结构域与G蛋白耦联。通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使,从而将胞外信号跨膜传递到胞内。G蛋白耦联型受体包括多种神经递质、肽类激素和趋化因子的受体,在味觉、视觉和嗅觉中接受外源理化因素的受体亦属G蛋白耦联型受体。

由G蛋白耦联受体所介导的细胞信号通路主要包括:cAMP信号通路和磷脂酰肌醇信号通路。

三、酶偶联型受体

酶偶联型受体分为两类,其一是本身具有激酶活性,如肽类生长因子(EGF,PDGF,CSF等)受体;其二是本身没有酶活性,但可以连接非受体酪氨酸激酶,如细胞因子受体超家族。这类受体的共同点是:①通常为单次跨膜蛋白;②接受配体后发生二聚化而激活,启动其下游信号转导。

2、试论述蛋白磷酸化在信号传递中的作用。

?蛋白磷酸化是指由蛋白激酶催化的把ATP或GTP的磷酸基团转移到底物蛋白质氨基酸残基上的过程,其逆转过程是由蛋白磷酸酶催化的,称为蛋白质去磷酸化。

?蛋白磷酸化通常有两种方式:一种是在蛋白激酶催化下直接连接上磷酸基团,另一种是被诱导与GTP结合,这两种方式都使得信号蛋白结合上一个或多个磷酸基团,被磷酸化的蛋白有了活性后,通常反过来引起磷酸通路中的下游蛋白磷酸化,当信号消失后,信号蛋白就会去磷酸化。

?磷酸化通路通常是由两种主要的蛋白激酶介导的:一种是丝氨酸/苏氨酸蛋白激酶,另一种是酪氨酸蛋白激酶。

?蛋白激酶和蛋白磷酸酶通过将一些酶类或蛋白磷酸化与去磷酸化,控制着它们的活性,使细胞对外界信号作出相应的反应。通过蛋白磷酸化,调节蛋白的活性,通过蛋白磷酸化,逐级放大信号,引起细胞反应。

3、以cAMP信号通路为例,试述G蛋白偶联受体的信号转导过程。

①激活型激素受体(Rs)

②抑制型激素受体(Ri)

③激活型调节蛋白(Gs)——α亚基结合GTP

④抑制型调节蛋白(Gi)——α亚基结合GDP

⑤腺苷酸环化酶——催化ATP生成cAMP

受体与G蛋白相偶联,但与腺苷酸环化酶是分开的,受体接受信号后间接地通过G蛋白活化腺甘酸环化酶,催化ATP生成cAMP,以cAMP为第二信使引起细胞反应。

感受信号:第一信使与细胞膜表面的相应受体结合,使受体构象改变而被激活,即Ri到Rs。G蛋白的分子开关作用

①受体构象的改变暴露出与G蛋白的结合位点,激素受体复合物与G蛋白结合,G蛋白的α亚基构象改变从而结合GTP而活化,使α亚基与βγ亚基复合体分离,结合GTP的α亚基与腺苷酸环化酶结合催化ATP生成cAMP。(开—α亚基结合GTP,Gs)

②随着GTP水解,α亚基恢复原来的构象,与腺苷酸环化酶解离,α亚基与βγ亚基重新结合,使细胞回复到静止状态。(关—α亚基结合GDP,Gi)产生的cAMP激活PKA,从而激活其下游的一系列酶的活性,实现生理反应。GS的激活,使细胞内的cAMP的含量持续升高。但在正常的细胞中,cAMP的持续升高会刺激细胞,使细胞脱水甚至死亡,因此细胞中的环核苷酸磷酸二酯酶(PDE)可以使cAMP快速降解生成5’-AMP,使信号终止。

4、何谓信号传递中的分子开关蛋白?举例说明其作用机制?

G蛋白,即GTP结合蛋白,参与细胞的多种生命活动,如细胞信号转导、核糖体与内质网的结合、微管组装、物质通过核孔的运输等。G蛋白是异源三聚体,有α、β、γ三个亚基。βγ亚基组成复合物,α亚基可以结合GTP或GDP。cAMP信号转导途径受体与G蛋白相偶联,但与腺苷酸环化酶是分开的,受体接受信号后间接地通过G蛋白活化腺甘酸环化酶,催化ATP 生成cAMP,以cAMP为第二信使引起细胞反应。

感受信号:第一信使与细胞膜表面的相应受体结合,使受体构象改变而被激活,即Ri到Rs。G蛋白的分子开关作用。①受体构象的改变暴露出与G蛋白的结合位点,激素受体复合物与G蛋白结合,G蛋白的α亚基构象改变从而结合GTP而活化,使α亚基与βγ亚基复合体分离,结合GTP的α亚基与腺苷酸环化酶结合催化ATP生成cAMP。(开—α亚基结合GTP,Gs)。②随着GTP水解,α亚基恢复原来构象,与腺苷酸环化酶解离,α亚基与βγ亚基重新结合,使细胞回复到静止状态。(关—α亚基结合GDP,Gi)。

产生的cAMP激活PKA,从而激活其下游的一系列酶的活性,实现生理反应。

第十章细胞骨架

一、名词解释

1、细胞骨架:细胞骨架(Cytoskeleton)是指存在于真核细胞质内的蛋白纤维网架体系。包括狭义和广义的细胞骨架两种概念。广义的细胞骨架包括:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。狭义的细胞骨架指细胞质骨架,包括微丝、微管和中间纤维。

2、应力纤维:应力纤维是真核细胞中广泛存在的微丝束结构,由大量平行排列的微丝组成,与细胞间或细胞与基质表面的粘着有密切关系,可能在细胞形态发生、细胞分化和组织的形成等方面具有重要作用。

3、微管:在真核细胞质中,由微管蛋白构成的,可形成纺锤体、中心体及细胞特化结构鞭毛和纤毛的结构。

4、微丝:在真核细胞的细胞质中,由肌动蛋白和肌球蛋白构成的,可在细胞形态的支持及细胞肌性收缩和非肌性运动等方面起重要作用的结构。

5、中间纤维:存在于真核细胞质中的,由蛋白质构成的,其直径介于微管和微丝之间,在支持细胞形态、参与物质运输等方面起重要作用的纤维状结构。

6、踏车现象:在一定条件下,细胞骨架在装配过程中,一端发生装配使微管或微丝延长,而另一端发生去装配而使微管或微丝缩短,实际上是正极的装配速度快于负极的装配速度,这种现象称为踏车现象。

7、微管组织中心(MTOC):微管在生理状态及实验处理解聚后重新装配的发生处称为微管组织中心。动物细胞的MTOC为中心体。MTOC决定了细胞中微管的极性,微管的(-)极指向MTOC,(+)极背向MTOC。

8、胞质分裂环:在有丝分裂末期,两个即将分裂的子细胞之间产生一个收缩环。收缩环是由大量平行排列的微丝组成,由分裂末期胞质中的肌动蛋白装配而成,随着收缩环的收缩,两个子细胞被分开。胞质分裂后,收缩环即消失。

二、填空题

1、__细胞质骨架___是一种复杂的蛋白质纤维网络状结构,能使真核细胞适应多种形状和协调的运动。

2、肌动蛋白丝具有两个结构上明显不同的末端,即__正___极和__负___极。

3、在动物细胞分裂过程中,两个子细胞的最终分离依赖于质膜下带状肌动纤维束和肌球蛋白分子的活动,这种特殊的结构是__收缩环___。

4、小肠上皮细胞表面的指状突起是_-微绒毛____,其中含有__微丝___细胞质骨架成分。

5、肌动蛋白单体连续地从细纤维一端转移到另一端的过程称为__塌车行为___。

6、微管由__微管蛋白___分子组成的,微管的单体形式是_α和_β蛋白_组成的异二聚体。

7、外侧的微管蛋白双联体相对于另一双联体滑动而引起纤毛摆动,在此过程中起重要作用的蛋白质复合物是___动力蛋白__。

8、基体类似于__中心粒___,是由9个三联微管组成的小型圆柱形细胞器。

9、__中心体___位于细胞中心,在间期组织细胞质中微管的组装和排列。

10、__细胞松弛素B___药物与微管蛋白紧密结合能抑制其聚合组装。

11、_微管结合蛋白_具有稳定微管,防止解聚,协调微管与其他细胞成分的相互关系的作用。

12、驱动囊泡沿着轴突微管从细胞体向轴突末端单向移动的蛋白质复合物是__驱动蛋白___。

13、最复杂的中等纤维蛋白家庭是__角蛋白___,在头发和指甲中存在其中的8种蛋白。

14、II型中等纤维蛋白__波形蛋白___,广泛分布在中胚层来源的细胞中,如成纤维细胞、内皮细胞和白细胞。

15、II型中等纤维蛋白__结蛋白___,发现于平滑肌和横纹肌细胞中。

16、细胞骨架普遍存在于真核细胞中,是细胞的支撑结构,由细胞内的蛋白质成分组成。包括微管、微丝和中间纤维三种结构。

17、中心体由 2 个相互垂直排列的圆筒状结构组成。结构式为9×3+0。主要功能是与细胞的分裂和运动有关。

18、鞭毛和纤毛基部的结构式为9×3+0,杆状部的结构式为9×2+2,尖端部的结构式为9×1+2

19、在癌细胞中,微管数量少,不能形成束状。在早老性痴呆患者脑组织细胞中微管大量变形。

20、在细胞内永久性微丝有鞭毛纤毛,临时性微丝有纺锤体。

三、选择题

1、细胞骨架是由哪几种物质构成的()。

A、糖类

B、脂类

C、核酸

D、蛋白质 E.以上物质都包括

2.下列哪种结构不是由细胞中的微管组成()。

A、鞭毛

B、纤毛

C、中心粒

D、内质网

E、以上都不是

3.关于微管的组装,哪种说法是错误的()。

A、微管可随细胞的生命活动不断的组装与去组装

B、微管的组装分步进行

C.微管的极性对微管的增长有重要意义

D、微管蛋白的聚合和解聚是可逆的自体组装过程

E、微管两端的组装速度是相同的

4.在电镜下可见中心粒的每个短筒状小体()。

A、由9组二联微管环状斜向排列

B、由9组单管微管环状斜向排列

C、由9组三联微管环状斜向排列

D、由9组外围微管和一个中央微管排列

E、由9组外围微管和二个中央微管排列

5、组成微丝最主要的化学成分是()。

A、球状肌动蛋白

B、纤维状肌动蛋白

C、原肌球蛋白

D、肌钙蛋白

E、锚定蛋白

6、能够专一抑制微丝组装的物质是()。

A、秋水仙素

B、细胞松弛素B

C、长春花碱

D、鬼笔环肽

E、Mg+

7.在非肌细胞中,微丝与哪种运动无关()。

A、支持作用

B、吞噬作用

C、主动运输

D、变形运动

E、变皱膜运动

8.对中间纤维结构叙述错误的是()。

A、直径介于微管和微丝之间

B、为实心的纤维状结构

C、为中空的纤维状结构

D、两端是由氨基酸组成的化学性质不同的头部和尾部

E、杆状区为一个由310个氨基酸组成的保守区

9、在微丝的组成成分中,起调节作用的是()。

A、原肌球蛋白

B、肌球蛋白

C、肌动蛋白

D、丝状蛋白

E、组带蛋白

10、下列哪种纤维不属于中间纤维()。

A、角蛋白纤维

B、结蛋白纤维

C、波形蛋白纤维

D、神经丝蛋白纤维

E、肌原纤维

四、判断题

1、细胞松弛素B是真菌的一种代谢产物,可阻止肌动蛋白的聚合,结合到微丝的正极,阻止新的单体聚合,致使微丝解聚。(√)

2、永久性结构的微管有鞭毛、纤毛等,临时性结构为纺锤体等。(√)

3、纺锤体微管可分为动粒微管和非极性微管。(×)

4、核骨架不象胞质骨架那样由非常专一的蛋白成分组成,核骨架的成分比较复杂,主要成分是核骨架蛋白及核骨架结合蛋白,并含有少量RNA。(√)

五、简答题

1、微丝的化学组成及在细胞中的功能。

答:微丝的化学组成:主要成分为肌动蛋白和肌球蛋白,肌球蛋白起控制微丝的形成、连接、盖帽、切断的作用,也可影响微丝的功能。其他成分为调节蛋白、连接蛋白、交联蛋白。微丝的功能:(1)与微管共同组成细胞的骨架,维持细胞的形状。(2)具有非肌性运动功能,与细胞质运动、细胞的变形运动、胞吐作用、细胞器与分子运动、细胞分裂时的膜缢缩有关。(3)具有肌性收缩作用(4)与其他细胞器相连,关系密切。(5)参与细胞内信号传递和物质运输。

2、什么是微管组织中心,它与微管有何关系。

答:微管组织中心是指微管装配的发生处。它可以调节微管蛋白的聚合和解聚,使微管增长或缩短。而微管是由微管蛋白组成的一个结构。二者有很大的不同,但又有十分密切的关系。微管组织中心可以指挥微管的组装与去组装,它可以根据细胞的生理需要,调节微管的活动。如在细胞有丝分裂前期,根据染色体平均分配的需要,从微管组织中心:中心粒和染色体着丝粒处进行微管的装配形成纺锤体,到分裂末期,纺锤体解聚成微管蛋白。所以说,微管组织中心是微管活动的指挥

3、简述中间纤维的结构及功能。

答:中间纤维的直径约7~12nm的中空管状结构,由4或8个亚丝组成。单独或成束存在于细胞中。中间纤维具有一个较稳定的310个氨基酸的α螺旋组成的杆状中心区,杆状区两端为非螺旋的头部区(N端)和尾部区(C端)。头部区和尾部区由不同的氨基酸构成,为高度可变区域。功能:(1)支持和固定作用:支持细胞形态,固定细胞核。(2)物质运输和信息传递作用:在细胞质中与微管、微丝共同完成物质的运输,在细胞核内,与DNA的复制和转录有关。(3)细胞分裂时,对纺锤体和染色体起空间支架作用,负责子细胞内细胞器的分配与定位。(4)在细胞癌变过程中起调控作用。

4、简单论述微丝的作用及分布

①维持细胞形态,赋予质膜的机械强度。微丝遍及胞质各处,集中分布于质膜下,和其结合蛋白形成网络结构,维持细胞形状和赋予质膜机械强度。

②肌肉收缩。肌肉细胞是高度特化的执行收缩功能的细胞。肌肉收缩机制——滑动学说

③形成细胞表面的结构。微绒毛、粘着斑、片足。

④细胞皮层和细胞运动。在许多细胞中,紧贴细胞膜之下都有一层含有丰富肌动蛋白纤维的区域,称为细胞皮层(凝胶层),皮层中含有高浓度的肌动蛋白称胞质溶胶,在特定的条件下聚合形成微丝,微丝聚合成网,变成凝胶——起机械支持、运动作用。

⑤形成应力纤维。应力纤维(stress fiber)是较为稳定的肌动蛋白纤维状结构。他们常与细胞的长轴平行排布,是一些长而直的纤维,与细胞膜的结合点称粘着斑。应力纤维赋予细胞韧性和刚性,促进细胞之间以及细胞基质与其表面的附着。

⑥胞质分裂。动物细胞有丝分裂末期,两个即将分离的子细胞内产生收缩环,收缩环由平行排列的微丝和myosin II组成

⑦其他功能。如细胞器运动、质膜的流动性、胞质环流均与微丝的活动有关,抑制微丝的药物(细胞松弛素)可增强膜的流动、破坏胞质环流。

5、简单论述微管的作用及分布

①支架作用。细胞中的微管就像混凝土中的钢筋一样,起支撑作用,在培养的细胞中,微管呈放射状排列在核外,(+)端指向质膜。在神经细胞的轴突和树突中,微管束沿长轴排列,起支撑作用。

②物质运输及细胞器在细胞内分布。微管起细胞内物质运输的路轨作用,破坏微管会抑制细胞内的物质运输。与微管结合而起运输作用的马达蛋白有两大类:驱动蛋白kinesin。胞质动力蛋白dynein。两者均需ATP提供能量。

③纤毛与鞭毛。微管构成的稳定的结构——纤毛(鞭毛)。结构:质膜包围,轴丝(中间是2条完整的微管,轴丝外周为9组二联体微管,即9×2+2的形式)纤毛和鞭毛根部的结构——基体,与中心粒(9组三联体微管,9×3+0)结构非常相似。基体只有1个中心粒。轴丝二联体之间的相对滑动引起纤毛(鞭毛)的弯曲。动力来源:动力蛋白是一种ATP酶。

④形成纺锤体。纺锤体是一种微管构成的动态结构,其作用是在分裂细胞中牵引染色体到达细胞的分裂极。

六、论述题

1、比较微管、微丝和中间纤维的异同。

答:微管、微丝和中间纤维的相同点:(1)在化学组成上均由蛋白质构成。(2)在结构上都是纤维状,共同组成细胞骨架。(3)在功能都可支持细胞的形状;都参与细胞内物质运输和信息的传递;都能在细胞运动和细胞分裂上发挥重要作用。微管、微丝和中间纤维的不同点:(1)在化学组成上均由蛋白质构成,但三者的蛋白质的种类不同,而且中等纤维在不同种类细胞中的基本成分也不同。(2)在结构上,微管和中间纤维是中空的纤维状,微丝是实心的纤维状。微管的结构是均一的,而中等纤维结构是为中央为杆状部,两侧为头部或尾部。(3)功能不同:微管可构成中心粒、鞭毛或纤毛等重要的细胞器和附属结构,在细胞运动时或细胞分裂时发挥作用:微丝在细胞的肌性收缩或非肌性收缩中发挥作用,使细胞更好的执行生理功能;中等纤维具有固定细胞核作用,行使子细胞中的细胞器分配与定位的功能,还可能与DNA的复制与转录有关。总之,微管、微丝和中间纤维是真核细胞内重要的非膜相结构,共同担负维持细胞形态,细胞器位置的固定及物质和信息传递重要功能。

2、详述肌肉收缩的过程及其机理。

骨骼肌的结构:骨骼肌由肌纤维(肌肉细胞)组成,肌纤维由许多肌原纤维组成,肌原纤维又由许多肌小节组成。肌小节是肌肉收缩的基本单位。

肌肉收缩的分子结构基础:肌原纤维由粗肌丝和细肌丝组成。粗肌丝的主要成分是肌球蛋白。细肌丝的主要成分是①肌动蛋白;②原肌球蛋白;③肌钙蛋白。

肌肉收缩机制——滑动学说:肌肉收缩是细肌丝和粗肌丝之间相互滑动的结果,收缩时暗带(粗肌丝所在)长度不变,明带缩短。收缩的能量来自横桥水解ATP所释放的化学能。

①肌细胞上的动作电位引起肌质网Ca2+电位门通道开启(肌质网为特殊的内质网,其上有钙泵,为一种储钙结构)。

②肌浆中Ca2+浓度升高,肌钙蛋白与Ca2+结合,引发原肌球蛋白构象改变,暴露出肌动蛋白与肌球蛋白的结合位点。

③肌动蛋白通过结合肌球蛋白,水解ATP,引起粗肌丝和细肌丝的相对滑动。

其中Ca2+对肌肉收缩具有重要的调节作用。

第十一章细胞核与染色质

一、名词解释

1、染色体:是细胞在有丝分裂或减数分裂过程中,由染色质聚缩而成的棒状结构,是细胞分裂期遗传物质存在的特定形式。

2、染色质:指间期细胞核内能被碱性物质染色的,由DNA、组蛋白、非组蛋白及少量RNA组成的线性复合结构,是间期细胞遗传物质的存在形式。常伸展为非光镜所能看到的网状细纤丝。

3、常染色质:间期核内染色质纤维折叠压缩程度低,处于伸展状态,用碱性染料染色时着色浅的染色质组分。

4、异染色质:间期核内染色质纤维折叠压缩程度高,处于聚缩状态,用碱性染料染色时着色深的染色质组分。

5、核小体:染色体的基本结构单位,是由组蛋白和200个碱基对的DNA双螺旋组成的球形小体,其核心由四种组蛋白(H2A、H2B、H3、H4)各两分子共8分子组成的八聚体,核心的外面缠绕了1.75圈的DNA双螺旋,其进出端结合有H1组蛋白分子。

6、核孔:是内、外两层核膜的局部融合之处形成的环状开口,是核、质间物质相互交流的渠道,并有一定的选择性。

7、核仁组织区:位于染色体的次缢痕部位,是rRNA基因所在部位,与间期细胞核仁形成有关。但并非所有的次缢痕都是NOR。

8、基因组:一个生物贮存在单倍染色体组中的总遗传信息,称为该生物的基因组。

9、核纤层:是位于细胞核内膜与染色质之间的纤维蛋白片层或纤维网络,与核内膜紧密结合。它普遍存在于高等真核细胞间期细胞核中。

10、亲核蛋白:是指在细胞质基质内合成后,需要或能够进入细胞核内发挥功能的一类蛋白质。

11、核基质: 广义的概念是由核纤层、核孔复合体和一个不溶的网络状结构(即核基质)组成;狭义的概念是指细胞核中存在的一个纤维蛋白构成的纤维网架体系,仅指核基质,即细胞核内除了核被膜、核纤层、染色质与核仁以外的网架结构体系,它不包含核膜、核纤层、染色质和核仁等成分,但这些网络状结构与核纤层及核孔复合体、染色质等有结构与功能联系。

12、核型:即细胞分裂中期染色体特征的总和。包括染色体的数目、大小和形态特征等方面。

13、带型:染色体经物理、化学因素处理后,再进行分化染色,使其呈现特定的深浅不同带纹(band)的方法。

14、核定位信号:亲核蛋白一般都含有特殊的氨基酸序列,这些内含的特殊短肽保证了整个蛋白质能够通过核孔复合体被转运到细胞核内。这段具有“定向”“定位”作用的序列被命名为核定位序列或核定位信号(亲核蛋白的特殊氨基酸序列,具有定向、定位的作用,保证蛋白质能够通过核孔复合体转运到细胞核内)。

15、端粒: 位于每条染色体端部,为染色体端部的异染色质结构,由高度重复的DNA序列构成,高度保守。主要功能是维持染色体稳定,防止末端粘连和重组,并能锚定染色体于细胞核内,辅助线性DNA复制等,与染色体在核内的空间排布及减数分裂时同源染色体配对有关;起着细胞计时器的作用.

二、填空题

1、细胞核外核膜表面常附有核糖体颗粒,且常常与粗面内质网相连通。

2、核孔复合物是特殊的跨膜运输蛋白复合体,在经过核孔复合体的主动运输中,核孔复合体具有严格的双向选择性。

3、核定位序列(信号)是蛋白质本身具有的、将自身蛋白质定位到细胞核中去的特异氨基酸序列。

4、核孔复合体主要由蛋白质构成,迄今已鉴定的脊椎动物的核孔复合物蛋白成分已达到十多种,其中 gp210 与 p62 是最具代表性的两个成分,它们分别代表着核孔复合体蛋白质的两种类型。

5、细胞核中的核仁组织区区域含有编码rRNA的DNA序列拷贝。

6、染色体DNA的三种功能元件是DNA复制起始序列(或自主复制DNA序列)、着丝粒DNA序列、端粒DNA序列。

7、染色质DNA按序列重复性可分为单一序列、中度重复序列、高度重复序列等三类序列。

8、染色质从功能状态的不同上可以分为活性染色质和非活性染色质。

9、按照中期染色体着丝粒的位置,染色体的形态可分为中部着丝粒染色体、亚中部着丝粒染色体、亚端部着丝粒染色体、端部着丝粒染色体四种类型。

10、着丝粒-动粒复合体可分为动粒结构域、中央结构域、配对结构域三个结构域。

11、哺乳类动粒超微结构可分为内板、中间间隙、外板三个区域,在无动粒微管结合时,覆盖在外板上的第4个区称为纤维冠。

12、核仁超微结构可分为纤维中心、致密纤维组分、颗粒组分三部分。

13、广义的核骨架包括核纤层、核孔复合体、一个不溶的网络状结构(即核基质)。

14、核孔复合体括的结构组分为胞质环、核质环、辐、中央栓。

15、间期染色质按其形态特征和染色性能区分为两种类型:常染色质和异染色质,异染色质又可分为结构异染色质和兼性异染色质。

16、DNA的二级结构构型分为三种,即B型DNA(Watson-Crick结构)、A型DNA、Z型DNA 。

17、常见的巨大染色体有灯刷染色体、多线染色体。

18、染色质包装的多级螺旋结构模型中,一、二、三、四级结构所对应的染色体结构分别为核小体、螺线管、超螺线管、染色单体。

19、核孔复合物是核质交换的双向性亲水通道,通过核孔复合物的被动扩散方式有自由扩散、协助扩散两种形式;组蛋白等亲核蛋白、RNA分子、RNP 颗粒等则通过核孔复合体的主动运输进入核内。

三、选择题

1、DNA的二级结构中,天然状态下含量最高、活性最强的是( C )。

A、A型

B、Z型

C、B型

D、O型

2、真核细胞间期核中最显著的结构是( C )。

A、染色体

B、染色质

C、核仁

D、核纤层

3、每个核小体基本单位包括多少个碱基是( B )。

A 、100bp B、 200bp C、300bp D、 400bp

4、下列不是DNA二级结构类型的是( C )。

A、A型

B、B型

C、c型

D、Z型

5、广义的核骨架包括( D )

A、核基质

B、核基质、核孔复合物

C、核纤层、核基质

D、核纤层、核孔复合体和一个不溶的网络状结构(即核基质)

6、从氨基酸序列的同源比较上看,核纤层蛋白属于( C )。

A、微管

B、微丝

C、中间纤维

D、核蛋白骨架

7、细胞核被膜常常与胞质中的( B )相连通。

A、光面内质网

B、粗面内质网

C、高尔基体

D、溶酶体

8、下面有关核仁的描述错误的是( D )。

A、核仁的主要功能之一是参与核糖体的生物合成

B、rDNA定位于核仁区内

C、细胞在M期末和S期重新组织核仁

D、细胞在G2期,核仁消失

9、下列( A )组蛋白在进化上最不保守。A、H1 B、H2A C、H3 D、H4

10、构成染色体的基本单位是( B )。A、DNA B、核小体 C、螺线管 D、超螺线管

11、染色体骨架的主要成分是( B )。A、组蛋白 B、非组蛋白 C、DNA D、RNA

12、异染色质是( B )。

A、高度凝集和转录活跃的

B、高度凝集和转录不活跃的

C、松散和转录活跃的

D、松散和转录不活跃的

四、判断题

1、端粒酶以端粒DNA为模板复制出更多的端粒重复单元,以保证染色体末端的稳定性。(×)

2、核纤层蛋白B受体(lamin B receptor, LBR)是内核膜上特有蛋白之一。(√)

3、常染色质在间期核内折叠压缩程度低,处于伸展状态(典型包装率750倍)包含单一序列DNA和中度重复序列DNA(如组蛋白基因和tRNA基因)。(√)

4、核被膜由内外两层单位膜组成,面向胞质的一层为核内膜,面向核质的一层为核外膜(×)

5、在细胞周期中核被膜的去组装是随机的,具有区域特异性。(×)

6、目前认为核定位信号是存在于亲核蛋白内的一些短的氨基酸序列片段,富含水量碱性氨基酸残基,如Lys、Arg,此外还常常含有Pro。(√)

7、非组蛋白是构成真核生物染色体的基本结构蛋白,富含带正电荷的精氨酸(Arg)和赖氨酸(Lys)等碱性氨基酸。(×)

8、现在认为gp210的作用主要是将核孔复合物锚定在孔膜区。(√)

9、微卫星DNA重复单位序列最短,只有1-5bp,串联成簇长度50-100bp的微卫星序列。不同个体间有明显差别,但在遗传却是高度保守的。(√)

五、简答题

1、简述细胞核的基本结构及其主要功能。

答:细胞核是真核细胞内最大、最重要的细胞器,主要由核被膜、染色质、核仁及由非组蛋白质组成的网络状的核基质组成,是遗传信息的贮存场所,是细胞内基因复制和RNA转录的中心,是细胞生命活动的调控中心。

2、简述染色质的类型及其特征。

答:间期染色质按其形态特征和染色性能区分为两种类型:常染色质和染色质染色质。常染色质纤维折叠压缩程度低,处于伸展状态,用碱性染料染色时着色浅。构成常染色质的DNA主要是单一序列DNA和中度重复序列DNA。异染色质纤维折叠压缩程度高, 处于聚缩状态,用碱性染料染色时着色较深,又分结构异染色质或组成型异染色质和兼性异染色质。

3、简述核仁的结构及其功能。

答:在光学显微镜下,核仁通常是匀质的球形小体,一般有1-2个,但也有多个。主要含蛋白质,是真核细胞间期核中最明显的结构,在电镜下显示出的核仁超微结构与胞质中大多数细胞器不同,在核仁周围没有界膜包围,可识别出3个特征性区域:纤维中心、致密纤维组分、颗粒组分。功能是进行核蛋白体的生物发生的重要场所,即核仁是进行rRNA的合成、加工和核蛋白体亚单位的装配的重要场所。

4、简述核被膜的主要生理功能。

答:构成核、质之间的天然屏障,避免生命活动的彼此干扰;保护核DNA分子不受细胞骨架运动所产生的机械力的损伤;核质之间物质与信息的交流;为染色体定位提供支架。

六、论述题

1、试述核孔复合体的结构及其功能。

答:核孔复合体主要有下列结构组分:①、胞质环:位于核孔边缘的胞质面一侧,又称外环,环上有8条短纤维对称分布伸向胞质;②、核质环:位于核孔边缘的核质面(又称内环),环上8条纤维伸向核内,并且在纤维末端形成一个小环,使核质环形成类似“捕鱼笼”(fish-trap)的核篮(nuclear basket)结构;③、辐:由核孔边缘伸向核孔中央,呈辐射状八重对称,该结构连接内、外环并在发挥支撑及形成核质间物质交换通道等方面起作用;它的结构比较复杂,可进一步分为三个结构域:?柱状亚单位:主要的区域,位于核孔边缘,连接内、外环,起支撑作用;?腔内亚单位:柱状亚单位以外,接触核膜部分的区域,穿过核膜伸入双层核膜的膜间腔;?环带亚单位:在柱状亚单位之内,靠近核孔复合体中心的部分,由8个颗粒状结构环绕形成核孔复合体核质交换的通道。④、中央栓:位于核孔的中心,呈颗粒状或棒状,又称为中央颗粒,由于推测它在核质交换中起一定的作用,所以又把它称做转运器(transporter)。核孔复合体是一种特殊的跨膜运输蛋白复合体,并且是一个双功能、双向性的亲水性核质交换通道,双功能表现在它有两种运输方式:被动扩散与主动运输;双向性表现在既介导蛋白质的入核转运,又介导RNA、核糖核蛋白颗粒(RNP)的出核转运。

2、试述核小体的结构要点及其实验证据。

答:结构要点:?每个核小体单位包括200bp左右的DNA超螺旋和一个组蛋白八聚体及一个分子H1。?、组蛋白八聚体构成核小体的盘状核心结构,由4个异二聚体组成,包括两个H2A-H2B 和两个H3-H4。两个H3-H4形成4聚体位于核心颗粒中央,两个H2A-H2B二聚体分别位于4聚体两侧。每个异二聚体通过离子键和氢键结合约30bp DNA。?、146bp的DNA分子超螺旋盘绕组蛋白八聚体1.75圈, 组蛋白H1在核心颗粒外结合额外20bp DNA,锁住核小体DNA的进出端,起稳定核小体的作用。包括组蛋白H1和166bp DNA的核小体结构又称染色质小体。?、两个相邻核小体之间以连接DNA 相连,典型长度60bp,不同物种变化值为0~80bp。实验证据:a、用温和的方法裂解细胞核,铺展染色质,电镜观察未经处理的染色质自然结构

为30nm的纤丝,经盐溶液处理后解聚的染色质呈现10nm串珠状结构。b、用非特异性微球菌核酸酶消化染色质,经过蔗糖梯度离心及琼脂糖凝胶电泳分析,发现绝大多数DNA被降解成约200bp的片段;部分酶解,则得到的片段是以200bp不单位的单体、二体(400bp)、三体(600bp)等等。如果用同样的方法处理裸露的DNA,则产生随机大小的片段群体,由此显示染色体DNA除某些周期性位点之外,均受到某种结构的保护,避免酶的接近。c、应用X射线衍射、中子散射和电镜三维重建技术研究,发现核小体颗粒是直径为11nm、高6.0nm 的扁园柱体,具有二分对称性,核心组蛋白的构成是先形成(H3)2-(H4)2四聚体,然后再与两个H2A-H2B异二聚体结合形成八聚体。d、SV40微小染色体分析与电镜观察:用SV40病毒感染细胞,病毒DNA进入细胞后,与宿主的组蛋白结合,形成串珠状微小染色体,电镜观察到SV40DNA为环状,周长为1500nm,约含5.0kb。若200bp相当于一个核小体,则可形成25个核小体,实际观察到23个,与推断基本一致。

3、试述从DNA到染色体的包装过程(多级螺旋模型)。

答:a、由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构;b、在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径30nm,内径10nm,螺距11nm的螺线管。螺线管是染色质包装的二级结构。C、螺线管进一步螺旋化形成直径为0.4um的圆筒状结构,称为超螺线管,这是染色质包装的三级结构。d、超螺线管进一步折叠、压缩,形成长2-10um的染色单体,即四级结构。

压缩7倍压缩6倍压缩40倍压缩5倍

DNA 核小体螺线管超螺线管染色单体

(200bp长约70nm)(直径约10nm)(直径30nm,螺距11nm)(直径400nm长11~60um)(长2~10um)

4、核孔复合物的主动运输具有严格的双向选择性,这种选择性表现在哪些方面?

答:其主动运输的选择性表现在以下三个方面:?对运输颗粒大小的限制;主动运输的功能直径比被动运输大,约10~20nm,甚至可达26nm,像核糖体亚单位那样大的RNP颗粒也可以通过核孔复合体从核内运输到细胞质中,表明核孔复合体的有效直径的大小是可被调节的;?通过核孔复合体的主动运输是一个信号识别与载体介导的过程,需要消耗ATP能量,并表现出饱和动力学特征;?通过核孔复合体的主动运输具有双向性,即核输入与核输出,它既能把复制、转录、染色体构建和核糖体亚单位装配等所需要的各种因子如DNA聚合酶、RNA 聚合酶、组蛋白、核糖体蛋白等运输到核内,同时又能将翻译所需的RNA、装配好的核糖体亚单位从核内运送到细胞质。有些蛋白质或RNA分子甚至两次或多次穿越核孔复合体,如核糖体蛋白、snRNA等。

5、试述组成染色体DNA的三种功能元件分别是什么,并论述其主要功能

染色体的3个功能组件(DNA复制所必需)

①自主复制序列,DNA复制的起点,确保染色体在复制周期中能正常复制。真核细胞中有多个复制起点,保证复制的快速进行。

②着丝粒序列,由大量串联的重复序列组成,如α卫星DNA,其功能是参与形成着丝粒,使细胞分裂中染色体能够准确地分离。

③端粒序列,不同生物的端粒序列都很相似,由长5-10bp的重复单位串联而成。保持染色体稳定,不被环化、粘合和降解。

第十二章核糖体 & 第十三章细胞周期与细胞分裂

一、填空题

(1)从核糖体是否与膜结合可以分为:附着核糖体和游离核糖体。

(2)生物体细胞内的核糖体有两种基本类型,原核细胞中的核糖体是70S核糖体,而真核细胞质中的是80S核糖体,线粒体内的核糖体是70S核糖体。

(3)70S核糖体可以分为30S小亚基和50S大亚基,80S核糖体可以分为40S小亚基和60S大亚基。

(4)核糖体生化组成上由蛋白质和RNA.组成。

(5)核糖体的重装配不需要其他大分子的参与,是一个自我组装(自我装配)的过程。

(6)核糖体中起主要肽酰转移酶活性的是rRNA.。目前发现的既具有遗传信息载体功能又具有酶活性的生物大分子是RNA.。

(7)被称为核酶的生物大分子是RNA.。

(8)真核细胞中由蛋白纤维组成的网络结构称细胞骨架。

(9)微丝的特异性药物有细胞松弛素和鬼笔环肽。

(10)肌肉收缩的基本单位是肌原纤维,构成肌原纤维的粗肌丝主要由肌球蛋白组成,构成细肌丝的主要由肌动蛋白。

(11)有些细胞表面形成一些特化结构,其中微绒毛主要由微丝构成,纤毛主要由微管构成。

(12)微管特异性药物中,破坏微管结构的是秋水仙素,稳定微管结构的是紫杉酚。

(13)中间纤维按组织来源和免疫原性可分为角蛋白纤维、波形蛋白纤维、结蛋白纤维、神经元纤维、和神经胶质纤维。

(14)一个典型的细胞周期可分为G1期、S期、G2期、M期。

(15)根据细胞的分裂和繁殖情况,可以将机体内细胞相对分为周期中细胞、静止期细胞、终末分化细胞。

(16)用秋水仙素处理细胞可以将细胞阻断在细胞分裂中期。

(17)有丝分裂过程可以划分为间期、前期、前中期、中期、后期、末期和胞质分裂期。

(18)核膜破裂标志着前中期的开始。

(19)所有染色体排列到赤道板上,标志着细胞分裂进入中期。

(20)有丝分裂中姊妹染色体分离并向两极运动,标志着细胞分裂后期的开始。

(21)染色体到达两极标志着细胞分裂进入末期。

(22)纺锤体微管根据期特性可将其分为星体微管、动粒微管和极性微管。。

(23)围绕中心体装配形成的纺锤体微管是有极性的,朝向中心体的一端为负极,远离中心体的一端为正极。

(24)细胞减数分裂中,根据细胞形态的变化可以将前期Ⅰ分为细线期、偶线期、粗线期、双线期、终变期。

(25)卵母细胞在减数分裂的前期Ⅰ中的双线期,染色体去凝集形成巨大的灯刷染色体。

(26)同源染色体发生联会的过程主要发生在减数分裂前期Ⅰ中的偶线期。

(27)C.D.K(周期蛋白依赖性蛋白激酶)激酶至少含有两个亚单位,其中周期蛋白为其调节亚基,C.D.K蛋白为催化亚基。

(28)C.D.K1(MPF)主要调控细胞周期中G2期向M期的转换。

(29)细胞内具有分子马达(引擎蛋白)作用的蛋白分子有肌球蛋白、动力蛋、驱动蛋白、A.TP合成酶等。

(30)细胞内能进行自我装配的细胞内结构有核糖体、中心体、基体、核小体、微丝、微管等。

(31)真核细胞中蛋白质的降解一般通过一种依赖于一类称为泛素的小分子的降解途径。

(32)蛋白质开始合成时,在真核细胞中N端合成的第一个氨基酸是甲硫氨酸,而在原核细胞中是N-甲酰甲硫氨酸。

(33)帮助蛋白质分子正确折叠或解折叠的是分子伴侣。

(34)帮助变性或错误折叠的蛋白质重新折叠主要依靠热休克蛋白。细胞是构成有机体的基本单位,是代谢与功能的基本

第十四章细胞增殖调控与癌细胞

一、名词解释

1、细胞周期

2、细胞周期检验点

3、细胞同步化

4、有丝分裂

5、减数分裂

6、有丝分裂器

7、染色体列队

8、染色体的早期凝集

9、MPF(细胞促分裂因子)

10、周期中细胞

11、静止期细胞

12、细胞周期蛋白

13、细胞分裂周期基因

14、CDK抑制因子(CKI)

15、周期蛋白依赖性激酶(CDK)

16、诱导同步化

17、DNA合成阻断法

18、中期阻断法

19、终端分化细胞

二、填空题

1、在细胞有丝分裂中, 微管的作用是;微丝的作用是。

2、中心粒是由_____微管____构成的,每个中心体各含有一对互相_____垂直排列_____的中心粒,在细胞周期的_______间_______期进行复制。

3、动物细胞的有丝分裂器有中心体、纺锤体、动粒和着丝粒四种类型的微管;植物细胞中没有中心体。

4、细胞分裂的方式有有丝分裂、无丝分裂和减数分裂。

5、细胞周期可分为四个时期即前期、中期、后期和末期。

6、最重要的人工细胞周期同步化的方法有分裂中期阻断法和 DNA合成阻断法。

7、2001年诺贝尔医学和生理学奖授予了三位科学家,他们在细胞周期调控机理方面作出了杰出贡献。

8、按照细胞增殖能力不同,可将细胞分为三类即增殖细胞、永不增殖细胞和暂不增殖细胞。

9、在细胞周期调控中,调控细胞越过G1/S期限制点的CDK与周期蛋白的复合物称为。10、以培养细胞为材料,通过有丝分裂选择法可以获得M期的细胞,这是因为培养的细胞在M 期时进行DNA的复制。

11、用DNA合成阻断法获得同化细胞时,常用的阻断剂是 TdR 和羟基脲HU 。

12、MPF由两个亚单位组成,即和。当两者结合后表现出蛋白激酶活性,其中为催化亚单位,为调节亚单位。

13、肝细胞和肌细胞属于不同细胞周期类型,肝细胞在受到损伤情况下能进行分裂,而肌细胞却不行,由此可判断肝细胞属于暂不增殖细胞,而肌细胞属于永不增殖细胞。

14、细胞周期中重要的检验点包括 G1期检验点、 S期检验点、 G2期检验点和纺锤体装配检验点。

15、根据染色体的行为变化,人为地将有丝分裂划分为前期、前中期、中期、和后期、末期、胞质分裂等六个时期。

16、在减数分裂的前期发生同源染色体的配对和等位基因的交换;在有丝分裂后期中,是同源染色体发生分离,而在减数分裂后期I中则是姐妹染色体发生分离。

三、选择题

1、若在显微镜下观察到的某细胞具有核仁, 并且核物质与细胞质的界限清晰, 则可判定此细胞处于细胞的( A )。A、间期 B、前期 C、中期 D、后期

2、在细胞分裂中期与纺锤体的动粒微管相连,保证染色体平均分配到两个子细胞中的结构是( D )。A、复制源 B、着丝粒 C、端粒 D、动粒

3、关于细胞周期限制点的表述,错误的是( A )。

A、限制点对正常细胞周期运转并不是必需的

B、它的作用是细胞遇到环境压力或DNA受到损伤时使细胞周期停止的"刹车"作用,对细胞进入下一期之前进行“检查”。

C、细胞周期有四个限制点:G1/S、S/G2、G2/M和M/ G1限制点

D、最重要的是G1/S限制点

4、MPF 的分子组成是( A )。

A、CDK2和cyclinB

B、CDK1和cyclinB

C、 CDK4和cyclinD

D、CDK2和cyclinD

5、细胞周期正确的顺序是( D )。

A、G1-M-G2-S

B、G1-G2-S-M

C、G1-M-G2-S

D、G1-S-G2-M

6、在减数分裂过程中,同源染色体进行交叉和互换的这个时期称为( B )。

A、偶线期

B、粗线期

C、双线期

D、终变期

7、CDK是否具有酶活性依赖于( A )。

A、与周期蛋白的结合

B、CDK本身的磷酸化

C、A、B都必须

D、A、B还不够

8、有丝分裂中期最重要的特征标志是( B )。

A、染色体排列在赤道板上

B、纺锤体形成

C、核膜破裂

D、姐妹染色单体移向两极

9、MPF的主要作用是调控细胞周期中( A )。

A、G1期向S期转换

B、G2期向M期转换

C、中期向后期转换

D、S期向G2期转换

10、核仁的消失发生在细胞周期的( B )。A、G1期 B、S期 C、M期 D、G2期

11、在第一次减数分裂中()。

A、同源染色体不分离

B、着丝粒不分离

C、染色单体分离

D、不出现交叉

12、在裂殖酵母中的cdc2基因在芽殖酵母中的同源物是( C )。

A、cdc2

B、cdc25

C、cdc28

D、cdc20

13、休眠期细胞是暂时脱离细胞周期,不进行增殖,但在适当刺激下可以重新进入细胞周期的细胞,下列属于休眠期细胞的是( A )。

A、肝细胞

B、神经细胞

C、小肠上皮组织基底层细胞

D、肌细胞

14、在细胞周期的G2期,细胞核的DNA含量为G1期的( C )。

A、1/2倍

B、1倍

C、2倍

D、不变

四、简答题

1、细胞周期各时期及主要生化事件(简述细胞周期中不同时相及其主要事件)

①G1期是细胞周期的第一阶段。G1期细胞的主要特点,首先是细胞生长,体积增大,物质代谢活跃,主要表现为RNA和蛋白质的大量合成。其次是与DNA合成的启动有关,为进入S期创造条件。

②S期。细胞经过G1期为DNA的复制做好了各方面的准备,进入S期后立即开始合成DNA。S期的主要特征是DNA的复制,组蛋白的合成和染色质的包装。

③G2期。G2期的主要事件就是为M期准备物质条件。M期纺锤体的形成,需要大量的微管蛋白。微管蛋白的合成也是从S期开始,主要是在G2期完成的。成熟促进因子MPF是有丝分裂的重要调控因子,其成分之一的cyclinB的合成,开始于S期,在G2期继续合成并积累。用蛋白质合成抑制剂处理G2期细胞,可阻止细胞进入M期,原因可能是抑制了这些重要蛋白的合成。

④M期即细胞分裂期。真核生物的细胞分裂主要包括两种方式:有丝分裂和减数分裂。体细胞一般进行有丝分裂,生殖细胞进行减数分裂。减数分裂是有丝分裂的特殊形式。细胞经过分裂将遗传物质平均分配到两个子细胞中。

2、细胞周期调控的机制

细胞周期的调控可分为外源和内源性调控,外源性调控主要是细胞因子以及其它外界刺激引起。内源性调控主要是通过Cyclin—Cdk—CKIS的网络调控来实现。不同的复合体在细胞周期的不同时期表现出不同的激酶活性,因而能够对细胞周期的不同时期进行调节。

①G1期向S期转化的调控。Cdk4或Cdk6与CyclinD的复合物,能通过使Rb蛋白(一种抑癌基因Rb的产物)磷酸化,释放转录因子E2F,导致与S期有关的基因转录,促使细胞通过R 点从G1期进入S期。否则细胞就进入G0期。细胞周期可以被CKIS阻挡于G1期。

②S期的起始。S期的启动是与S期促进因子(S-phase promoting factor,SPF)的作用有关。Cdk2与CyclinA或CyclinE的复合物表现出SPF的功能。

③G2期向M期转化的调控。M期的启动是与M期促进因子(M-phase promoting factor,MPF)的作用有关。Cdk1与Cyclin B的组合表现出MPF的活性

④从有丝分裂中期向后期转换。细胞周期运转到分裂中期后,M期CyclinB迅速降解,Cdk1活性丧失,被Cdk1磷酸化的蛋白质去磷酸化,细胞周期从M期中期向后期转化。

第十五章细胞分化与胚胎发育

一、名词解释

1、细胞分化

2、细胞全能性 5、管家基因

7、癌细胞P442 8、癌基因

9、抑癌基因 10、多能造血干细胞 11、定向干细胞 12、原癌基因 13、转分化 14、多潜能性 15、致癌因子 16、再生 17、接触抑制

答案:

1、细胞分化:在个体发育中,为执行特定的生理功能,由一种相同的细胞类型经细胞分裂后逐渐在形态、结构和功能上形成稳定性差异,产生各不相同的细胞类群的过程。其本质是基因选择性表达的结果,即基因表达调控的结果。

2、细胞全能性:指细胞经分裂和分化后仍具有产生完整有机体的潜能或特性。

7、癌细胞:动物体内上皮组织中因为细胞分裂调节失控而无限增殖且具有转移能力的细胞。 8、癌基因:是控制细胞生长和分裂的原癌基因的一种突变形式,存在于细胞基因组中,编码多种类型的蛋白质,能引起正常细胞癌变。

9、抑癌基因:是正常细胞增殖过程中的负调控因子。抑癌基因编码的蛋白抑制细胞增殖,使细胞停留于检验点上阻止周期进程。

10、多能造血干细胞:可以产生两种以上不同类型的分化细胞。

11、定向干细胞:仅具有分化形成某一类型能力的细胞,也叫单能干细胞。

12、原癌基因:又称细胞癌基因,是指存在于正常细胞基因组中的与病毒癌基因相对应的同源序列。它是一些在DNA序列上极为保守的正常的细胞基因,但在肿瘤细胞中的转录活性比正常细胞高得多。

13、转分化:一种类型的分化细胞转变成另一种类型的分化细胞的现象。

14、多潜能性能:细胞具有发育成为多种分化类型细胞的潜能。

15、致癌因子:引起细胞癌变的因素,包括物理的,化学的,生物的因子。

16、再生:是指生物体缺失一部分后发生重建的过程。

17、接触抑制:正常细胞在体外培养时表现为贴壁生长和汇合成单层后停止生长的特点,即接触抑制现象。

二、填空题

1、在个体发育过程中,通常是通过来增加细胞的数目,通过来增加细胞的类型。

2、细胞分化的关键在于特异性的合成,实质是在时间和空间上的差异表达。

3、真核细胞基因表达调控的三个水平分别为、和。

4、从一种类型的分化细胞转变成另一种类型的分化细胞,往往要经历和的过程。

5、根据分化阶段的不同,干细胞分为和;按分化潜能的大小,可将干细胞分为、和三种。

6、Dolly羊的诞生,说明高度分化的哺乳动物的也具有发育全能性,它不仅显示高等动物细胞的分化复杂性,而且也说明卵细胞的对细胞分化的重要作用。

7、基因与基因的突变,使细胞增殖失控,形成肿瘤细胞。

8、细胞分化是基因的结果,细胞内与分化有关的基因按其功能分为

和两类。

9、编码免疫球蛋白的基因是基因,编码rRNA的基因是基因。

10、癌症与遗传病不同之处在于,癌症主要是的DNA的突变,不是的DNA的突变。

答案:

1、细胞分裂,细胞分化;

2、蛋白质,组织特异性基因或奢侈基因;

3、转录水平、加工水平、翻译水平;

4、去分化,再分化;

5、胚胎干细胞,成体干细胞;全能干细胞、专能干细胞、多能干细胞;

6、体细胞核,细胞质;

7、原癌基因,抑癌基因;

8、选择性表达,管家基因,组织特异性基因;

9、奢侈,管家;10、体细胞,生殖细胞;

三、选择题

1、细胞分化的实质是()

A、基因选择性表达

B、基因选择性丢失

C、基因突变

D、基因扩增

2、关于肿瘤细胞的增殖特征,下列说法不正确的是()。

A、肿瘤细胞在增殖过程中,不会失去接触依赖性抑制

B、肿瘤细胞都有恶性增殖和侵袭、转移的能力

C、肿瘤细胞和胚胎细胞某些特征相似,如无限增殖的特性

D、肿瘤细胞来源于正常细胞,但是多表现为去分化

3、抑癌基因的作用是()。

A、抑制癌基因的表达

B、编码抑制癌基因的产物

C、编码生长因子

D、编码细胞生长调节因子。

4、下列由奢侈基因编码的蛋白是()。

A、肌动蛋白

B、膜蛋白

C、组蛋白

D、血红蛋白

5、关于细胞分化的分子生物学机制,下列说法不正确的是()

A、细胞表型特化的分子基础是特异性蛋白质的合成

B、已经分化的细胞仍旧具有全能性

C、细胞分化是基因选择性表达的结果

D、细胞分化的选择性表达是在mRNA水平上的调节

6、细胞分化过程中,基因表达的调节主要是()水平的调节

A、复制

B、转录

C、翻译

D、翻译后

7、癌细胞的最主要和最具危害性的特征是()。

A、细胞膜上出现新抗原

B、不受控制的恶性增殖

C、核膜、核仁等核结构与正常细胞不同

D、表现为未分化细胞的特征

8、下列关于再生能力的比较,正确的是()。

A、幼体强于成体

B、动物强于植物

C、高等动物强于低等动物

D、器官强于组织

9、在个体发育中,细胞分化的规律是()。

A、单能细胞→多能细胞→全能细胞

B、全能细胞→多能细胞→单能细胞

C、多能细胞→单能细胞

D、全能细胞→单能细胞→多能细胞

10、癌细胞由正常细胞转化而来,与原来细胞相比,癌细胞的分化程度通常表现为()。

A、分化程度相同

B、分化程度低

C、分化程度高

D、成为多能干细胞

11、下列()的突变是细胞癌变的主要原因。

A、生长因子

B、基因转录调控因子

C、信号转导通路中的因子

D、细胞周期调控蛋白

12、下列()不属于真核生物基因表达调控的范畴。

A、复制水平的调控

B、转录水平的调控

C、RNA加工水平的调控

D、翻译水平的调控

13、下列()细胞具有分化能力。

A、心肌细胞

B、肾细胞

C、肝细胞

D、脂肪细胞

14、正常Rb蛋白的功能是()。

A、抑制RNA转录

B、抑制DNA复制

C、促进RNA转录

D、促进DNA复制

答案:

1、A,

2、A,

3、D,

4、D,

5、D,

6、B,

7、B,

8、A,

9、B,10、B,11、C,12、A,13、C,14、B。

四、判断题

1、细胞分化是多细胞生物体发育的基础,也是单细胞生物体生活的周期变化的基础。()

2、ras基因是一种癌基因。()。

3、细胞分化是管家基因选择性表达的结果。()

4、生物体发育过程中,细胞的细胞核始终保持其分化的全能性。()

5、癌细胞由正常细胞突变而来,细胞的生长和分裂失去了控制。()

6、在分化程度上恶性肿瘤细胞高于良性肿瘤细胞。()

7、编码组蛋白、非组蛋白、胶原蛋白的基因均属于奢侈基因。()

8、多莉羊的培育成功表明动物的体细胞都是全能的。()

9、细胞的全能性随着细胞分化程度的提高而逐渐受到限制。()

10、 Bcl2和p53都是抑癌基因。()

11、植物的体细胞具有发育的全能性。()

答案:1、×;2、×;3、×;4、√;5、√;6、×;7、×;8、×;9、√;10、×;11、√。

五、简答题

1、简述细胞分化的基本机制。

答案要点:通过组合调控的方式启动组织特异性基因的表达是细胞分化的基本机制。细胞分化的机制极其复杂,细胞的分化命运取决于两个方面:一是细胞的内部特性;二是细胞的外部环境。前者与细胞的不对称分裂以及随机状态有关,尤其是不对称分裂使细胞内部得到不同的基因调控成分,表现出一种不同于其他细胞的核质关系和应答信号的能力;后者表现为细胞应答不同的环境信号,启动特殊的基因表达,产生不同的细胞的行为,如分裂、生长、迁移、粘附、凋亡等,这些行为在形态发生中具有极其重要的作用。

2、癌基因编码的蛋白质主要有哪些?

答案要点:癌基因编码的蛋白主要包括生长因子、生长因子受体、信号转导通路中的分子、基因转录调节因子和细胞周期调控蛋白等几大类。

六、论述题

1、为什么肿瘤患者多为老年人?

答案要点:因为肿瘤的形成是基因突变逐渐积累的结果。肿瘤的发生需要?多基因突变?长时间积累。

根据大量的病例分析,癌症的发生一般并不是单基因的突变,而至少在一个细胞中发生5-6个基因突变,才能赋予癌细胞所有的特征:即癌细胞不仅增殖速度快,而且其子代细胞能够逃脱细胞衰老的命运,取代相邻正常细胞的位置,不断从血液中获取营养,进而穿越基膜与血管壁在新的组织部位安置、存活与生长。

由此可见,细胞基因组中产生与肿瘤发生相关的某一原癌基因的突变,并非马上形成癌,而是继续生长直到细胞群体中新的偶发突变的产生。某些在自然选择中具有竞争优势的细胞,再经过类似的过程,逐渐形成具有癌细胞一切特征的恶性肿瘤。

如直肠癌发生的病程中开始的突变仅在肠壁形成多个良性的肿瘤(息肉),进一步突变才发展为恶性肿瘤,全部过程需要10-20年或更长时间。因此,癌症是一种典型的老年性疾病,它涉及一系列的原癌基因与肿瘤抑制基因的致癌突变的积累。

在某些癌症病例中,其生殖细胞中原癌基因或肿瘤抑制因子发生致癌突变,致使体内所有的体细胞的相应基因都已变异。在这种情况下,癌变发生所需要的基因突变数的积累时间就会减少,携带这种基因突变的家族成员更易患癌症。

第十六章细胞死亡与细胞衰老

一、名词解释

1、细胞衰老:细胞衰老又称老化,是细胞的一个基本的生命现象。是指细胞随着年龄的增加,生理机能和结构发生退行性变化,趋向死亡的不可逆的现象。

2、细胞死亡:细胞的死亡是指细胞生命活动的结束。在多细胞生物中,细胞死亡有两种不同形式:细胞坏死或意外死亡,细胞凋亡或称程序性细胞死亡。

3、细胞凋亡:细胞凋亡是多细胞有机体为调控机体发育,维护内环境稳定,由基因控制的细胞主动死亡的过程,是机体的一种基本生理机制,并贯穿于机体整个生命活动过程。

4、凋亡小体:细胞凋亡过程中产生的一种特殊的结构体,形成过程是核染色质断裂为大小不等的片段,与某些细胞器如线粒体一起聚集,为反折的细胞质膜所包围。从外观上看,细胞

表面产生了许多泡状或芽状突起,以后,逐渐分隔,形成单个的凋亡小体。凋亡小体逐渐为邻近的细胞所吞噬并消化,不会影响周围的细胞,不会引起炎症反应。

5、细胞坏死:是细胞死亡的一种方式,通常指各种致病因子(物理的[辐射]、化学的[有毒物的侵袭]因素和生物因素[微生物感染]干扰和中断了细胞正常代谢活动而造成的细胞意外(非正常)死亡。

在细胞坏死时,细胞膨胀,外形不规则;溶酶体膜破坏,水解酶外溢;细胞膜破坏,胞浆外溢,侵袭周围组织,引起炎症反应。

二、填空题

1、体外培养的细胞的增殖能力与的年龄有关,也反映了细胞在体内的

状况;细胞衰老的决定因素存在于内;决定了细胞衰老的表达而不是细胞质。

2、衰老细胞的膜的减弱、能力降低;线粒体的数目,嵴呈状;核的体积、核膜、染色质。

3、端粒是由简单的富含和的DNA片段的序列组成;随着每次细胞分裂,端粒会。

4、端粒酶以自身的一段为模板,通过出一段端粒片段连接在染色体的端粒末端,从而保持了细胞的生长;人类正常组织的体细胞端粒酶活性。

5、ROS主要有三种类型即:、和。

7、细胞凋亡的发生过程,在形态学上可分为三个阶段,即、和。

8、HIV进入人体后,引起CD4+T细胞数目的重要机制就是。

9、细胞凋亡最主要的生化特征是由于内源性的活化,被随机地在核小体的部位打断,结果产生含有不同数量的的片段,进行电泳时,产生了特征性的,其大小为的整倍数。

答案:

1、供体,衰老,细胞内,细胞核。

2、流动性,选择透过,增大,内折,固缩化。

3、T,G,重复,逐渐缩短。

4、RNA,逆转录,永生性,无。

5、·O2超氧自由基,·OH羟自由基,

H2O2。6、基因规则或基因调控。7、凋亡的起始,凋亡小体的形成,凋亡小体被吞噬。8、减少,细胞凋亡。9、核酸内切酶,DNA,连接,核小体单位,琼脂糖凝胶,DNA梯状条纹,180~200bp。

三、选择题

1、下列不属于细胞衰老结构变化的是()。

A、细胞核随着分裂次数的增加而增大

B、内质网呈弥散状

C、线粒体的数目随分裂次数的增加而减少

D、线粒体体积随分裂次数的增加而减小

2、致密体属于()

A、初级溶酶体

B、次级溶酶体

C、残体

D、都不对

3、端粒存在于()。

A、细胞质中

B、中心体

C、线粒体上

D、染色体上

4、细胞凋亡是指()。

A、细胞因年龄增加而导致正常死亡

B、细胞因损伤而导致死亡

C、细胞程序性死亡

D、细胞非程序性死亡

5、在caspase家族中,起细胞凋亡执行者作用的是()。

A、caspase1,4,11

B、caspase2,8,9

C、caspase3,6,7

D、caspase3,5,10

6、端粒存在于染色体DNA两端,是一富含()的简单重复序列。

A、U

B、A

C、T

D、C

7、下列与细胞衰老无关的是()。

A、氧化损伤学说

B、染色体端粒复制假说

C、线粒体DNA突变学说

D、细胞全能性

8、细胞凋亡的一个重要特征是()。

A、DNA随机断裂

B、DNA发生核小体间断裂

C、80S核糖体的rRNA断裂

D、mRNA的断裂

9、下列关于P53描述错误的是()。

A、P53是肿瘤抑制基因,产物主要存在于细胞核内

B、P53对细胞生长起负调节作用,具有促使细胞凋亡的功能

C、P53是细胞凋亡必要条件

D、P53基因是人肿瘤有关基因中突变频率最高的基因

10、下列关于bcl-2的描述错误的是()。

A、bcl-2是细胞凋亡抑制基因

B、bcl-2是通过加速细胞增殖促进肿瘤形成

C、bcl-2是一种原癌基因

D、bcl-2是哺乳动物普遍存在的“长寿”基因

答案:1、D;2、C;3、D;4、C;5、B;6、C;7、D;8、B;9、C;10、B。

四、判断题

1、Hayflick界限是指细胞最大分裂次数。()

2、体外培养的二倍体细胞的增殖能力与供体年龄无关。()

3、体外培养的二倍体细胞的衰老主要决定于环境因素。()

4、细胞衰老的过程中,膜的流动性减弱、选择透过性能力降低。()

5、细胞中线粒体的数目随细胞年龄增加而增加,而体积则随年龄增加减小。()

6、人类的细胞均不表达端粒酶活性,而大多数恶性肿瘤细胞中明显的端粒酶活性使其具有永生性生长的特性。()

7、根据氧化损伤学说,只要清除活性氧基团就可以延长细胞寿命。()

8、细胞凋亡受到严格的遗传机制决定的程序化调控,所以也称细胞程序性死亡。()

9、植物细胞和动物细胞一样都存在细胞凋亡。()

10、Caspase家族在正常条件下,以非活化的酶原形式存在于细胞中。()

答案: 1、√;2、×;3、×;4、√;5、×;6、×;7、√;8、√;9、√10、√。

五、简答题

1、简述细胞凋亡的生物学意义。

答案要点:1、清除无用的细胞;2、清除多余的细胞;3、清除发育不正常的细胞;4、清除已完成任务的、衰老的细胞;5、清除有害的、被感染的细胞。

通过以上几方面的作用,保证器官的正常发生与构建、组织及细胞数目的相对平衡。

2、细胞凋亡的形态学和生化特征有哪些?

㈠细胞凋亡的形态学特征

细胞凋亡的发生过程,在形态学上可分为三个阶段。1、凋亡的起始:细胞明显皱缩,染色质凝集、边缘化。这阶段的形态学变化表现为细胞表面的特化结构如微绒毛的消失,细胞间接触的消失,但细胞膜依然完整,未失去选择透性;细胞质中,线粒体大体完整,但核糖体逐渐从内质网上脱离,内质网囊腔膨胀,并逐渐与质膜融合;染色质固缩,形成新月形帽状结构等形态,沿着核膜分布。2、凋亡小体的形成:首先,核染色质断裂为大小不等的片段,与某些细胞器如线粒体一起聚集,为反折的细胞质膜所包围。从外观上看,细胞表面产生了许多泡状或芽状突起。以后,逐渐分隔,形成单个的凋亡小体。3、凋亡小体被吞噬。凋亡小体逐渐为邻近的细胞所吞噬并消化,不会影响周围的细胞,不会引起炎症反应。

㈡细胞凋亡的生化特征

细胞凋亡最主要的生化特征是由于内源性的核酸内切酶活化,DNA被随机地在核小体的连接部位打断,DNA发生核小体间的断裂,结果产生含有不同数量核小体单位的片段,在进行琼脂糖凝胶电泳时,形成了特征性的DNA梯状条带(DNA ladders),其大小为180~200bp的整数倍。

到目前为止,梯状条带(DNA ladders)仍然是鉴定细胞凋亡最可靠的方法。

凋亡细胞的另一个重要特征是tTG(组织转谷氨酰胺酶tissue Transglutaminase)的积累并达到较高的水平。

3、比较细胞凋亡和细胞坏死。

比较项目细胞凋亡细胞坏死

外形细胞变圆、变小细胞膨胀,外形不规则

细胞膜完整,细胞膜内陷,将胞内物质分割包围成凋亡小体破坏,导致胞浆外溢

细胞质细胞质成分密度增高,发生凝集,最初细胞器保持完整性细胞器被破坏,溶酶体膜破坏,水解酶破坏胞内成分

细胞核染色质断裂成一定大小的片断、凝缩、边缘化,形成凋亡小体,产生DNA ladder 整个核浓缩,核膜破裂,核溶解,DNA被切碎,没有DNA ladder

Ca2+浓度增高没发现变化

核酸内切酶被活化没发现变化

基因控制由相关基因控制无基因控制

与周围组织的关

凋亡小体被周围的细胞吞噬,胞内含物不外溢,周围不发生炎症细胞外溢成分侵袭影响周围组织,经常引起炎症

第十七章细胞的社会关系

四、简答题

1、细胞外基质的组成、分子结构及生物学功能是什么?

组成细胞外基质的大分子可大致分为四大类:胶原、弹性蛋白、非胶原糖蛋白及氨基聚糖和蛋白聚糖。

(一)胶原:胶原是胞外基质最基本结构成份之一,是细胞外基质中最主要的水不溶性纤维蛋白。动物体内含量最丰富的蛋白,普遍存在于体内各种器官和组织,是细胞外基质中的框架结构,可由成纤维细胞、软骨细胞、成骨细胞及某些上皮细胞合成并分泌到细胞外。

胶原的分子结构:胶原纤维的基本结构单位是原胶原;原胶原是由三条肽链盘绕成的三股螺旋结构;原胶原肽链具有Gly-x-y重复序列(G:甘氨酸,x常为脯氨酸,y常为羟脯氨酸或羟赖氨酸),对胶原纤维的高级结构的形成是重要的;在胶原纤维内部,原胶原蛋白分子呈1/4交替平行排列,一个原胶原分子的头部与下一个原胶原分子的尾部有一个小的间隔分隔,形成周期性横纹。

胶原的功能:a.构成细胞外基质的骨架结构,细胞外基质中的其它组分通过与胶原结合形成结构与功能的复合体;b.在不同组织中,胶原组装成不同的纤维形式,以适应特定功能的需要;

c、胶原可被胶原酶特异降解,而参入胞外基质信号传递的调控网络中。

(二)氨基聚糖和蛋白聚糖:氨基聚糖(GAG),又称糖胺聚糖,是由重复的二糖单位构成的长链多糖,二糖单位:一是氨基己糖(氨基葡萄糖或氨基半乳糖),另一个是糖醛酸。氨基聚糖可分为:透明质酸、4-硫酸软骨素、6-硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素、肝素和硫酸角质素等。透明质酸及其生物学功能:透明质酸是一种重要的糖胺聚糖,透明质酸是增殖细胞和迁移细胞的胞外基质主要成分,也是蛋白聚糖的主要结构组分;透明质酸在结缔组织中起强化、弹性和润滑作用;透明质酸使细胞保持彼此分离,使细胞易于运动迁移和增殖并阻止细胞分化;在胞外基质中,透明质酸倾向于向外膨胀,产生压力,使结缔组织具有抗压的能力。

蛋白聚糖:存在于所有结缔组织和细胞外基质及许多细胞表面,是由氨基聚糖与核心蛋白的丝氨酸残基共价连接形成的巨分子,若干蛋白聚糖单体借连接蛋白以非共价键与透明质酸结合形成多聚体。蛋白聚糖的功能:软骨中的蛋白聚糖是最大巨分子之一,赋予软骨以凝胶样特性和抗变形能力;蛋白聚糖可视为细胞外的激素富集与储存库,可与多种生长因子(如成纤维细胞生长因子[FGF]、转化生长因子β[TGFβ]等)结合,有利于激素分子进一步与细胞表面受体结合,有效完成信号的传导。

(三)层粘连蛋白和纤连蛋白:

a.层粘连蛋白:是各种动物胚胎及成体组织的基膜的主要结构组分之一,是高分子糖蛋白(相对分子量820KD),由一条重链和两条轻链构成。细胞通常是通过层粘连蛋白锚定于基膜上;层粘连蛋白在胚胎发育及组织分化中具有重要作用;层粘连蛋白也与肿瘤细胞的转移有关。

b.纤连蛋白:纤连蛋白是高分子量糖蛋白(220-250KD),是多聚体,各亚单位在C端形成二硫键交联,各亚单位由数个结构域构成,RGD三肽序列是细胞识别的最小结构单位。纤粘连蛋白的膜蛋白受体为整合素家族成员之一,在其细胞外功能区有与RGD高亲和性结合部位。纤连蛋白的主要功能:?介导细胞粘着,通过细胞信号转导途径调节细胞的形状和细胞骨架的组织;促进细胞铺展;?在胚胎发生过程中,纤粘连蛋白对于许多类型细胞的迁移和分化是必须的;?在创伤修复中,纤粘连蛋白促进巨噬细胞和其它免疫细胞迁移到受损部位;?在血凝块形成中,纤粘连蛋白促进血小板附着于血管受损部位。

(四)弹性蛋白:弹性蛋白是弹性纤维的主要成分;主要存在于脉管壁及肺。弹性纤维与胶原纤维共同存在,分别赋予组织以弹性及抗张性。

2、细胞通过哪些方式产生社会联系?

细胞识别、细胞黏着、细胞连接、细胞通讯

2、细胞连接都有哪些类型?各有什么功能?

细胞连接按其功能分为:封闭连接,锚定连接,通讯连接。

(1)封闭连接:1.形成渗透屏障 2.形成上皮细胞膜蛋白与膜脂分子侧向扩散的屏障3.支持作用

(2)锚定连接:通过中间纤维(桥粒、半桥粒)或微丝(粘着带和粘着斑)将相邻细胞或细胞与基质连接在一起,以形成坚挺有序的细胞群体、组织与器官。

(3)通讯连接:1.与代谢偶联有关2.与神经冲动信息传递有关3.与胚胎早期发育有关

(4)胞间连丝连接:是高等植物细胞之间通过胞间连丝来进行物质交换与互相联系的连接方式。

细胞生物学试题库及标准答案

细胞生物学试题库及答案

————————————————————————————————作者:————————————————————————————————日期: 2

细胞生物学试题题库第五部分 简答题 1. 根据光镜与电镜的特点,观察下列结构采用那种显微镜最好?如果用光镜(暗视野、相差、免疫荧显微镜) 那种最有效?为什么? 2. 细胞是生命活动的基本单位,而病毒是非细胞形态的生命体,如何理解二者之间的关系? 3. 为什么说支原体是最小、最简单的细胞? 4. 原核细胞与真核细胞差别是后者有细胞器,细胞器结构的出现有什么优点?(至少2点) 5. 简述动物细胞与植物细胞之间的主要区别。 6. 简述动物细胞、植物细胞、原生动物应付低渗膨胀的主要方式? 7. 简述单克隆抗体的主要技术路线。 8. 简述钠钾泵的工作原理及其生物学意义。 9. 受体的主要类型。 10. 细胞的信号传递是高度复杂的可调控过程,请简述其基本特征。 11. 简述胞饮作用和吞噬作用的主要区别。 12. 细胞通过分泌化学信号进行通讯主要有哪几种方式? 13. 简要说明G蛋白偶联受体介导的信号通路的主要特点。 14. 信号肽假说的主要内容。 15. 简述含信号肽的蛋白在细胞质合成后到内质网的主要过程。 16. 简述蛋白质糖基化修饰中N-连接与O-连接之间的主要区别。 17. 溶酶体膜有何特点与其自身相适应? 18. 简述A.TP合成酶的作用机制。 19. 化学渗透假说的主要内容。 20. 内共生学说的主要内容。 21. 线粒体与叶绿体基本结构上的异同点。 22. 细胞周期中核被膜的崩解和装配过程。 23. 核孔复合体的结构模型。 24. 染色质的多级螺线管模型。 25. 染色体的放射环模型。 26. 细胞内以多聚核糖体的形式合成蛋白质,其生物学意义是什么? 27. 肌肉收缩的机制。 28. 纤毛的运动机制。 29. 中心体周期。 30. 简述C.D.K1(MPF)激酶的活化过程。 31. 泛素化途径对周期蛋白的降解过程。 32. 人基因组大约能编码5万个基因,而淋巴细胞却能产生约107-109个不同抗体分子,为什么? 33. 细胞学说的主要内容。 34. 溶酶体膜有何与其自身功能相适应的特点? 35. 何为信号肽假说的? 36. 核孔复合体的结构模型。 37. 胞饮作用和吞噬作用的区别。 38. 为什么说线粒体和叶绿体是半自主性细胞器? 39. 简述核被膜的主要功能 40. 简述减数分裂的意义

细胞生物学题库 含答案

《细胞生物学》习题及解答 第一章绪论 本章要点:本章重点阐述细胞生物学的形成、发展及目前的现状和前景展望。要求重点掌握细胞生物学研究的主要内容和当前的研究热点或重点研究领域,重点掌握细胞生物学形成与发展过程中的主要重大事件及代表人物,了解细胞生物学发展过程的不同阶段及其特点。 二、填空题 1、细胞生物学是研究细胞基本规律的科学,是在、和三个不同层次上,以研究细胞的、、、和等为主要内容的一门科学。1、生命活动,显微水平,亚显微水平,分子水平,细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化。 2、年英国学者第一次观察到细胞并命名为cell;后来第一次真正观察到活细胞有机体的科学家是。2、1665,Robert Hooke,Leeuwen Hoek。 3、1838—1839年,和共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的。3、Schleiden、Schwann,基本单位。 4、19世纪自然科学的三大发现是、和。4、细胞学说,能量转化与守恒定律,达尔文的进化论。 5、1858年德国病理学家魏尔肖提出的观点,通常被认为是对细胞学说的一个重要补充。5、细胞来自细胞。 6、人们通常将1838—1839年和确立的;1859年确立的;1866年确立的,称为现代生物学的三大基石。

6、Schleiden、Schwann,细胞学说,达尔文,进化论,孟德尔,遗传学。 7、细胞生物学的发展历史大致可分为、、、和分子细胞生物学几个时期。7、细胞的发现,细胞学说的建立,细胞学经典时期,实验细胞学时期。 三、选择题 1、第一个观察到活细胞有机体的是()。 a、Robert Hooke b、Leeuwen Hoek c、Grew d、Virchow 2、细胞学说是由()提出来的。 a、Robert Hooke和Leeuwen Hoek b、Crick和Watson c、Schleiden和Schwann d、Sichold和Virchow 3、细胞学的经典时期是指()。 a、1665年以后的25年 b、1838—1858细胞学说的建立 c、19世纪的最后25年 d、20世纪50年代电子显微镜的发明 4、()技术为细胞生物学学科早期的形成奠定了良好的基础。 a、组织培养 b、高速离心 c、光学显微镜 d、电子显微镜 四、判断题 1、细胞生物学是研究细胞基本结构的科学。( x) 2、细胞的亚显微结构是指在光学显微镜下观察到的结构。( x) 3、细胞是生命体的结构和生命活动的基本单位。( y) 4、英国学者Robert Hooke第一次观察到活细胞有机体。( x)

细胞生物学试题

细生大礼包第三弹 第六章.线粒体与细胞的能量转换 PART1 教学大纲 1.教学内容 第一节线粒体的基本特征 第二节细胞呼吸与能量转换 第三节线粒体与疾病 2.教学基本要求 掌握:线粒体是由双层单位膜套叠而成的封闭性膜囊结构,线粒体的化学组成(尤其是各区间标志酶),细胞呼吸的概念和特点,细胞能量的转换分子——ATP,丙酮酸在线粒体内生成乙酰辅酶A,三羧酸循环是各种有机物进行最后氧化的过程,也是各类有机物相互转化的枢纽,呼吸链概念,氧化过程中伴随磷酸化的藕联,1分子葡萄糖完全氧化释放的能量,化学渗透假说。 熟悉:线粒体的形态数量与细胞的类型和生理状态有关,线粒体的遗传体系,核编码蛋白质向线粒体的转运,葡萄糖在细胞质中的糖酵解,三羧酸循环,一分子葡萄糖经过三羧酸循环的总反应式,呼吸链和ATP合酶复合体是氧化磷酸化的结构基础,根据结合变构机制A TP的合成。 了解:线粒体的起源与发生,NADH+ H+ 通过线粒体内膜的穿梭机制,F0基片在A TP合成中的作用,与细胞死亡有关的线粒体机制,线粒体控制细胞死亡的假说,疾病过程中的线粒体变化,mtDNA突变与疾病。 3.重点与难点 重点:线粒体的组成结构,细胞呼吸与能量转换。 难点:电子传递链,氧化磷酸化,ATP生成。 Part 2 题库 一.填空题 1.线粒体是细胞的基地,其主要功能是。(七) 2.线粒体的嵴由向内腔突起而成,其上面的带柄结构是, 由、和三部分组成,该结构具有活性。功能是。(七) 3.线粒体各部分结构中有各自特殊的标记酶,它们分别在外膜是________,外腔是___________,内膜 是__________,膜间腔是______________。(七) 4.线粒体基因组共由个碱基组成,含个基因,可分别编码rRNA、tRNA和蛋白质。(七)

细胞生物学试题

医用细胞生物学习题一、选择题 B1、协助扩散的物质穿膜运输借助于() A、隧道蛋白 B、载体蛋白 C、网格蛋白 D、周边蛋白 C2、具有半自主性的细胞器为() A、高尔基复合体 B、内质网 C、线粒体 D、溶酶体 D3、具有抑制肌动蛋白装配的药物是() A、鬼笔环肽 B、秋水仙素 C、长春花碱 D、细胞松弛素B C6、基本上不具有G1期限和G2期细胞周期的细胞为() A、癌细胞 B、早期胚胎细胞 C、肝细胞 D、中胚层细胞 C7、在细胞周期G2期,细胞的DNA含量为G1期的() A、1/2倍 B、1倍 C、2倍 D、不变 A8、有丝分裂中期最主要的特征是() A、染色体排列在赤道面上 B、纺锤体形成 C、核膜破裂 D、姐妹染色体各迁向一边 C9、根据人类染色体命名的规定,6P22.3代表() A、第22号染色体长臂第3区第6带 B、第6号染色体长臂第22区第3带 C、第6号染色体短臂第2区第2带第3亚带 D、第6号染色体长臂第22区第3带 B11、下列细胞器不属于膜相结构的是() A、溶酶体 B、核糖体 C、过氧化物酶体 D、线粒体 E、有被小泡 12、构成细胞膜的化学成分主要有() A、糖类和核酸 B、核酸和蛋白质 C、酶与维生素 D、糖类和脂类 E、脂类和蛋白质 C13、有载体参与而不消耗代谢能的物质运输过程是() A、简单扩散 B、溶剂牵引 C、易化扩散 D、主动运输 E、出(入)胞作用 C14、核小体的化学成分主要是() A、RNA和非组蛋白 B、RNA和组蛋白 C、DNA和组蛋白 D、DNA和非组蛋白 E、以上都不是 E16、细胞外的液态异物进入细胞后形成的结构称为() A、吞噬体沫塑料 B、吞饮体 C、多囊体 D、小囊泡 E、大囊泡 E17、细胞核内最主要的化学成分是()

细胞生物学第四版试题合集

第二章 1、如何理解“细胞是生命活动的基本单位”这一概念? 1)一切有机体都有细胞构成,细胞是构成有机体的基本单位 2)细胞具有独立的、有序的自控代谢体系,细胞是代谢与功能的基本单位 3)细胞是有机体生长与发育的基础 4)细胞是遗传的基本单位,细胞具有遗传的全能性 5)没有细胞就没有完整的生命 6)细胞是多层次非线性的复杂结构体系 7)细胞是物质(结构)、能量与信息过程精巧结合的综合体 8)细胞是高度有序的,具有自装配与自组织能力的体系 2、为什么说支原体可能是最小最简单的细胞存在形式? 一个细胞生存与增殖必须具备的结构装置与技能是:细胞膜、DNA与RNA、一定数量的核糖体以及催化主要酶促反应所需的酶,可以推算出一个细胞所需的最小体积的最小极限直径为140nm~200nm,而现在发现的最小的支原体的直径已经接近这个极限,因此比支原体更小更简单的结构似乎不能满足生命活动的需要。 3、怎样理解“病毒是非细胞形态的生命体”?试比较病毒与细胞的区别并讨论其相互的关系。 病毒是由一个核酸分子(DNA或RNA)芯和蛋白质外壳构成的,是非细胞形态的生命体,是最小、最简单的有机体。仅由一个有感染性的RNA构成的病毒,称为类病毒;仅由感染性的蛋白质构成的病毒称为朊病毒。病毒具备了复制与遗传生命活动的最基本的特征,但不具备细胞的形态结构,是不完全的生命体;病毒的主要生命活动必须在细胞内才能表现,在宿主细胞内复制增殖;病毒自身没有独立的代谢与能量转化系统,必须利用宿主细胞结构、原料、能量与酶系统进行增殖,是彻底的寄生物。因此病毒不是细胞,只是具有部分生命特征的感染物。 病毒与细胞的区别:(1)病毒很小,结构极其简单;(2)遗传载体的多样性(3)彻底的寄生性(4)病毒以复制和装配的方式增殖 4、试从进化的角度比较原核细胞。古核细胞及真核细胞的异同 第四章 1.何谓内在膜蛋白? 内在膜蛋白以什么方式与膜脂相结合? 内在膜蛋白是膜蛋白中与膜结合比较紧密的一种蛋白,只有用去垢剂是膜崩解后才可分离出来。 结合方式:膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用(疏水作用);跨膜结构域两端携带正电荷的氨基酸残基与磷脂分子带负电的极性头部形成离子键,或带负电的氨基酸残基通过钙镁等阳离子与带负电的磷脂极性头部相互作用(静电作用):某些膜蛋白通过自身在胞质一侧的半胱氨酸残基共价结合到脂肪酸分子上,后者插入膜双分子层中进一步加强膜蛋白与脂双层的结合力 2.生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 膜的流动性:生物膜的基本特征之一,细胞进行生命活动的必要条件。 1)膜脂的流动性主要由脂分子本身的性质决定的,脂肪酸链越短,不饱和程度越高,膜脂的流动性越大。温度对膜脂的运动有明显的影响。在细菌和动物细胞中常通过增加 不饱和脂肪酸的含量来调节膜脂的相变温度以维持膜脂的流动性。在动物细胞中,胆固醇对膜的流动性起重要的双向调节作用。 膜蛋白的流动:荧光抗体免疫标记实验;成斑现象(patching)或成帽现象(capping) 2)膜的流动性受多种因素影响:细胞骨架不但影响膜蛋白的运动,也影响其周围的膜脂的流动。膜蛋白与膜分子的相互作用也是影响膜流动性的重要因素。 3)膜的流动性与生命活动关系:信息传递;各种生化反应;发育不同时期膜的流动性不同 3.细胞表面有哪几种常见的特化结构? 细胞表面特化结构主要包括:膜骨架、鞭毛、纤毛、变形足和微绒毛,都是细胞膜与膜内的细胞骨架纤维形成的复合结构,分别与维持细胞的形态、细胞的运动、细胞与环境的物质交换等功能有关。 第五章 1.比较载体蛋白与通道蛋白的异同 相同点:化学本质均为蛋白质、分布均在细胞的膜结构中,都有控制特定物质跨膜运输的功能。 不同点:载体蛋白:与特异的溶质结合后,通过自身构象的改变以实现物质的跨膜运输。 通道蛋白:①通过形成亲水性通道实现对特异溶质的跨膜转运 ②具有极高的转运效率 ③没有饱和值 ④离子通道是门控的(其活性由通道开或关两种构象调节) 2.比较P-型离子泵、V-型质子泵、F-型质子泵和ABC超家族的异同。 (1)相同点:①都是跨膜转运蛋白②转运过程伴随能量流动③都介导主动运输过程④对转运底物具有特异性⑤都是ATP驱动泵 (2)不同点:①P型泵转运过程形成磷酸化中间体,V型,F型,ABC超家族则无 ②P型,V型泵,ABC超家族都是逆电化学梯度消耗ATP运输底物,F型泵则是顺电化学梯度合成ATP ③P型泵主要负责Na+,K+,H+,CA2+跨膜梯度的形成和维持,V型,F型只负责H+的转运,ABC超家族转运多种物质 3.说明钠钾泵的工作原理及其生物学意义。 工作原理:在细胞内侧α亚基与钠离子相结合促进ATP水解,α亚基上的天冬氨酸残基引起α亚基的构象发生变化,将钠离子泵出细胞外,同时将细胞外的钾离子与α亚基的另一个位点结合,使其去磷酸化,α亚基构象再度发生变化将钾离子泵进细胞,完成整个循环。钠离子依赖的磷酸化和钾离子依赖的去磷酸化引起构象变化有序交替发生。每一个循环消耗一个ATP分子泵出三个钠离子和泵进两个钾离子。

细胞生物学题库参考答案

《细胞生物学》题库参考答案 第四章细胞膜与细胞表面 一、名词解释 1. 脂质体——脂质体是根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜,脂质体中可以裹入不同的药物或酶等具有特殊功能的生物大分子。 2. 流体镶嵌模型——主要强调:1.膜的流动性,膜脂和膜蛋白均可侧向运动2.膜蛋白分布的不对称性 3. 细胞膜——又称质膜,是指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。 4. 去垢剂——是一端亲水一端疏水的两性小分子,是分离与研究膜蛋白的常用试剂。 5. 膜内在蛋白——又称整合蛋白,多数为跨膜蛋白,与膜紧密结合。 6. 细胞外被——又称糖萼,曾用来指细胞膜外表面覆盖的一层粘多糖基质,实际上细胞外被中的糖与细胞膜的蛋白分子或脂质分子是共价结合的,形成糖蛋白和糖脂,所以,细胞外被应是细胞膜的正常结构组分,它不仅对膜蛋白起保护作用,而且在细胞识别中起重要作用。 7. 细胞外基质——是指分布于细胞外空间,由细胞分泌的蛋白和多糖所构成的网络结构。细胞外基质将细胞粘连在一起构成组织,同时,提供一个细胞外网架,在组织中或组织之间起支持作用。 8. 透明质酸——是一种重要的糖胺聚糖,是增殖细胞和迁移细胞胞外基质的主要成分,尤其在胚胎组织中。 9. 细胞连接——是多细胞有机体中相邻细胞之间通过细胞质膜相互联系,协同作用的重要组织方式。 10. 细胞粘着——在细胞识别的基础上,同类细胞发生聚集,形成细胞团或组织的过程。 11. 整联蛋白家族——细胞膜上能够识别并结合各种能够含RGD三肽顺序的受体称整联蛋白家族。 12. 连接子——构成间隙连接的基本单位。 13. 免疫球蛋白超家族的CAM——分子结构中具有与免疫球蛋白类似的结构域的CAM超家族。 二、选择题 1.D 2.A 3.B 4.D 5.A 6.C 7.A 8.C 9.C 10. B 11.C 12.C 13.B 14.D 15.A 16.B 17.B 18.D 19.C 20.D 21.B 22.C 三、判断题 1.× 2.× 3.√ 4.× 5.√ 6.× 7.√ 8.× 9.√ 四、填空题 1. 流动性、不对称性 2.α螺旋 3.运输、识别、酶活性、细胞连接、信号转导 4.去垢剂 5. 糖脂 6. 脂肪酸长度、脂肪酸饱和度、温度、胆固醇含量 7. 胶原、30% 8. 水不溶性 9. 原胶原10. 氨基己糖、糖醛酸11. 透明质酸、4-硫酸软骨素、硫酸皮肤素、硫酸乙酰肝素12. 层粘连蛋白13. 整联蛋白14. 1/4、平行15. 封闭连接、锚定连接、通讯连接;锚定16. 高等植物17. 可兴奋细胞18. 间隙连接、胞间连丝、化学突触19. 封闭蛋白(occludin)、claudins 20. 连接子21. RGD;Arg、Gly、Asp 五、问答题 1. ㈠荧光抗体免疫标记实验是分别用抗鼠细胞膜蛋白的荧光抗体和抗人细胞膜蛋白的荧光抗体标记小鼠和人的细胞表面,使这两种细胞融合,观察不同颜色的荧光在融合细胞表面的

细胞生物学考试题A卷答案

细胞生物学考试题A卷答案 一.名词解释:(每小题2分,共20分) 1.导肽:线粒体和叶绿体蛋白前体N端的一段特殊序列,功能是引导蛋白进入目的细胞器。2.Cyclin:细胞周期蛋白,是细胞周期引擎的正调控因子。 3.细胞内膜系统细胞内膜系统:由细胞内膜构成的各种细胞器的总称,包括线粒体、叶绿体、内质网、高尔基体、溶酶体、微体等等。 4.多聚核糖体:在一个mRNA通常结合多个核糖体进行蛋白质的合成。 5.次级溶酶体:在进行消化作用的溶酶体。 6.受体:是一种能够识别和选择性结合某种配基的大分子,与配基结合后,产生化学的或物理的信号,以启动一系列过程,最终表现为生物学效应。 7.原癌基因:是细胞内与细胞增殖有关的正常基因,其突变导致癌症。 8.细胞全能性:指由一个细胞发育为一个完整成体的发育潜能。 9.Chromosome:染色体,是染色质在细胞周期分裂期的形态。 10.细胞周期:指细胞由前一次分裂结束到下一次分裂结束的全过程。 二.填空(每空1分,共30分) 1.光学显微镜的最大分辨力是0.2微米,因此对人目来说其有效放大倍率是1000X 。 2.cAMP途径激活的是蛋白激酶A 。 3.秋水仙素是微管的特异性药物,而细胞松弛素是微丝的特异性药物 4.氯霉素能阻断细菌、线粒体和叶绿体的蛋白质合成。放线菌酮能阻断细胞 质中的蛋白质合成中。 5.胶原肽链的一级结构是由—X-Y重复序列构成的。 6.内质网可分为粗面型和光滑型两类。 7.O-连接的糖基化主要发生在高尔基体,N-连接的糖基化发生在粗面型内质网。 8.线粒体的功能区隔主要有:外膜、内膜、膜间隙和基质。 9.G1期的PCC呈单线状,S期呈粉末状,G2期的呈双线状。 10.癌细胞的三个主要特征是:不死性、转移性和失去细胞间的接触抑制 11.电子显微镜主要由电子照明系统、电子成像系统、真空系统、记录系统 和电源系统等五部分构成。 12.微体可根据功能分为过氧化物酶体和乙醛酸循环体两类。 三.判断正误(不必改正,你认为正确的在□中打√,错误的打X) 1.核糖体上的肽基转移酶由蛋白质和RNA共同构成。□√ 2.多细胞生物体内并非所有的细胞都是二倍体的。□√ 3.核定位信号序列NLS位于亲核蛋白的N端。□X 4.人类的巴氏小体实际上是一条异染色质化的性染色体。□√ 5.从进化角度来看组蛋白是多变的而非组蛋白是保守的。□X

细胞生物学题库(含答案)

1、胡克所发现的细胞是植物的活细胞。X 2、细胞质是细胞内除细胞核以外的原生质。√ 3、细胞核及线粒体被双层膜包围着。√ 一、选择题 1、原核细胞的遗传物质集中在细胞的一个或几个区域中,密度低,与周围的细胞质无明确的界限,称作(B) A、核质 B拟核 C核液 D核孔 2、原核生物与真核生物最主要的差别是(A) A、原核生物无定形的细胞核,真核生物则有 B、原核生物的DNA是环状,真核生物的DNA是线状 C、原核生物的基因转录和翻译是耦联的,真核生物则是分开的 D、原核生物没有细胞骨架,真核生物则有 3、最小的原核细胞是(C) A、细菌 B、类病毒 C、支原体 D、病毒 4、哪一项不属于细胞学说的内容(B) A、所有生物都是由一个或多个细胞构成 B、细胞是生命的最简单的形式 C、细胞是生命的结构单元 D、细胞从初始细胞分裂而来 5、下列哪一项不是原核生物所具有的特征(C) A、固氮作用 B、光合作用 C、有性繁殖 D、运动 6、下列关于病毒的描述不正确的是(A) A、病毒可完全在体外培养生长 B、所有病毒必须在细胞内寄生 C、所有病毒具有DNA或RNA作为遗传物质 D、病毒可能来源于细胞染色体的一段 7、关于核酸,下列哪项叙述有误(B) A、是DNA和RNA分子的基本结构单位 B、DNA和RNA分子中所含核苷酸种类相同 C、由碱基、戊糖和磷酸等三种分子构成 D、核苷酸分子中的碱基为含氮的杂环化合物 E、核苷酸之间可以磷酸二酯键相连 8、维持核酸的多核苷酸链的化学键主要是(C) A、酯键 B、糖苷键 C、磷酸二酯键 D、肽键 E、离子键 9、下列哪些酸碱对在生命体系中作为天然缓冲液?D A、H2CO3/HCO3- B、H2PO4-/HPO42- C、His+/His D、所有上述各项 10、下列哪些结构在原核细胞和真核细胞中均有存在?BCE A、细胞核 B、质膜 C、核糖体 D、线粒体 E、细胞壁 11、细胞的度量单位是根据观察工具和被观察物体的不同而不同,如在电子显微镜下观察病毒,计量单位是(C) A、毫米 B、微米 C、纳米 D、埃 四、简答题 1、简述细胞学说的主要内容

最新细胞生物学翟中和第四版课后习题答案

第四章:细胞膜与细胞表面 1、生物膜的基本结构特征是什么?这些特征与它的生理功能有什么联系? 以极性尾部相对,极性头部朝向水相的磷脂双分子层是组成生物膜的基本结构成分,蛋白分子以不同的方式镶嵌在脂双分子层中或结合在其表而。生物膜具有两个显著的特征,即膜的不对称性和膜的流动性:D、生物膜结构的不对称性保证了膜功能的方向性,使膜两侧具有不同的功能,有的功能只发生在膜外侧,有的则在膜内侧,这是生物膜发生作用所必不可少的。如调节.细胞内外Na+、K+的Na+-K+ATP酶,其运转时所需的ATP是细胞内产生的,该酶的ATP结合点正是处于膜的内侧面:许多激素受体等接受细胞外信号的则处于细胞外侧。2)、膜的流动性与物质运输、能量转换、细胞识别、药物对细胞的作用密切相关。可以说,一切膜的基本活动均在生物膜的流动状态下进行。 2、何为内在膜蛋白?它以什么方式与膜脂相结合? 内在膜蛋白又称整合膜蛋白,这类蛋白部分或全部插入脂双层中,多数为横跨整个膜的跨膜蛋白。它与膜结合的主要方式有:1)、膜蛋白的跨膜结构域与脂双层分子的疏水核心的相互作用。2)、跨膜结构域两端携带正电荷的纨基酸残基,如精敏酸、赖缎酸等与磷脂分子带负电的极性头形成离子键,或带负电的氨基酸残基通过Ca+、Mg+等阳离子与带负电的磷脂极性头相互作用。3)、某些膜蛋白通过自身在细胞质基质一侧的半胱织酸残基上共价结合的脂肪酸分子,插到膜双层之间,进一步加强膜蛋白与脂双层的结合力,还有少数蛋白与糖脂共价结合。 3、从生物膜结构模型的演化,谈谈人们对生物膜的认识过程。 生物膜结构模型的演化是人类认识细胞膜的一个循序渐进的过程,是随着实验技术和方法的改进而不断完善的:D、1925年:质膜是由双层脂分子构成的;2)、1935年:提出“蛋白质一脂质一蛋白质”的三明治式的质膜结构模型,这一模型影响达20年之久:3)、1959 年提出单位膜模型,并大胆推测所有的生物膜都是由“蛋白质一脂质一蛋白质”的单位膜构成:4)、1972年桑格和尼克森提出了生物膜的流动镶嵌模型,强调:①膜的流动性,膜蛋白和膜脂均可侧向运动:②膜蛋白分布的不对称性,有的镶嵌在膜表面,有的嵌入或横跨脂双层分子。5)、“液态晶模型”和“板块镶嵌模型”等的提出,可看作是对流动镶嵌模型的补充。6)、1988年“脂筏模型”。从生物膜结构模型的演化过程可知,人们对事物的认识是在实践中不断深入、逐渐完善的过程。 4、红细胞膜骨架的基本结构与功能是什么? 膜骨架是细胞质膜与膜内的细胞卅架纤维形成的复合结构。红细胞膜骨架蛋白主要包括:血影蛋白或称红膜肽,锚蛋白,带4、1蛋白和肌动蛋白。血影蛋白和肌动蛋白在维持膜的形状和固定其它膜蛋白的位置方而起重要作用。功能:参与维持细胞的形态,并协助细胞质膜完成多种的生理功能。 第五章、物质的跨膜运输 1、比较载体蛋白与通道蛋白的特点。 1)、膜转运蛋白可以分为两类:载体蛋白和通道蛋白(又称离子通道)。它们以不同的方式辨别溶质。2)、载体蛋白是几乎所有类型的生物膜上普遍存在的多次跨膜的蛋白质分子。每种载体蛋白能与特定的溶质分子结合,通过一系列构象改变介导溶质分子的跨膜转运。具有高度选择性:具有类似于酶与底物作用的饱和动力学特征:对PH有依赖性。3)、离子通道有3个显著特征:①极高的转运速率②没有饱和值③非连续性开放而是门控的。离子通道无需与溶质分子结合。它的开或关两种构象的调方,应答于适当的信号。根据应答信号的不同,离子通道又分为电压门通道、配体门通道、压力激活通道。 2、比较主动运输与被动运输的特点及其生物学意义。 主动运输和被动运输的特点:(1)浓度梯度:主动运输是物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧跨膜转运的方式;而被动运输是物质顺浓度梯度或电化学梯度由高浓度向低浓度方向的跨膜转运。(2)是否需能主动播需要代谢能(由ATP水解直接提供能量)或与释放能量的过程相偶联(协同运输):而被动运输不需

细胞生物学试题整理(含答案)

细胞生物学与细胞工程试题 一:填空题(共40小题,每小题0.5分,共20分) 1:现在生物学“三大基石”是:_,__。 2:细胞的物质组成中,_,_,_,_四种。 3:膜脂主要包括:_,_,_三种类型。 4:膜蛋白的分子流动主要有_扩散和_扩散两种运动方式。 5:细菌视紫红质蛋白结构的中部有几个能够吸光的_基因,又称发色基因。6:受体是位于膜上的能够石碑和选择性结合某种配体的_。 7:信号肽一般位于新合成肽链的_端,有的可位于中部。 8:次级溶酶体是正在进行或完成消化作用的溶酶体,可分为_,_,及_。 9狭义的细胞骨架(指细胞质骨架)包括_,_,_,_及_。 10:高等动物中,根据等电点分为3类:α肌动蛋白分布于_;β和γ肌动蛋白分布于所有的_和_。 11:染色质的化学组成_,_,_,少量_。 12:随体是指位于染色体末端的球形染色体节段,通过_与_相连。 13:弹性蛋白的结构肽链可分为两个区域:富含_,_,_区段。 14:细胞周期可分为G1期,S期,G2期,G2期主要合成_,_,_等。 二:名词解释(每个1分,共20小题) 1:支原体 2:组成型胞吐作用 3:多肽核糖体 4:信号斑 5:溶酶体 6:微管 7:染色单体 8:细胞表面 9:锚定连接 10:信号分子 11:荧光漂白技术

12:离子载体 13:受体 14:细胞凋亡 15:全能性 16:常染色质 17:联会复合体 18组织干细胞 19:分子伴侣 20:E位点 三:选择题(每题一分,共20小题) 1:细胞中含有DNA的细胞器有() A:线粒体B叶绿体C细胞核D质粒 2:细细胞核主要由()组成 A:核纤层与核骨架B:核小体C:染色质和核仁 3:在内质网上合成的蛋白质主要有() A:需要与其他细胞组分严格分开的蛋白B:膜蛋白C:分泌性蛋白 D:需要进行修饰的pro 4:细胞内进行蛋白修饰和分选的细胞器有() A:线粒体 B:叶绿体 C:内质网 D:高尔基体5微体中含有() A:氧化酶 B:酸性磷酸酶 C:琥珀酸脱氢酶 D:过氧化氢酶6:各种水解酶之所以能够选择性的进入溶酶体是因为它们具有()A:M6P标志 B:导肽 C:信号肽 D:特殊氨基序列7:溶酶体的功能有() A:细胞内消化 B:细胞自溶 C:细胞防御 D:自体吞噬8:线粒体内膜的标志酶是() A:苹果酸脱氢酶 B:细胞色素 C:氧化酶 D:单胺氧化酶9:染色质由以下成分构成() A:组蛋白 B:非组蛋白 C:DNA D:少量RNA

最新细胞生物学复习题-(含答案)

1.简述细胞生物学的基本概念,以及细胞生物学发展的主要阶段。 以细胞为研究对象,经历了从显微水平到亚显微和分子水平的发展过程,研究细胞结构与功能从而探索细胞生长发育繁殖遗传变异代谢衰老及进化等各种生命现象的规律的科学;主要阶段:①细胞的发现与细胞学说的创立②光学显微镜下的细胞学研究③实验细胞学研究 ④亚显微结构与分子水平的细胞生物学。 2.简述细胞学说的主要内容。 施莱登和施旺提出一切生物,从单细胞生物到高等动物和植物均有细胞组成,细胞是生物形态结构和功能活动的基本单位。魏尔肖后来对细胞学说作了补充,强调细胞只能来自原来的细胞。 3.简述原核细胞的结构特点。 1). 结构简单 DNA为裸露的环状分子,无膜包裹,形成拟核。 细胞质中无膜性细胞器,含有核糖体。 2). 体积小直径约为1到数个微米。 ① DNA分子由两条相互平行而方向相反的多核苷酸链组成。②两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。③螺旋的主链由位于外侧的间隔相连的脱氧核糖和磷酸组

成,内侧为碱基构成。④两条多核苷酸链之间依据碱基互补原则相连螺旋内每一对碱基均位于同一平面上并且垂直于螺旋纵轴,相邻碱基对之间距离为0.34nm,双螺旋螺距为3.4nm。 6.蛋白质的结构特点。 以独特的三维构象形式存在,蛋白质三维构象的形成主要由其氨基酸的顺序决定,是氨基酸组分间相互作用的结果。一级结构是指蛋白质分子氨基酸的排列顺序,氨基酸排列顺序的差异使蛋白质折叠成不同的高级结构。二级结构是由主链内氨基酸残基之间氢键形成,有两种主要的折叠方式a-螺旋和β-片层。在二级结构的基础上进一步折叠形成三级结构,不同侧键间互相作用方式有氢键,离子键和疏水键,具有三级结构既表现出了生物活性。三级结构的多肽链亚单位通过氢键等非共价键可形成更复杂的四级结构。 7.生物膜的主要化学组成成分是什么? 膜脂(磷脂,胆固醇,糖脂),膜蛋白,膜糖 8.什么是双亲性分子(兼性分子)?举例说明。 既含有亲水头部又含有疏水的尾部的分子,如磷脂一端为亲水的磷酸基团,另一端为疏水的脂肪链尾。 9.膜蛋白的三种类型。 膜内在蛋白(整合蛋白),膜外在蛋白,脂锚定蛋白 10.细胞膜的主要特性是什么?膜脂和膜蛋白的运动方式分别有哪些? 细胞膜的主要特性:膜的不对称性和流动性;膜脂翻转运动,旋转运动,侧向扩散,弯曲运动,伸缩和振荡运动。膜蛋白旋转运动和侧向扩散。 11.影响膜脂流动的主要因素有哪些? ①脂肪酸链的饱和程度,不饱和脂肪酸越多,相变温度越低其流动性也越大。 ②脂肪酸链的长短,脂肪酸链短的相变温度低,流动性大。 ③胆固醇的双重调节,当温度在相变温度以上时限制膜的流动性起稳定质膜的作用,在相变 温度以下时防止脂肪酸链相互凝聚,干扰晶态形成。 ④卵磷脂与鞘磷脂的比例,比值越大流动性越大。 ⑤膜蛋白的影响,嵌入膜蛋白越多,膜脂流动性越小 ⑥膜脂的极性基团、环境温度、pH值、离子强度及金属离子等均可对膜脂的流动性产生一 定的影响。 12.简述生物膜流动镶嵌模型的主要内容及其优缺点。 膜中脂双层构成膜的连贯主体,他们具有晶体分子排列的有序性,又有液体的流动性,膜中蛋白质以不同的方式与脂双层结合。优点,强调了膜的流动性和不对称性。缺点,但不能说明具有流动性性的质膜在变化过程中怎样保持完整性和稳定性,忽视了膜的各部分流动性的不均匀性。 13.小分子物质的跨膜运输方式有哪几种? 被动运输:简单扩散,易化扩散,离子通道扩散。主动运输:ATP直接供能,ATP间接供能。 14.简述被动运输与主动运输的区别。 被动运输不消耗细胞能量,顺浓度梯度或电化学梯度。主动运输逆电化学梯度运输,需要消耗能量,都有载体蛋白介导。 15.大分子和颗粒物质的跨膜运输方式有哪几种? 胞吞作用(吞噬作用,胞饮作用,受体介导的胞吞作用)。胞吐作用(连续性分泌作用,受调性分泌作用) 16.简述小肠上皮细胞吸收葡萄糖的过程。 小肠上皮细胞顶端质膜中的Na+/葡萄糖协同运输蛋白,运输2个Na+的同时转运1个葡萄糖分子,使胞质内产生高葡萄糖浓度;质膜基底面和侧面的葡萄糖易化扩散运输蛋白,转运葡

细胞生物学试题库及答案

细胞生物学 试、习题库(附解答)苏大《细胞生物学》课程组编 第一批

细胞生物学试题题库第一部分 填空题 1 细胞是构成有机体的基本单位,是代谢与功能的基本单位,是生长与发育的基本单位,是遗传的基本单位。 2 实验生物学时期,细胞学与其它生物科学结合形成的细胞分支学科主要有细胞遗传学、细胞生理学和细胞 化学。 3 组成细胞的最基础的生物小分子是核苷酸、氨基酸、脂肪酸核、单糖,它们构成了核酸、蛋白质、脂类和 多糖等重要的生物大分子。 4 按照所含的核酸类型,病毒可以分为D.NA.病毒和RNA.病毒。 1. 目前发现的最小最简单的细胞是支原体,它所具有的细胞膜、遗传物质(D.NA.与RNA.)、核糖体、酶是 一个细胞生存与增殖所必备的结构装置。 2. 病毒侵入细胞后,在病毒D.NA.的指导下,利用宿主细胞的代谢系统首先译制出早期蛋白以关闭宿主细胞 的基因装置。 3. 与真核细胞相比,原核细胞在D.NA.复制、转录与翻译上具有时空连续性的特点。 4. 真核细胞的表达与原核细胞相比复杂得多,能在转录前水平、转录水平、转录后水平、翻译水平、和翻译 后水平等多种层次上进行调控。 5. 植物细胞的圆球体、糊粉粒、与中央液泡有类似溶酶体的功能。 6. 分辨率是指显微镜能够分辩两个质点之间的最小距离。 7. 电镜主要分为透射电镜和扫描电镜两类。 8. 生物学上常用的电镜技术包括超薄切片技术、负染技术、冰冻蚀刻技术等。 9. 生物膜上的磷脂主要包括磷脂酰胆碱(卵磷脂)、磷脂酰丝氨酸、磷脂酰肌醇、磷脂酰乙醇胺和鞘磷脂。 10. 膜蛋白可以分为膜内在蛋白(整合膜蛋白)和膜周边蛋白(膜外在蛋白)。 11. 生物膜的基本特征是流动性和不对称性。 12. 内在蛋白与膜结合的主要方式有疏水作用、离子键作用和共价键结合。 13. 真核细胞的鞭毛由微管蛋白组成,而细菌鞭毛主要由细菌鞭毛蛋白组成。 14. 细胞连接可分为封闭连接、锚定连接和通讯连接。 15. 锚定连接的主要方式有桥粒与半桥粒和粘着带和粘着斑。 16. 锚定连接中桥粒连接的是骨架系统中的中间纤维,而粘着带连接的是微丝(肌动蛋白纤维)。 17. 组成氨基聚糖的重复二糖单位是氨基己糖和糖醛酸。 18. 细胞外基质的基本成分主要有胶原蛋白、弹性蛋白、氨基聚糖和蛋白聚糖、层粘连蛋白和纤粘连蛋白等。 19. 植物细胞壁的主要成分是纤维素、半纤维素、果胶质、伸展蛋白和蛋白聚糖等。 20. 植物细胞之间通过胞间连丝相互连接,完成细胞间的通讯联络。 21. 通讯连接的主要方式有间隙连接、胞间连丝和化学突触。 22. 细胞表面形成的特化结构有膜骨架、微绒毛、鞭毛、纤毛、变形足等。 23. 物质跨膜运输的主要途径是被动运输、主动运输和胞吞与胞吐作用。 24. 被动运输可以分为简单扩散和协助扩散两种方式。 25. 协助扩散中需要特异的膜转运蛋白完成物质的跨膜转运,根据其转运特性,该蛋白又可以分为载体蛋白 和通道蛋白两类。 26. 主动运输按照能量来源可以分为A.TP直接供能运输、A.TP间接供能运输和光驱动的主动运输。 27. 协同运输在物质跨膜运输中属于主动运输类型。 28. 协同运输根据物质运输方向于离子顺电化学梯度的转移方向的关系,可以分为共运输(同向运输)和反 向运输。

细胞生物学(第四版)习题集大全

第一章绪论 一、名词解释 1、细胞生物学:是研究和揭示细胞基本生命活动规律的科学,它从显微、亚显微与分子水平上研究细胞结构与功能、细胞增殖、分化、代谢、运动、衰老、死亡,以及细胞信号传导,细胞基因表达与调控,细胞起源与进化等重大生命过程。 2、显微结构:在普通光学显微镜中能够观察到的细胞结构,直径大于0.2微米,如细胞的大小及外部形态、染色体、线粒体、中心体、细胞核、核仁等。 3、亚显微结构:在电子显微镜中能够观察到的细胞分子水平以上的结构,直径小于0.2微米,如内质网膜、核膜、微管、微丝、核糖体等。 4、细胞学:研究细胞形态、结构、功能和生活史的科学,细胞学的确立是从Schleiden (1838)和Schwann(1839)的细胞学说的提出开始的,而大部分细胞学的基础知识是在十九世纪七十年代以后得到。 5、分子细胞生物学:是细胞的分子生物学,是指在分子水平上探索细胞的基本生命活动规律,主要应用物理的、化学的方法、技术,分析研究细胞各种结构中核酸和蛋白质等大分子的构造、组成的复杂结构、这些结构之间分子的相互作用及遗传性状的表现的控制等。 二、简答题 1、细胞生物学的任务是什么?它的X围都包括哪些? 1、任务:细胞生物学的任务是以细胞为着眼点,与其他学科的重要概念兼容并蓄,来阐明生物各级结构层次生命现象的本质。 2、X围:(1) 细胞的细微结构;(2) 细胞分子水平上的结构;(3) 大分子结构变化与细胞生理活动的关系及分子解剖。 2、细胞生物学在生命科学中所处的地位,以及它与其他学科的关系 1、地位:以细胞作为生命活动的基本单位,探索生命活动规律,核心问题是将遗传与发育在细胞水平上的结合。 2、关系:应用现代物理学与化学的技术成就和分子生物学的概念与方法,研究生命现象及其规律。 许多高等学校在生命科学的教学中,将细胞生物学确定为基础课程。细胞生物学、分子生物学、神经生物学和生态学并列为生命科学的四大基础学科。细胞生物学与其他学科之间的交叉渗透日益明显。 3、通过学习细胞学发展简史,你如何认识细胞学说的重要性? 1838-1839年,德国植物学家施莱登和德国动物学家施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成;每个细胞作为相对独立的单位,但也与其他细胞相互影响。1858年Virchow对细胞学说做了重要的补充,强调细胞只能

细胞生物学试题含答案

细胞生物学与细胞工程试题一:填空题(共40小题,每小题0.5分,共20分) 1:现在生物学“三大基石”是:_,__。 2:细胞的物质组成中,_,_,_,_四种。 3:膜脂主要包括:_,_,_三种类型。 4:膜蛋白的分子流动主要有_扩散和_扩散两种运动方式。 5:细菌视紫红质蛋白结构的中部有几个能够吸光的_基因,又称发色基因。6:受体是位于膜上的能够石碑和选择性结合某种配体的_。 7:信号肽一般位于新合成肽链的_端,有的可位于中部。 8:次级溶酶体是正在进行或完成消化作用的溶酶体,可分为_,_,及_。 9狭义的细胞骨架(指细胞质骨架)包括_,_,_,_及_。 10:高等动物中,根据等电点分为3类:α肌动蛋白分布于_;β和γ肌动蛋白分布于所有的_和_。 11:染色质的化学组成_,_,_,少量_。 12:随体是指位于染色体末端的球形染色体节段,通过_与_相连。 13:弹性蛋白的结构肽链可分为两个区域:富含_,_,_区段。 14:细胞周期可分为G1期,S期,G2期,G2期主要合成_,_,_等。 二:名词解释(每个1分,共20小题) 1:支原体 2:组成型胞吐作用 3:多肽核糖体

4:信号斑 5:溶酶体 6:微管 7:染色单体 8:细胞表面 9:锚定连接 10:信号分子 11:荧光漂白技术 12:离子载体 13:受体 14:细胞凋亡 15:全能性 16:常染色质 17:联会复合体 18组织干细胞 19:分子伴侣 20:E位点 三:选择题(每题一分,共20小题) 1:细胞中含有DNA的细胞器有() A:线粒体B叶绿体C细胞核D质粒 2:细细胞核主要由()组成 A:核纤层与核骨架B:核小体C:染色质和核仁

细胞生物学期末考试试题

细胞生物学期末考试试题 1. 一氧化氮 (NO)是不是第二信使,请简述你的观点和证据。一氧化氮是第二信使 资料表明,细胞中存在一种NO合成酶,NO合成酶分解L-精氨酸,生成NO和 L-瓜氨酸。 NO的作用决定其释放部位,生成细胞是血管内皮。如乙酞胆碱,缓激肤或动脉流等刺激内皮细胞,使之释放NO,它激活邻近平滑肌的鸟核昔酸环化酶, 引起血管舒张。在血小板,则抑制聚集和粘附; 在大鼠小脑,由于激活了兴奋性NMDA(N-甲基-D-天冬氨酸)受体,神经元释放 畜NO,使邻近的突触前神经末梢及星形细胞的可溶性鸟核昔酸释化酶激活。FMLP或LTB刺激大鼠腹腔中4性粒细胞和刺激巨噬细胞产生NO,NO可以激活血管平滑肌及血小板的鸟核昔酸环化酶: 由此看啦NO确实是一种第二信使。 参考文献:NO-神经系统和免疫系统的第二信使,Coller j&Vallance P 国外医学分子生物学分册第13卷第1期,1991 2. 简述你对干细胞的理解和干细胞的应用前景。 干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能 细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。

医学细胞生物学考试题库(1)

医学细胞生物学08级考试题库 一、名词解释(gyxj): 1、主动运输:是载体蛋白介导的物质逆浓度梯度或电化学梯度由低浓度一侧向高浓度一侧进行的跨膜运输方式,要消耗能量。 2、易化扩散:一些亲水性的物质不能以简单扩散的方式通过细胞膜,但它们在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度或电化学梯度进行转运。 3、内在膜蛋白:其主体部分穿过细胞膜脂双层,分为单次跨膜,多次跨膜和多亚基跨膜蛋白三种类型。 4、脂锚定蛋白:这类膜蛋白位于膜的两侧,很像外周蛋白,但与其不同的是脂锚定蛋白以共价键与脂双层内的脂分子结合。 5、肽键:是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合形成的化学键。 6、蛋白质二级结构:是在蛋白质一级结构基础上形成的,是由于肽链主链内的氨基酸残基之间有规则地形成氢键相互作用的结果。 7、转录:基因转录是遗传信息从DNA流向RNA 的过程,即将DNA分子上的核苷酸序列转变为RNA分子上核苷酸序列的过程。 8、蛋白质一级结构:是指蛋白质分子中氨基酸的排列顺序。 9、膜泡运输:大分子和颗粒物质运输时并不直接穿过细胞膜,都是由膜包围形成膜泡,通过一些列膜囊泡的形成和融合来完成的转运过程。 10、吞噬体:细胞摄取较大的固体颗粒或或分子复合物,在摄入这类颗粒物质时,细胞膜凹陷或形成伪足,将颗粒包裹后摄入细胞,吞噬形成的膜泡称为吞噬体。 11、胞饮体:质膜内凹陷形成一个小窝,包围液体物质而形成。 12、受体介导的内吞作用:是细胞通过受体介导摄取细胞外专一性蛋白质或其它化合物的过程。 13、细胞外被:在大多数真核细胞表面有富含糖类的周缘区,被称为细胞外被。 14、胞质溶胶:是均匀而半透明的液体物质,其主要成分是蛋白质。 15、细胞内膜系统:是细胞内那些在结构、功能及其发生上相互密切关系的膜性结构细胞器之总称。 16、N-连接糖基化:发生在粗面内质网中的糖基化主要是寡糖与蛋白质天冬酰胺残基侧链上氨基基团的结合,所以亦称之为N-连接糖基化。 17、初级溶酶体:是指通过其形成途径刚刚产生的溶酶体。 18、次级溶酶体:当初级溶酶体经过成熟,接受来自细胞内、外的物质,并与之发生相互作用时,即成为次级溶酶体。 19、自噬溶酶体:作用底物是来自于细胞自身的各种组分,或者衰老、残损和破碎的细胞器。 20、吞(异)噬性溶酶体:作用底物是源于细胞外来的物质。 21、细胞呼吸:在细胞内特定的细胞器(主要是线粒体)内,在O2的参与下,分解各种大分子物质,产生CO2 ;与此同时,分解代谢所释放出的能量储存于ATP中。22、呼吸链:由一系列能够可逆地接受或释放H+和e_ 的化学物质在内膜上有序的排列成相关联的链状。

相关文档
相关文档 最新文档