文档库 最新最全的文档下载
当前位置:文档库 › 简易电能质量监测装置

简易电能质量监测装置

简易电能质量监测装置
简易电能质量监测装置

简易电能质量监测装置

摘要:本简易电能质量监测装置由单片机主控制模块,电源模块、信号变换与处理模块和数据转换模块等构成,由c8051f330为主控单片机,它能准确的完成对一路交流工频电(正弦波)的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数的测量。系统调试时,用函数信号发生器输出正弦电压信号作为交流信号的电压信号输入,此电压信号经过自制的移相电路移相后代表同一路信号的电流信号输入

关键词:电能质量单片机工频交流电移相电路

一.设计任务与要求

1.1 设计任务

设计并制作一个能同时对一路工频交流电的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数等进行测量的数字式电能质量监测装置。

1.2 技术指标

(1)测量交流输入电压有效值。

频率:50Hz;测量范围:1~5V;准确度:±1%。

(2)测量交流输入电流有效值。

频率:50Hz;测量范围:10~50A;准确度:±1%。

(3)测量并显示有功功率P、无功功率Q、视在功率S及功率因数PF。

(4)在测试交流电压、交流电流有效值过程中,能显示它们的最大值和最小值。

(5)测量交流输入电压频率,精度为±0.5%。

(6)采用LCD显示,能够同时显示一个周期的输入电压、输入电流曲线。二.方案比较与论证

2.1 外部电路处理

方案1:利用升压电路将输入信号抬升为只有正电压的信号,送入单片机;

方案2:利用整流电路,对正弦信号进行全波整流后送入单片机;

升压电路可保持正弦信号的完整性,信号通过升压电路后仍为正弦波,全波整流电路会使正弦信号失去其完整性,就电路设计难度而言,两者相差无几,此外,为便于对信号进行谐波分析,最好保持其完整的正弦特性。

综上,选用方案1;

2.2 测量相位差

方案1:利用FPGA测量相位

方案2:利用单片机测量相位

在单片机里可以利用一个定时器加一个外部中断来实现相位测量,实现较简便。FPGA实现相位差测量,最终结果还需要传输给单片机显示,没有单片机直接测量简便。本项目测量的是工频信号,对频率要求较低,用单片机完全可以胜任。

综上:选用方案2

图1 系统总体框图

三.系统硬件设计

1.移相电路

在交流电路中,电阻电路是线性的,电容的相位超前90度,电感的相位滞后90度。选择不同的RC 数值,能使RC 组成电路的输出相对输入产生不同的相移,通过调节滑动变阻器的阻值变化可使最大相移达到180度,本系统移相电路将输入的电压信号移位后代表同一路的电流信号,便于系统的调试。移相电路如下:

图2 移相电路原理图

参数计算:

Uo=-Ui+2(j ωR23C) /( j ωR23C)*Ui; Φ=180-2arctan (f*2πR23C ); 相位角在0-90度内可调。

2.比例抬升电路

由于系统是由单片机主控,通过330单片机采集数据并处理,所以单片机采得的数据要满足其规定的范围内,即最大电压不超过3.3V ,且不能有负电压,我们通过LF353型运放对输入信号比例缩小,并抬升运放的静态工作点,以保证采集的信号在规定的范围内。其中电路部分如下:

图3 比例抬升电路原理图

参数计算:

电压放大倍数:AU=R28/R20=4;

静态电压抬升幅度:V=5*R25/(R18+R25)=1.25V。

3.整形电路部分设计

系统需要监测电路的功率与频率,测量功率需要检测输入电路与电压之间的相位差,单片机实现对两路正弦波相位差的监测比较麻烦,而对方波信号的检测相对比较容易,因此我们把正弦波整形成同频率的方波,通过对方波上升沿的采样,计算可以得出输入信号的频率与相位差。整形电路如下:

图4 整形电路原理图

参数计算:

输出电压峰值:

Umax=R/R3*15=2V;

Umin=0V。

四.系统软件设计

4.1 程序总体流程图

图5 程序总体流程图

单片机按键使用说明:Key0:显示电压有效值、电流有效值、频率;

Key1:显示电压、电流最大最小值;

Key2:显示有功功率、无功功率、视在功率、功率因数

Key3:显示正弦波形

4.2 理论分析及计算

根据题目要求,通过硬件中的移相电路和整形电路,将工频交流电信号移相成电流和电压正弦型号,整形为电流和电压的等效方波信号,再通过c8051f020 AD的采集算出相位差和频率,再通过相位差和频率计算出电流电压的有功功率、

无功

集波形显示的相应点,在lcd12864上显示出来。

具体的公式如下

频率f: f=1/T T=50HZ

功率因数PF:PF=P/S

有功功率P:P=I*U*COSφ(W) △t波形相位差

无功功率Q:Q=I*U*sinφ (var)

视在功率S:S=U*I (VA)

4.3 各个功能模块说明

4.3.2频率测量模块

外部比较电路对正弦信号做整形处理,将得到的方波信号送入单片机,单片机以方波信号的下降沿为中断源,控制定时器的启动、停止。具体工作方式是当外部中断到来时,启动定时器,下一个中断到来时,结束定时,计算出相邻两个中断间的时间间隔,换算成相应的频率。。。。。。。。。计算公式列出

4.3.3相位差测量模块

电压整形后的方波信号的下降沿作为外部中断,定时器0置为定时器功能。电流整形后的方波信号下降沿到来时启动定时器0,外部中断到来后停止定时。以此计算电压和电流整形后的方波信号下降沿的时差,计算并记录两个信号的相位差。

4.3.4计算函数

通过上面得到的频率、相位差等数据计算电压有效值、电流有效值、有功功率、无功功率、功率因数等

4.3.5 LCD显示函数

按键切换显示电压、电流有效值、最大值、最小值,频率,有功功率、无功功率、功率因数以及正弦波形

4.4 程序清单(见附录)

五.系统的组装

5.1 PCB板图(见附录)

六.系统测试

6.1 电路的测试方案

用函数信号发生器产生正弦信号作为工频交流电的电压信号波输入,此电压信号经移相电路移相后作为同一路电路的电流信号输入,经采样送单片机处理后显示在lcd12864上,将显示各数值同函数信号发生器及高精度万用表的输出值和示波器的数值进行比较,计算出各数值的误差值。

6.2 测试仪器

(1)高精度数字万用表(2)F10A型数字合成函数信号发生器(3)LPS-305数控式线性直流稳压电源(4)GDS-2064数字存储示波器(5) MzL05-12864 LCD模组(6)c8051f330单片机实验板(7)自制移相、整形硬件电路

6.3 测试结果

6.3.1 交流输入电压,电流有效值、最大、最小值测量

频率设置为50Hz,改变输入电压幅值测得数据,如表6.3.1_a,表6.3.2_b

所示:

表6.3.1_a 交流输入电压有效值,最大、最小值测量

输入vp (V)输入电

压有效

值(V)

测得电

压有效

值(V)误差%

差%

输入电

压最大

值(v)

输入电

压最小

值(v)

实测电

压最大

值(v)

实测电

压最小

值(v)

电压

最大

值误

差%

电压

最小

值误

差%

5 3.54

6 3.541 0.14

1 5.1

2 -4.88 5.124 -4.9 0.08 0.41

4 2.842 2.837 0.12 4.16 -3.92 4.131 -3.92 0.7 0 3 2.123 2.119 0.18 3.12 -2.88 3.1 -2.89 0.6

5 0.35 2 1.422 1.42 0.14 2.08 -1.92 2.108 -1.92 1.33 0 1 0.713 0.719 0.84 1.12 -0.88 1.128 -0.91 0.71 3.3

表6.3.1_b 交流输入电流有效值,最大、最小值测量

输入ip (A)输入电

流有效

值(A)

测得电

流有效

值(A)

测量误

差(%)

差%

输入电

流最大

值(A)

输入电

流最小

值(A)

实测电

流最大

值(A)

实流电

流最小

值(A)

电流

最大

值误

差%

电流

最小

值误

差%

5 3.545 3.491 0.15

1 5.1

2 -4.88 5.056 -4.9 1.27 0.41

4 2.842 2.837 0.12 4.16 -3.92 4.11

5 -3.91 1.09 0.26

3 2.123 2.119 0.18 3.12 -2.88 3.11 -2.9 0.32 0.69

2 1.422 1.42 0.14 2.08 -1.92 2.08 -1.92 0 0

1 0.713 0.72

2 1.27 1.12 -0.88 1.12 -0.88 0 0

图6 交流输入电流有效值测量

从上述表格及图表可以看出,有效值误差均在1%内,满足要求

6.3.2 有功功率、无功功率、视在功率及功率因素的测量

频率设置为50Hz,相位差为40°,改变输入幅值所得测量结果,如表6.3.2所示表6.3.2 有功功率、无功功率、视在功率及功率因素的测量输入各功率测得值各功率理论值各功率误差

vp(V)ip(A)P/W Q/va

r S/W Pf P/W

Q/va

r S/W Pf P Q S Pf

5 5 9.21

6

7.34

4

11.8

24

0.77

9 9.62

7.75

2

12.3

6

0.77

8

0.04

2

0.05

3

0.04

3

0.00

1

4 4 5.87

2

4.76

8

7.58

4

0.77

4 6.26

5.05

3 8.04

0.77

9

0.06

2

0.05

6

0.05

7

0.00

6

3 3 3.26

4 2.72

4.25

6

0.76

7

3.49

4

2.81

9 4.49

0.77

8

0.06

6

0.03

5

0.05

2

0.01

4

2 2 1.44 1.23

2

1.90

4

0.75

6

1.56

9

1.26

6

2.01

6

0.77

8

0.08

2

0.02

7

0.05

6

0.02

8

1 1 0.36

8 0.32

0.49

6

0.74

2

0.40

5

0.32

7

0.52

1

0.77

7

0.09

1

0.02

1

0.04

8

0.04

6

由上述表格可知,当相位差一致,频率固定时,功率与电压电流值成正比

6.3.3交流输入电压频率测试结果

保持输入电压电流一致,改变输入频率,测得实际频率如表6.3.3所示

表6.3.3交流输入电压频率测试结果

输入频率实际值

(Hz) 输入频率测得值(Hz) 测量误差% 允许误差(%)是否满足要求

45 44.98 0.04

0.5 是

50 50.00 0.00 是

55 55.01 0.02 是由上表可得,误差均在±0.5%内,满足实验要求

七.结论

本简易电能质量监测装置由单片机主控制模块,电源模块、信号变换与处理模块和数据转换模块等构成,由c8051f330为主控单片机。用函数信号发生器输出正弦电压信号作为交流信号的电压信号输入,此电压信号经过自制的移相电路移相后代表同一路信号的电流信号输入,经单片机A/D采样后可得其最大、最小值及有效值;同时两路正弦信号经过自制整形电路后成为方波信号,经单片机采样计算后可得频率及相位差,有功功率、无功功率、视在功率、功率因数。最后将单片机与LCD12864连接,在液晶显示屏上显示各个数据以及正弦波形。以此,准确完成对一路交流工频电(正弦波)的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数等的测量,并且误差都在要求范围内。

附录

附录1 总电原理图

图6 总电路原理图

附录2 印制电路板图

图7 印刷电路板图

附录3 程序清单

3.1频率测量函数

ET1=1;//定时器1中断允许

EX1=1;

TH1=(65536-20000)/256;//定时器重装

TL1=(65536-20000)%256;

TF1=0;

while(flag==0);

TR1=1; flag=0;

while(flag==0);

TR1=0;flag=0;

tempp=counter1*10000+(TH1*256+TL1-45536)/2;

f=100000000/tempp;

flag=0;

tempp=0;

counter1=0;

3.2 相位差测量函数

while(P1_0==0);

while(P1_0==1);

TH0=(65536-2000)/256;//定时器重装

TL0=(65536-2000)%256;

TR0=1;

ET0 = 1;

flag=0;

IE1 = 0;

EX1=1;

while(flag==0);

TR0=0;flag=0;EX1=0;

temp0=counter0*1000+(TH0*256+TL0-(65536-2000))/2;

xw=temp0/10000*2*314*5-3141.596;

counter0=0;

temp0=0;

3.3 ADC采集函数

TR2=1; //测定电压最大最小值 for(i=0;i<64;i++)

{temp1=ADC(1)*3.3/1024-1.285;

if(i==0)

{ vmax=temp1;

vmin=temp1;

temp2=temp1*temp1;

vpt=vpt+temp2;

}

else{

temp2=temp1*temp1;

vpt=vpt+temp2;

if(vmax

if(vmin>temp1) vmin=temp1;

}

}

TR2=0; // 关闭定时器2;

TR2=1;//测定电流最大最小值

for(i=0;i<64;i++)

{temp3=ADC(2)*3.3/1024-1.295;

if(i==0)

{ imax=temp3;

imin=temp3;

temp4=temp3*temp3;

ipt=ipt+temp4;

}

else{

temp4=temp3*temp3;

ipt=ipt+temp4;

if(imax

if(imin>temp3) imin=temp3;

}

}

TR2=0; // 关闭定时器2;

3.4 计算函数

U=(sqrt(vpt/64))*1000; //电压有效值计算

vpt=0;

I=(sqrt(ipt/64))*1000; //电流有效值计算

ipt=0;

power=U*I/1000; //视在功率

power_p=power*cos(xw/1000);//有功功率

power_q=power*sin(xw/1000);//无功功率

Pf=cos(xw/1000)*1000; //功率因数

for(x0=0;x0<=100.0/(f+0.0);) //电压正弦波形显示 {

A=vmax*20/1000;

x0+=1.0/(f+0.0);

yy=30-A*sin(2*3.14*x0*f*0.01);

xx=x0*2000+13;

light(xx,yy);

}

电能质量在线监测仪

电能质量在线监测仪 K-DNZ91 产品说明 产品概述: 随着我国国民经济的蓬勃发展,电力负荷急剧加大,特别是冲击性和非线性负荷容量的不断增长,使得电网发生波形畸变、电压波动与闪变和三相不平衡等电能质量问题。公司推出的K-DNZ91电能质量在线监测仪,是一台高性能的多功能电能质量测试分析仪器。采DSP+ARM+CPLD 内核,5.7” 大屏幕液晶(320×240点阵)显示屏,使结构更紧凑,功能更强大。 主要用途: 测量分析公用电网供到用户端的交流电能质量,其测量分析: 1. 实时电参量:包括三相电压,三相电流,电网频率,有功功率,无功功率,功率因数等。 2. 三相电压偏差。 3. 频率偏差。 4. 三相电压不平衡度。 5. 电压正序,负序,零序分量,电流正序,负序,零序分量。 6. 三相电压波动和闪变。 7. 三相电压总畸变率,2-50次电压谐波。 8. 三相电流总畸变率,2-50次电流谐波。 主要特点: 1.应用小波变换测量分析非平稳时变信号的谐波。 2.测量分析各种用电设备在不同运行状态下对公用电网电能质量。 3.负荷波动监视:定时记录和存储电压、电流、有功功率、无功功率、视在功率、频率、相位等电力 参数的变化趋势。 4.电力设备调整及运行过程动态监视,帮助用户解决电力设备调整及投运过程中的问题。 5.测试分析电力系统中断路器动作、变压器过热、电机烧毁、自动装置误动作等故障原因。 6.测试分析电力系统中无功补偿及滤波装置动态参数并对其功能和技术指标作出定量评价。 7.便携式、多参数、大容量、高精度及近代信号分析理论的应用等特点,使K-DNZ91可广泛地应用 于输配电、电力电子、电机拖动等领域。 技术参数: 1.频率测量 测量范围:45~55Hz,中心频率50Hz,测量条件:信号基波分量不小于80%F.S. 测量误差:≤0.02Hz 2.输入电压量程:10-120V 3.输入电流量程:5A 4.基波电压和电流幅值:基波电压允许误差≤0.5%F.S.;基波电流允许误差≤1%F.S. 5.基波电压和电流之间相位差的测量误差:≤0.5° 6.谐波电压含有率测量误差:≤0.1% 7.谐波电流含有率测量误差:≤0.2% 8.三相电压不平衡度误差:≤0.2% 9.电压偏差误差:≤0.2%

电能质量在线监测系统技术规范书

八钢焦煤集团供电系统安全改造艾维尔沟110kV 变电站增容改造工程电能质量在线监测装置 技术规范 (通用部分) 设计单位:新疆电力设计院 2011年12月

1总则 1.1引言 提供设备的厂家、投标企业应具有ISO 9001质量保证体系认证证书,宜具有ISO 14001环境管理体系认证证书和OHSAS 18001职业健康安全管理体系认证证书及年检记录,宜具有AAA级资信等级证书、重合同守信用企业证书并具备良好的财务状况和商业信誉。提供的电能质量在线监测装置应在国家或电力行业级检验检测机构通过型式试验。 投标方提供的产品应有部级鉴定文件或等同有效的证明文件。 投标方应提供国家或电力行业级检验检测机构提供的有效期内的检测报告。 1.1.1本规范提出了电能质量在线监测装置的功能设计、结构、性能、安装和试验等方面的技术要求。 1.1.2本规范提出的是最低限度的要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,投标方应提供符合本规范和工业标准的优质产品。 1.1.3如果投标方没有以书面形式对本规范的条文提出异议,则表示投标方提供的设备完全符合本规范的要求;如有异议,应在报价书中以“对规范的意见和同规范的差异”为标题的专门章节中加以详细描述。 1.1.4本规范所使用的标准如遇与投标方所执行的标准不一致按较高的标准执行。 1.1.5本规范经招、投标双方确认后作为订货合同的技术附件,与合同正文具有同等效力。 1.2供方职责 供方的工作范围将包括下列内容,但不仅仅限于此内容: 1)提供标书内所有设备及设计说明书及制造方面的说明。 2)提供国家或电力行业级检验检测机构出具的型式试验报告,以便确认供货设备能否满足所有的性能要求。 3)提供设备安装、使用的说明书。 4)提供试验和检验的标准,包括试验报告和试验数据。 5)提供图纸、制造和质量保证过程的一览表以及标书规定的其他资料。 6)提供设备管理和运行所需有关资料。 7)所提供设备应发运到规定的目的地。 8)如标准、规范与本规范有明显的冲突,则供方应在制造设备前,用书面形式将冲突和解决办法告知需方,并经需方确认后,才能进行设备制造。 9)在更换所用的准则、标准、规程或修改设备技术数据时,供方有责任接受需方的选择。 10)现场服务。 2技术规范要求 2.1规范性引用文件 装置至少应满足最新版本的表1所列规定、规范和标准的要求,但不限于表1所列规范和标准。 表1规范性引用文件

电能质量在线监测系统方案设计分析

电能质量在线监测系统方案设计分析 发表时间:2019-03-13T14:35:13.890Z 来源:《河南电力》2018年18期作者:王旭马柠韩芳冰李源舟赵健男 [导读] 本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 (大连供电公司辽宁省大连市 116001) 摘要:随着社会的发展,电能质量问题越来越受到社会的关注,其取决于发电、输电、供电和用电方,关系到各方的利益,电能质量在线监测的网络化是一种必然趋势。本文主要就电能质量在线监测系统方案设计方面的内展开了论述,以供参阅。 关键词:电能质量;在线监测系统;方案设计 引言 随着社会的快速发展,电能的使用面临着一种新的问题:一方面是电能需求量在不断增加;另一方面是社会对电能质量的要求也越来越高,要求在电能使用中实现质和量的统一。电能质量的问题,取决于发电、输电、供电和用电方,要保证电力系统电网的电能质量,必须由电力部门和接入电网的广大电力用户来共同维护,因此为了切实维护电力部门和用户的合法利益,保证电网的安全运行,净化电气环境,必须加强对电力系统电网电能质量的监测和管理。 1力系统电能质量问题的产生的主要原因 电力系统元件存在的非线性问题包括同步发电机运行中感应电动势不理想;变压器励磁回路非线性特性;直流输电等。还有变电站并联电容器补偿装置等因素对谐波的影响。在工业和生活用电负载中,非线性负载是电力系统谐波问题的主要来源。各种自然灾害、误操作、电网故障时、发电机及励磁系统的工作状态的改变、故障保护装置中的电力电子设备的启动等都将造成各种电能质量问题。 2基于虚拟仪器技术的电能质量在线监测系统 2.1方案目的 由于用电科普知识不能有效普及,新增大量用户并未充分考虑电能质量的相关问题;加之配网中补偿电容器的设计大多未考虑谐波问题,更有许多用户不投或过投补偿装置,使谐波处于难以控制的状态,是造成配网中谐波滋长的主要原因,若不加以控制,这种趋势将处于增无减的状态,最终出现难以预料的实际问题。因此,建立长期有效的电网电能质量在线监测点、并辅以机动灵活的临时监测点相互配合,用于监测、分析某供电公司电能质量问题,并根据分析结果加以治理,意义重大。 2.2某供电公司电能质量在线监测布点选择 某供电公司主干线路为220kV供电,因此布点选择在各个220kV枢纽变电站中,接入所有等级母线电压,主变低压侧开关电流,及110kV重点用户及联络线路电流。以实时监测该变电站的电能质量情况,通过对变电站的电能质量监测,能判断与该站相接的其他110kV、35kV变电站是否可能存在电能质量超标情况。并通过临时时监测点的建立现场测试各重点用户电能质量情况。 2.3某供电公司电能质量在线监测总体设计实施方案 (1)电能质量监测仪工作原理。本项目的设计的电能质量监测仪,电压和电流信号经过传感器、高精度放大电路、抗混叠滤波器、A /D模数转换电路转换成数字信号,GPS的分脉冲信号和触发录波的开关量经光电隔离后送DSP进行分析及相关数据处理(开关量触发录波和精确对时),然后将测试结果通过PCI总线送工控机。工控机可将这些结果显示、存储、远传。(2)电能质量在线监测系统工作原理。由多台电能质量监测仪(下位机),通讯网络和电能质量分析系统(上位机)构成电能质量动态监测系统,上位机通过通讯网络对下位机进行参数设置、进行远程录波,从下位机获取电能质量测量数据并导入数据库。通过数据库查询,得到所需的测试报表,实时报表,统计报表,趋势图,波形图,频谱图等等,并可显示,打印,保存。上位机还能通过局域网与多用户进行数据共享。(3)某供电公司电能质量在线监测系统实现技术关键点。本项目的测量的间隔时间等于3S,即相邻两次测量之间没有缝隙。其采用的是TI公司的6000系列DSP,主频高,内建八个数据处理单元,可并行数据处理。其硬件结构和软件指令集,适合用来作频谱分析。并有高速PCI接口,方便与工控机进行大量的数据传输,为电能质量谐波无缝监测提供了物质保障。由于采用了高速DSP,因此采用非整数点的频谱分析方法,提高了谐波的分析精度;根据国标,严格采用闪变量值判定的基准方法计算闪变和变动;采用对称分量法计算零序分量、正序分量、负序分量和三相不平衡度,频率的测量精度主要取决于采样频率,与算法的合理性也有直接的关系。本项目A/D采样率为12.8kHz/通道,即:每周波采样256点,加上合理的算法,使得频率误差≤0.002Hz,远优于国标的0.01Hz。 2.4电能质量管理软件 监测中心的电能质量管理软件是在Linux操作系统下,采用面向对象的语言编写,全中文操作,人机界面友好,软件实现了如下功能:(l)可对系统内所有监测终端参数进行远程设定。(2)对监测终端进行网络化管理,管理员可以按照不同用户、不同电压等级、甚至行业等不同分类方式分别管理,这样在同一个界面下就可以设置大量的终端,同时这种管理方式,也方便日后终端的扩展,适应系统配置的变更。(3)可对电能质量的各项指标进行统计、处理、显示和存储,并可对记录的各种事件和波形再现。(4)对监测的数据具有数据库管理功能,从而实现了长期数据的存储与处理、分析大规模数据、对不同类别的数据进行分区管理、快捷的数据查询等。(5)可自动生成所需的图形和报表,其中包括:电能质量总览图、参数记录曲线图、电压谐波频谱图、电流谐波频谱图和电能质量综合统计报表等。 2.5方案评价 对于某供电公司建立电能质量监测网,利用监测数据分析用户对电力系统电能质量产生的污染及危害程度,采取针对性的措施实现电网及用户的电能质量监测和综合治理,改善现有供电系统的供电质量、降低电能损耗、保证电网的安全、可靠、经济运行起到积极作用。通过论述发现,今后研究电能质量问题的首要任务,是建立高效标准的电能质量监测系统,要继续增加监测点,建立网络化、信息化和标准化的电能质量监测系统,保障电网安全运行和为电力用户提供安全可靠和优质服务。 结束语 总而言之,电能质量在线监测技术,是一种可以更科学、更全面监测、分析和研究电能质量的方法。最大的功能特征是就是,电能质量监测装置长时间不间断对监测点进行收集、记录和存储电力系统各种稳态、暂态信息,能实时、精确地测量电能质量,可以为分析电能

电能质量检测装置技术要求

技术规范

一、前言 1、本招标文件提供的要求是最低限度的技术要求,所使用的标准和规范如与卖方所执行的标准发生矛盾时,按较高标准执行。 2、卖方所提供“大中型光伏电站移动检测平台电能质量监测装置”及内部元器件应符合国家相关标准及安全规范,卖方所提供的所有产品及技术文件除非在技术规格中另做规定外,均应使用相应的国际标准化组织标准/或其它先进国际标准。 3、如果卖方没有以书面形式对本技术规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,应在投标文件中以“对技术规范书的意见同规范书的差异”为标题的专门章节加以详细描述,并按附录A的格式填写。 二、项目介绍 本装置应用于大中型光伏电站移动检测平台,满足大中型光伏电站现场检测的要求,可安装在光伏电站各监测点,组成区域电能质量监控网络,实时采集、监测、分析、输出监测点的所有电能质量参数,并以此为依据分析被测光伏电站电能质量是否达标。检测平台的原理框图如下: 图1大中型光伏电站移动检测平台电气框图 此招标设备为电能质量监测装置及电能质量监测系统软件。 三、供货的相关要求 1、供货范围:电能质量监测装置6台、电能质量监测系统软件一套,并包括相应辅助设备,由电能质量监测装置厂家负责调试后,整体交付。

2、要求卖方准时发货,货物在2010年月日前发到买方单位(南京市浦口高新技术开发区创业路1号),在买方单位检验合格后,买方出具验收报告。 3、要求供货商在提交投标文件时,提供设备的安装和电气接线图纸,并加以详细说明,以便买方单位进行装置的电气、配线设计工作。 4、要求设备满足长时间连续工作的检测要求。 5、设备的所有部件应是全新的、高质量的、没有缺陷的、并具有合理的设计和制造。使用的材料应是适用的、长寿命、高可靠性、低损耗、少磨损和易调整的。 四、电能质量监测装置的要求 4.1技术要求 1)采样率:每周波512点及以上; 2)数据存储深度能够达到一个月以上,无记录事件被遗忘; 3)数据通信协议公开,在线实时监测数据满足刷新要求;离线存储数据带时间戳,存储格式开放,支持按时间段和数据类型的快速查询和提取 4)支持GPS同步对时功能,典型同步精度为0.1ms; 5)仪器回路数可以灵活配置,单台仪器能够提供对多个回路(每路至少包括3相电压和3相电流)的监测。 4.2主要功能 1)参数测量功能:在线实时监测被测光伏电站的电能质量参数,包括:电压、电流、功率、电量、频率、电压暂降、骤升、中断、闪变、浪涌、三相不对称、谐波THD、TDD、直流分量等。 2)数据与波形处理功能:具备16/20* bit的实时波形和故障录波功能,时间标精度为0.001ms;能够将各监测点的数据,根据选定的时间段或测试数据筛选条件进行进一步分析处理。 3) 图形输出功能:能够输出功率变化曲线、电网频率变化曲线、基波电压/基波电流长期变化曲线、电压/电流总畸变率长期变化曲线、电压/电流各次谐波长期变化曲线、长期/短期闪变值变化曲线、指标越界波形曲线、频谱曲线等。 4)报表输出功能:能够对历史数据调用分析,并对各监测点的电能质量数值分别产生分钟-小时-日以及自定义时间段报表;能够产生越界参数分析结果报表,并最终生成综合电能质量报告和数据分析文档。 5)通讯功能:装置必须具备与车载集控系统通讯的功能;通讯方式包括RS232/485、Ethernet;通讯协议公开,能够接收来自车载集控系统的指令并反馈信息。

电能质量监测系统标准技术方案

供电局电能质量实时监测系统 技术方案 南京华瑞杰科技有限公司 二OO九年四月

目录 第一部分前言 (1) 第二部分主站系统技术规范 (2) 1、系统设计目标 (2) 3、系统平台设计 (4) 3.1、系统总体设计思想 (4) 3.2、系统总体设计原则 (5) 3.3、系统逻辑结构 (6) 3.4、系统硬件拓扑结构 (7) 3.5、系统软件平台 (8) 4、系统功能组成 (8) 4.1、维护工作站子系统 (9) 4.2、前置采集子系统 (9) 4.3、数据处理子系统 (9) 4.4、数据分析应用子系统 (9) 4.5、报表管理功能 (12) 4.6、二次安防子系统 (12) 4.7、W EB浏览 (13) 4.8、PQDIF接口 (13) 第三部分装置技术规范 (14) 3、监测装置的功能 (16) 3.1监测功能 (16) 3.2显示功能 (17) 3.3通讯接口 (17) 3.4设置功能 (18) 3.5统计功能 (18) 3.6记录存储功能 (18) 3.7触发功能 (19) 3.8对时功能 (19) 3.9 报警功能 (19) 4、监测装置性能及技术指标 (19)

4.1电能质量数据处理 (19) 4.1.2分析数据 (19) 4.1.3统计数据 (20) 4.1.4日报数据 (20) 4.1.5事件数据 (20) 4.1.6允许误差限 (20) 4.2电气性能要求 (21) 4.2.1电源电压 (21) 4.2.2电压信号输入回路 (21) 4.2.3电流信号输入回路 (21) 4.2.4功率消耗 (21) 4.2.5停电数据保持 (21) 4.2.6气候环境条件 (21) 4.2.7可靠性 (22) 4.3结构、机械性能 (22) 4.3.1结构 (22) 4.3.2机械性能 (22) 4.4电磁兼容性 (22) 4.5绝缘耐压性能 (23) 5、功能表 (24) 附件:HRJ704终端物理结构及面板定义 (25) HRJ703终端物理结构及面板定义 (30)

C题 简易电能质量监测装置

简易电能质量监测装置(C题) 【本科组】 一.任务 设计并制作一个能同时对一路工频交流电的频率、电压有效值、电流有效值、有功功率、无功功率、功率因数、谐波等进行测量的数字式电能质量监测装置(图C-1虚线框内电路)。为便于本试题的设计与制作,设定待测的100~500V交流输入电压、10~50A交流输入电流均经由相应的变换器转换为对应的1~5V交流电压。 图C-1 二.要求 2.1 基本部分 (1)测量交流输入电压有效值。 频率:50Hz;测量范围:100~500V;准确度:±1%。 (2)测量交流输入电流有效值。 频率:50Hz;测量范围:10~50A;准确度:±1%。 (3)测量并显示有功功率P、无功功率Q、视在功率S及功率因数PF。 (4)在测试5组交流电压、交流电流有效值过程中,能显示它们的最大值和最小值。 (5)自制直流电源。 2.2 发挥部分

(1)测量交流输入电压频率,精度为±0.5%。 (2)采用LCD显示,能够同时显示一个周期的输入电压、输入电流曲线。 (3)测量电压和电流的各次谐波含量 以N次电压谐波含有率为例,N次谐波含有率为N次谐波电压的均方根值与基波电压有效值之比,电流谐波含有率计算方法同电压谐波含有率。测量至5次谐波,采用列表和百分数形式显示,测量误差<1%。 (4)各次电流谐波含有率在列表显示方式中除了能够以百分比显示外,还能够显示各次谐波的有效值。 (5)其他 三、说明 1.调试时可用函数发生器输出的正弦信号电压作为一路交流电压信号;再经移相输出代表同一路的电流信号,移相网络自制。 2.检查交流电压、交流电流有效值、电压和电流谐波时,可采用函数发生器输出的对称方波信号。电压基波、谐波的测试可用函数发生器输出的对称方波作为标准信号。 3.本题目不得采用电能计量专用芯片实现。 四.评分标准 内容 得分 设计报告 20分 基本部分 50分 发挥部分 50分

电能质量在线监测系统的设计和实现

电能质量在线监测系统的设计和实现 孙毅,唐良瑞,龚钢军 (华北电力大学信息工程系,北京102206) 摘要:随着社会的发展,电能质量问题越来越受到社会的关注,其取决于发电、输电、供电和用电方,关系到各方的利益,电能质量在线监测的网络化是一种必然趋势。该文给出一种电能质量在线监测系统的设计实现方案,使得电力部门可以及时、详细、精确地掌握电力系统电网的电能质量状况,正确、合理地评估电网的电能质量水平。 关键词:电能质量; 虚拟仪器; 在线监测 中图分类号:T M764 文献标识码:A 文章编号:100324897(2004)1720060204 0 引言 随着社会的快速发展,电能的使用面临着一种新的问题:一方面是电能需求量在不断增加;另一方面是社会对电能质量的要求也越来越高,要求在电能使用中实现质和量的统一。电能质量的问题,取决于发电、输电、供电和用电方,要保证电力系统电网的电能质量,必须由电力部门和接入电网的广大电力用户来共同维护,因此为了切实维护电力部门和用户的合法利益,保证电网的安全运行,净化电气环境,必须加强对电力系统电网电能质量的监测和管理。 目前,电能质量的监测方式主要有三种:设备入网前的专门检测、设备使用中的定期或不定期检测和在线监测。由于电能质量问题的特殊性,前两种监测方式的监测数据不能全面和准确地反映出电力系统电网的电能质量信息,因此电能质量监测应该采用在线监测。电能质量在线监测技术是严格按照《电能质量供电电压允许偏差》、 《电能质量公用电网谐波》、 《电能质量电压波动和闪变》、 《电能质量三相允许不平衡度》、 《电能质量电力系统频率偏差》和《电能质量暂时过电压和瞬时过电压》等六项电能质量国家标准,通过利用电能质量在线监测设备对电力系统电网进行在线监测,从而连续收集、记录和存储电力系统电网的频率偏差、电压偏差、电压波动与闪变、谐波、三相不平衡等稳态信息,以及电压跌落、电压骤升和电压中断等暂态信息。 随着对电能质量问题的日益重视,电力部门希望通过在电力系统电网中的各等级变电站和特殊点安装专门的电能质量在线监测装置,并且组建电能质量在线监测系统,力求实时、精确地测量电力系统电网的电能质量 ,分析电能质量问题产生的原因,及时采取技术措施来改善电力系统电网的电能质量。为了适应电力部门的需求,本文给出一种电能质量在线监测系统的设计和实现方案,以供参考。 1 基于虚拟仪器技术的电能质量在线监测系统 1.1 系统简介 本电能质量在线监测系统为分层分布式系统,以计算机技术、虚拟仪器技术和网络通信技术为依托,通过将电网中的各监测站点连成整体,实现了电能质量在线监测的网络化。电能质量在线监测系统提供给电力部门大量实时、精确的电能质量数据信息,为电力部门的安全生产提供了保证[1]。由于目前大量变电站已经接入本地局域网,而且通过局域网通信可以保证数据传输的实时性、可靠性,本系统利用现有的局域网来组建电能质量在线监测系统,当然,也可选用串口或调制解调器的方式组建监测系统。 电能质量在线监测系统由数据监测子系统、通信子系统、服务器子系统三部分构成。系统结构如图1所示。 图1 电能质量在线监测系统 Fig.1 On2line m onitoring system of power quality 06第32卷 第17期 2004年9月1日 继电器 RE LAY V ol.32N o.17 Sep.1,2004

电能质量在线监测装置

电能质量在线监测装置使用说明书 保定市华航电气有限公司

第一章概述 1.1 综述 理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,而随着电力电子技术的发展,直流输电、大功率单相整流技术在工业部门和用电设备上被广泛应用,如大功率可控硅器件、开关电源、变频调速等,这些典型非线性负荷将从电网吸入或注入谐波电流,从而引起电网电压畸变,使电网波形受到污染,供电质量恶化,附加损失增加,传输能力下降,成为影响电能质量的重要因素。 在电网中,三相负荷不平衡、电力系统谐振接地等会产生负序,大功率整流和非线性设备等会产生谐波。负序和谐波严重影响了供电质量,它们首先影响了电力设备安全运行。谐波可能引起谐振,谐振高压加在电容器两端,因为高次谐波对电容器阻抗很小,所以电容器易过负荷而击穿;高次谐波电流流入变压器,铁芯损耗增加;高次谐波电流流入电动机,不仅铁芯损耗增加,而且使转子发生振动,严重影响加工质量;高次谐波使保护设备误动作,使系统损失加大;高次谐波使电力系统发生电压谐振,在线路上引起过电压,会击穿设备绝缘。负序和谐波对发电机不仅有热效应,产生局部发热,而且会使发电机组产生振动,并伴有噪音,严重威胁机组的安全稳定运行。 电能质量监测装置采用先进的32位DSP处理器,是具有高速采样、计算、分析、统计、通讯和显示等功能相结合的电能质量监测设备。可实时监测电网的高达63次的谐波含有率、谐波总畸变率、三相电压不平衡度、闪变、电压偏差、电压波动、频率、各次谐波有功功率、无功功率、功率因数、相移功率因数、有效值、正负序等电能质量指标。 1.2 装置功能特点 电能质量在线监测装置,是我公司在研究总结国内外电能质量监测装置特点和实践经验基础上,严格按照国家颁布的相关技术标准,自主设计开发的新一代嵌入式电能质量在线监测产品。 1.2.1 装置特点

电能质量检测分析监控新技术

电能质量检测分析监控新技术 来源:中国论文下载中心 摘要:随着科技的进步,现代电力系统中用电负荷结构发生了重大变化,诸如半导体整流器、晶闸管调压及变频调整装置、炼钢电弧炉、电气化铁路和家用电器等负荷迅速发展,由于其非线性、冲击性以及不平衡的用电特性,使电网的电压波形发生畸变成引起电压波动和闪变以及三相不平衡,甚至引起系统频率波动等,对供电电能质量造成严重的干扰或“污染”[1]。电网中正面对越来越多的电能质量问题,这使得电能质量的研究十分紧迫。电能质量检测是获得电能相关数据的最直接手段,也是电能质量其他后续高级应用研究的前端。 关键词:电能质量检测神经网络 1 电能质量研究中新技术的应用背景 随着科技的进步,现代电力系统中用电负荷结构发生了重大变化,诸如半导体整流器、晶闸管调压及变频调整装置、炼钢电弧炉、电气化铁路和家用电器等负荷迅速发展,由于其非线性、冲击性以及不平衡的用电特性,使电网的电压波形发生畸变成引起电压波动和闪变以及三相不平衡,甚至引起系统频率波动等,对供电电能质量造成严重的干扰或“污染”[1]。电网中正面对越来越多的电能质量问题,这使得电能质量的研究十分紧迫。 另一方面,电能质量正逐步受到供电企业和电力用户的共同关注。进入20世纪90年代以来、随着半导体、计算机技术的迅速发展,一批高新技术企业应运而生,出现大量的微机控制装置和生产线.对电能质量提出了新的要求;而电力市场的发展,使供电企业进一步认识到:用户的需要也是自身的需要。在这样的背景下,因电能质量不良而使用户设备停机或出次品的情况.仍应看作电能质量不合格。当然,电能质量不良有多种情况,用户对电能质量的敏感程度也各不相同。一船来说,供电企业可对不同的电能质量划分等级、分别定价、用户可以自由选择。但由于我国目前还未能实现优质优价。因此,进一步改善电能质量的工作基本上要求在用户侧解决。随着各种用电设备对电能质量敏感度的变化,电能质量的范围进一步扩大.分类更细要求更高[2]。在新的电力市场环境下,电能质量已成为电能这种商品的消费特性,很大程度上体现了供电部门服务品质。所以有关部门正在加大对电能质量的监管和治理。 这些背景下,电能质量的研究迫切需要一些新技术来推动,通过这些新技术的应用,从而使电能质量从检测、分析和监控等方面得到提高,从而有利发现问题和规律、改善供电质量和服务。 2 电能质量检测中的新技术 电能质量检测是获得电能相关数据的最直接手段,也是电能质量其他后续高级应用研究的前端。 2.1 当前电能质量检测的情况 对电能质量进行监测是获得电能质量信息的直接途径,虽然这方面的检测仪器已不少,但大多数只局限于持续性和稳定性指标的检测,而传统的基于有效值理论的检测技术由于时间窗太长,仅测有效值已不能精确描述实际的电能质量问题,因此需发展满足以下要求的新检测技术[3]:①能捕捉快速(ms级甚至ns级)瞬时干扰的波形。因为许多瞬间扰动很难用个别参量(如有效值)来完整描述,同时随机性强,因此需要采用多种判据来启动量和装置,如幅值、波形畸变、幅值上升率等。②需要测量各次谐波以及间谐波的幅值、相位,需要有足够高的

电网电能质量监测系统的设计与实现

电网电能质量监测系统的设计与实现 发表时间:2018-06-19T10:45:57.313Z 来源:《电力设备》2018年第4期作者:李娟 [导读] 摘要:对于当前电网电能质量监测出现的问题,设计了一种针对DSP和ARM以及ZigBee无线传感网络技术的电网电能质量的监测系统,并且对当前系统架构进行了建立,硬件方案以及软件设计。 (国网清徐县供电公司山西太原 030400) 摘要:对于当前电网电能质量监测出现的问题,设计了一种针对DSP和ARM以及ZigBee无线传感网络技术的电网电能质量的监测系统,并且对当前系统架构进行了建立,硬件方案以及软件设计。 关键词:DSP ZigBee 电能监测 伴随着工农业生产的飞速发展,多种非线性的负荷和非对称性以及冲击性用电设备得到了多方面的使用,这种情况出现了很多的谐波干扰,严重的对于电网电能自身的质量受到了严重的影响。所以,实时有效的去对电网自身的电能质量给予监测,其对于确保电力系统自身的安全和稳定运行有着一定的意义。当前的电网电能质量监测系统都是使用有线形式去对监测数据进行传输,其使得在一些比较特殊的环境条件下去进行布线产生了极大的困难, 并不容易进行需要的维护。对于上述产生的问题, 设计了将DSP和ARM与ZigBee无线传感网络技术作为基础的一种电网电能质量的监测系统,其能够对电网电能自身质量其智能的在线监测给予有效的实现。 1 系统架构 1.1 ZigBee技术 ZigBee技术可以说属于一种近距离和较低复杂度,还有低数据速率以及低功耗和低成本的一种双向的无线通信技术,其主要是使用IEEE802.15.4无线标准的新一代无线传感器的网络系统。ZigBee网络自身有着自动的组网和自动路由以及自愈的功能,其自身能够在工作在2.4GHz的免执照的频段,使用调频以及扩频技术有着时延短和节点容量比较大的优点。并且2.4GHz无线信号其自身在强磁场和高电压环境里的传播有着较强的性能,数据的传输能力非常强大的,自身有着较高的可靠性,可以说其实对电网电能质量无线组网监测给予实现的一种有效的处置方案。 1.2 系统原理 通过电压和电流传感器构成的电压电流的检测电路,把被检测的高电压和大电流信号去转变为适宜的A/D变换的小信号,其自身景观滤波之后将其送到A/D转换器完成模数的转换。DSP数字信号处置器去对A/D转换结果进行读取并同时去对有关电能的质量参数进行有效的分析,完成运算以及处理,处理的具体结果使用ZigBee无线传感网络去将其传送到ARM的控制模块中,使其能够完成对数据进行的处理存储以及显示,使得电能质量参数能够实时的被监测到。电网其自身的电能质量监测系统架构示意图。 图1 电网电能质量监测系统架构示意图 2 硬件设计 2.1 信号采集处理模块 信号采集的处理模块主要是通过电压电流去对电路和滤波电路以及A/D转换器电路与DSP数字信号处理器以及外围电路共同构成的。 SP数字信号处理器采用TI的TMS320F2812芯片,这是一款高性能,低功耗,32位定点数字信号处理器。最高150MHz的工作频率为在短时间内实时控制和完成复杂算法提供了充足的条件。高性能的32位CPU包括16×16位和32×32位乘法累加器操作。,16×16位双乘累加器,可完成64位数据处理,高精度处理任务。具有丰富的硬件资源,片上Flash,ROM,RAM,定时器,多用途通用输入输出接口GPIO和仿真接口JTAG。支持TI的eX-pressDSPTM实时开发技术,TMS320DSP算法标准和CCS集成开发环境,为软件开发提供便利的环境。凭借其强大的数据处理能力,算法优化可以提高测量精度,并且使用外设接口资源可以有效降低电路的复杂性。 电压电流检测电路采用南京奇华公司生产的VSM025A电压传感器和CS040G电流传感器。传感器产生的噪声干扰由一个二阶巴特沃斯低通滤波器进行滤波。 A / D转换器选用TI高性能模数转换器ADS8364,具有6通道同步采样的16位高速并行接口,具有2.5V基准电压,低功耗和高采样率。 ADS8364的6个通道用于采样三相交流电压和电流。 ADS8364的数据端口D0-15和EOC分别连接到DSP的数据端口D0-15和外部中断INT1。 ADS8364的时钟信号由DSP控制。 DSP响应ARM控制模块的指令,控制ADS8364执行A / D转换,读取转换数据,执行快速傅里叶变换(FFT)和相关的电能质量参数计算,实现电压和电流信号的采集和处理。 2.2 ZigBee无线收发器模块 ZigBee无线收发器得模块主要使用的是ZigBee芯片CC2530和CC2530其属于TI公司支持ZigBee协议的一种系统芯片,集微处理器以及无线收发器是融合在一体的,可以说其属于业界标准非常标准的一种增强型的8051MCU内核还有与IEEE802.15.4规范相一致的2.4GHz的无线收发器。其中还包含了定时器以及可选32/64/128/256KB的Flash存储单元,并且还对于串行通信的接口以及UART接口还有21个可编程I/O引脚给予了丰富,并对于硬件资源简化了电路设计给予了丰富,CC2530和DSP主要是通过其自身的不同的串口去完成所需要的数据传输。无线收发器电路主要使用的是CC2530数据手册里所提供的一种比较典型的应用电路,天线主要是选择PCB天线[2]。 2.3 ARM控制模块 ARM控制模块主要是通过键盘和LCD显示,以及存储器还有ARM芯片以及外围的电路共同的构成。其自身应该进行实现的功能主要有:使用ZigBee网络使其能够对DSP发送控制的指令,接收并且对DSP中进行传送的数据给予保存,同时还需要对于其自身接收到的电能质量的相关参数还有电能参数给予有效的显示。 系统使用三星公司进行生产的ARM9系列的S3C2440处置器芯片,S3C2440主要使用的是16/32位RISC的处理器,其自身主要有外部的存储器与控制器和LCD控制器,以及USB的控制器,还有SD接口,以及4通道DMA与3通道UART、2通道SPI和24个外部中断源以及超过130个

电能质量在线监测装置专用技术规范

达子泉变110kV间隔扩建工程 电能质量在线监测装置 (技术规范专用部分) (编号:1102007-0000-01) 购买单位:哈密润达嘉能发电有限公司 设计单位:哈密新东源电力设计咨询有限公司 2016年08月

1 标准技术参数 供方应认真逐项填写电能质量在线监测装置标准技术参数表(见表1、表2)中“供方保证值”,不能空格,也不能以“响应”两字代替,不允许改动需方要求值。如有差异,请填写表9供方技术偏差表。 表1电能质量在线监测装置标准技术参数表 表2可选择的技术参数表

2 图纸资料提交 经确认的图纸资料应由供方提交表5所列单位。 表5 供方提交的须经确认的图纸资料及其接收单位 3 工程概况 3.1 项目名称:哈密达子泉110kV变电站110kV间隔扩建工程 3.2 项目单位:哈密润达嘉能发电有限公司 3.3 工程规模:本期110kV扩建2回110kV出线间隔(智能变电站)。 3.4 工程地址:哈密达子泉110kV变电站内 3.5 交通、运输:汽车、火车运输 3.6 电力系统情况: a.系统标称电压:110kV b.系统最高电压:126 kV c.系统额定频率:50 Hz d.系统中性点接地方式:直接接地 4 使用条件 表6 使用环境条件表

说明:1.直流电源:220V; 2.交流电源:220V; 3.交流电流:1A; 4.屏体尺寸:800×600×2260; 5.屏体颜色:77# GY09 冰灰桔纹; 6.门轴:右门轴内嵌式。 7.达子泉变电站为智能变电站,微机综合自动化系统为南京南瑞继保电气有限公司产品,本期工程需可靠接入。模拟量输入方式:采用交流采样1A制。

基于Internet的电能质量监测与分析系统的研制_赵文韬

基于Internet 的电能质量监测与分析系统的研制 赵文韬,王树民,朱桂萍,潘隐萱 (清华大学电机系,北京市100084) 摘要:计算机网络技术的发展,为不同地点供电系统电能质量的远程集中监测和分析提供了有效的手段。论述了基于Internet 的供电系统电能质量的监测与分析系统,主要包括利用GPS 授时技术进行多点同步采样,利用Windo w s N T2000和IIS 建立网络平台,利用SQL Serv er 数据库管理供电网络运行数据,使用多种分析软件对供电系统的电能质量进行仿真分析,并提出治理措施。该系统可为供电系统的安全运行提供保障。关键词:电能质量;谐波;GPS;Internet 中图分类号:TM 93;TP274 收稿日期:2001-08-02。 0 引言 供电系统的电能质量直接关系到供电系统的安全运行和用户的用电安全。供电系统电能质量的监测和评估是对供电系统进行治理进而改善其电能质量的前提条件。当前国内供电系统电能质量的监测分析大多采用综合的电能质量分析仪或谐波分析仪等。这些专用测量仪器只能进行同一地点的现场相关电量的测试,对同一供电系统不同地点相关电量的同步测量及测量数据的传输和集中分析、评估则难以进行。因此,建立供电系统电能质量的远程、集中监测与分析系统,对影响供电系统电能质量的波形畸变、电压波动和闪变、三相电压和电流的不平衡度等指标进行全面仿真分析,对保证供电系统的安全运行,具有重要的理论和实际意义。Inter net 技术的发展实现了远程数据交换,为供电系统电能质量的远程监控和分析系统的建立提供了有效的手段。 该系统有以下特点:①可以实现同一供电系统、不同地点的电能质量监测,也可实现多个不同供电系统的集中监测;②对系统电能质量进行多层分析和评估;③对存在的电能质量问题提出合理的治理措施。 国外从20世纪80年代起就把人工智能和专家系统成功地应用到电厂状态监测与故障诊断技术中,产生了巨大的经济效益[1]。国内的一些科研院所也相继推出了类似的基于网络的分布式监测系统[2]。 本文构建了基于网络的供电系统电能质量监测和分析系统,其技术关键在于: a .使用GPS 技术保证采样数据的同步性和准确性; b .构建网站,提供友好、方便的远程诊断网络; c .使用工程数据库系统管理大型网络运行数据和分析结果; d .V B 和V C 等多种编程工具的结合提高了程序的运行效率。 1 系统结构 电能质量监测与分析系统整体的逻辑结构如图1所示。 图1 系统逻辑结构 Fig .1 Logic architecture of the system 同步采样装置:要求将不同地点电网电压、电流 瞬时波形记录下来,并且在采样数据中加上时间标签,以便于服务器端进行电能质量的相关分析。 客户端:软件主要包括浏览器、文件上载工具、文件压缩工具,采用客户端编程,将带有时间标签的采样数据进行压缩后上载到远程服务器端,同时可以下载服务器端的计算结果。 服务器端:提供WWW 方式的页面浏览服务,可进行用户信息查询和反馈信息给用户。服务器通过数据库管理各用户电网的设计数据和运行数据,并且安装有计算软件包,可进行谐波无功治理计算、电气化铁道分析、电弧炉负载的分析等。 该系统采用典型的客户/服务器模式,以尽量降低客户端的配置要求。根据客户提供的系统接线图,生成系统计算模型,再利用客户端提交的采样数据, 69 2002年3月25日 M ar.25,2002

ET-PQ-2000电能质量在线监测装置

ET-PQ-2000电能质量在线监测装置 产品简介: ET-PQ-2000是易通公司研制的高端网络化电能质量在线监测装置,具有超强的数据分析和管理功能。 装置特点 1)采用TI公司32位浮点DSP为数据分析核心,ARM9进行数据管理和通讯,大规模可编程器件CPLD保证了24通道的数据采集的同步性,16位A/D保证了数据的精度,核心硬件处于国内先进水平; 2)嵌入Linux操作系统作为软件平台,8G的存储空间(储存年限>1年),满足电能质量监测装置对数据存储的要求,终端集成嵌入式数据库,保证数据掉电不丢失; 3) 5.6寸彩色液晶显示,装置可实时显示电压电流波形、事件记录波形、矢量图以及日统计报表,支持鼠标、键盘操作,U盘拷贝; 4)配置了100M双以太网口,可与不同的远方管理中心进行数据交互,终端设备可作为客户端,也可作为服务器,支持实时和间接通讯;终端支持常用的远程接口: TCP、FTP、WEBService,以及PQDIF数据格式输出,同时支持程序远程升级; 5)采用了SMT工艺、继电保护装置常用的”背插式”结构; 6)硬件可靠性和电磁兼容能力达到国内领先水平,尤其是抗快速瞬变干扰、浪涌干扰达到了IEC61000-4-4:1995标准IV级的水平,超过了国标对电能质量监测装置的EMC的要求。 装置功能: 1)基本监测指标 a) 三相基波电压、电流有效值,基波功率、功率因数、相位等; b) 系统频率、电压偏差、频率偏差、电压波动、闪变; c) 三相电压不平衡度、三相电流不平衡度、负序电压、电流; d) 谐波(2~50次)、包括电压、电流的总谐波畸变率、各次谐波含有率、幅值、相位、各次谐波的有功、无功功率等; 2)高级监测指标 a) 间谐波; b) 电压骤升、骤降、短时中断; c) 暂时过电压、瞬态过电压。

基于labVIEW的电能质量分析系统

基于labVIEW的电能质量分析系统 ——数字信号处理在节能监管平台中的应用摘要:论文在论述数字信号处理概念、特点的基础上,通过实例阐述了在LabVIEW平台下对电能质量进行信号处理同时对电能质量分析方法进行研究和讨论,基于数字信号处理技术实现电能质量检测。着重对电能质量的3个重要指标:电压波动、谐波和三相电压不平衡度(包括三相电压,三相电流,有功功率,无功功率,功率因数等)进行信号分析,去除采集波形数据中的高次谐波。 关键词:数字信号处理技术;labVIEW;电能质量;节能监管;谐波 随着科学技术的发展,人们对电能质量的要求越来越高,同时由于扰动性负荷(如非线性、冲击性或不对称负荷)接入电力系统及其他扰动源存在,造成了大量的电能质量问题,谐波污染、三相不平衡度、跌落和闪交也越来越严重。电能质量问题不仅对电网的安全运行不利,严重干扰电网的稳定经济运行,还能造成某些对电能质量要求较高的电力用户严重的经济损失。电能质量在线监测技术就是在这个基础上发展起来的。电能的在线监测就是要实现实时地监视系统的电压或电流变化,记录和保存电能质量发生变化时各相电压或电流的幅值、频率、电压波动、三相不平衡度,同时采用滤波技术对多种电能质量的指标进行综合的监测。由于电能质量的不断恶化,电能质量问题不仅影响到电网的安全运行,还对一些对电能质量的要求很高的新型电力负荷的正常工作造成干扰。使人们对电能质量的优劣越来越重视,因此对电能质量进行有效地分析和监测不仅必要而且十分迫切。 由于应用于三相电压电流的谐波检测的示波器价格昂贵,且较难进行多点的电压/电流检测[2], 我们设计的应用于检测多点的单相或三相电压/电流的多路电表,不仅成本低廉、扩展便,还可以进行模拟信号采样实验、信号处理实验,综合性强。LabVIEW作为一种图形化的编程语言,不仅具有许多功能强大的模块节点和计算能力,可以满足电能分析的各种复杂算法的计算,而且还具有强大的网络功能,进行远程设备控制和数据传输,虚拟仪器VI的兴起对处理电能质量测量与分析时的数据提供了新的研究途径。 1. labVIEW简介 LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储等等LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其子程序(子vi)的结果、单步执行等,便于程序的调试。在电能质量分析领域研究中,labVIEW完成的恰恰是对硬件电路板采集通过以太网发布的数据包依据国际化多功能电表规约—645规约进行拆包取数,并对取得的数据进行一系列复杂的逻辑运算得出各类电能指标进而进行更进一步的信号分析。 2 电能质量检测实验平台组成 电能质量检测实验平台包括A/D信号采样模块(网关)、电能质量处理模块和上位机。A/D信号采样模 块负责采集信号并送至电能质量处理模块;电能质量处理模块对采集的电压/电流信号进行数据的预处理,并通过基于以太网的数据通信系统将数据传输至PC机;PC机接收上传的数据并完成数据的进一步处理和 各项电能参数的实时显示、存储。由于是基于以太网的设计,所以易于扩展多支路的电压/电流的检测。 另外,我们自己设计研发的多路电表使用起来更方便添加外部测量设备。 2.1 A/D信号采样 电压和电流信号幅值较高,而我们使用的ARM(CORTEX-M3)芯片采样电压在3.3V以内,故需要A/D 采样电路将电网信号转化为A/D采样模块所能接收的信号。其采样流程为:电压或电流信号先经过采样电压互感器或是电流互感器输入端;采样互感器输出的是与电网电压信号成比例的正负对称的电压信号,再经过信号调理电路将采样信号抬压到3V以内,以供ARM芯片内部A/D转换器采样。采样电压互感器输入 最高电压220V(对更高的电压可再增加前级电压互感器降低其电压等级)。电流互感器输入最大电流5V。 2.2 电能质量处理模块 电能质量处理模块的核心———ARM采用CORTEX-M3,具备强大运算能力,同时兼顾了控制领域的需求,特别适合控制对象复杂并且又需要较高实时运算能力的场合。ARM数字处理的核心系统是整个电能质量检

相关文档