文档库 最新最全的文档下载
当前位置:文档库 › 软化学法低温合成银纳米线及其生长机制_赵启涛

软化学法低温合成银纳米线及其生长机制_赵启涛

软化学法低温合成银纳米线及其生长机制_赵启涛
软化学法低温合成银纳米线及其生长机制_赵启涛

2003年第61卷

第10期,1671~1674

化学学报

ACTA CHI M ICA SINICA

Vol.61,2003

No.10,1671~1674

#研究简报#

软化学法低温合成银纳米线及其生长机制

赵启涛X侯立松黄瑞安

(中国科学院上海光学精密机械研究所上海201800)

摘要以AgNO3为起始物,采用D MF为溶剂和还原剂,无须采用晶种,在低温(~70e)下AgNO3经D MF还原,通过软化学法合成了结构均匀的银纳米线,其直径为15~30nm,长度高达20L m.通过引入乙酰丙酮,控制钛酸丁酯水解形成的多孔氧化物溶胶为网络孔道结构,这种孔道结构为银纳米线的控制合成提供了有效的生长模板.

关键词银纳米线,软化学法,生长机制

Low Temperature S ynthesis and Growth Mechanism of Silver Nanowires

by a Soft-Chemistry Method

ZHAO,Q-i Tao X HOU,L-i Song HUANG,Ru-i An

(Shangha i I nstitute o f Optics an d Fine Mechanics,Chinese A cademy o f Sciences,Shanghai201800)

Abstract This research describes preparation of silver nanowires by a sof-t chemistry approach and discusses the growth mechanism.In the DMF/AgNO3/Ti(OC4H9)4/AcAc/H2O system,the nanoporous templates formed by the controlled hydrolysis and condensation of Ti(OC4H9)4provide an effective matrix for the gro wth of silver wires using AgNO3as the starting compound and DMF as the solvent and reducing agent at70e.The silver nanowires c ould be as long as20L m with the diameter in the range of15~30nm.

Keywords silver nanowires,sof-t che mistry method,growth mechanism

近年来纳米科技已经从当初单纯合成和表征纳米材料发展到了纳米器件设计方面[1].一维纳米材料(如纳米线)由于其独特的量子传输效应而在纳米器件设计与应用方面备受关注[2~4].纵横比均匀,具有一定长度的贵金属(如金、银等)纳米线在今后纳米光电器件以及生物分光学上有着重要用途[5].银纳米线的制备有的采用一定模板,如用碳纳米管[6]、Si O2模板[7]、分子模板[5,8]等控制银纳米晶生长为纳米线;有的则利用化学反应,多通过表面活性剂吸附纳米颗粒并通过自组织生长为纳米线[9].Sun等[10]采用溶液反应通过乙二醇还原PtCl2产生纳米Pt颗粒作为Ag纳米线生长晶种,在160e下用聚乙烯吡咯啉酮(P VP)作为表面活性剂合成了银纳米线.本文提出的银纳米线合成方法,合成温度较低(~70e),不采用价格昂贵的PtCl2产生晶种,也不用表面活性剂作为结构导向剂,而是在比较温和条件下将溶胶-凝胶法与水热法结合起来,以钛酸丁酯水解形成的网络孔道为模板,D MF为溶剂和还原剂,合成了纵横比均匀,直径在15~30nm,长度达20L m的银纳米线,是一种价廉而简易的新方法.通过对AgNO3水溶液/D MF/Ti(OC4H9)4/Ac Ac混和液中不同组分存在时进行对比实验所得样品分析,对这一方法制备银纳米线的生长机制进行了探讨.

1实验部分

1.1试剂与仪器

化学试剂N,N-二甲基甲酰胺(DMF, A.R.),硝酸银(Ag NO3, A.R.),乙酰丙酮(Ac Ac, A.R.),钛酸丁酯[T-i (OC4H9)4, C.P.],正硅酸乙酯(TEOS, A.R.),无水乙醇(EtO H,A.R.),均购于中国医药集团上海化学试剂公司;所用水为去离子水;样品的TEM和HR TEM照片,以及EDS元素分析通过透射电镜(JEOL JEM-2011)获得.

X E-mail:qitaoz hao@https://www.wendangku.net/doc/8a8452014.html,

Received February21,2003;revised April2,2003;accepted May29,2003.

上海市启明星计划(No.00QE14029)资助项目.

1.2 制备过程

1.通过TEOS 水解形成的网络结构为模板控制合成银纳米线.将0.01mol/L Ag NO 3水溶液5mL 与40mL N ,N -二甲基甲酰胺(D MF)混和均匀后逐滴加入蒸馏瓶中(pH=6),逐滴加入5mL TEOS 并不断搅拌混和液,同时开始升温,升温速率控制在2e /min,温度上升到70e 后恒温加热回流8h,在适当的转速下经离心分离去除部分纳米Ag 颗粒,无水乙醇多次洗涤,获得银纳米线.

2.通过Ti(OC 4H 9)4水解形成的网络结构为模板控制合成银纳米线.具体制备过程类似上述通过TEOS 水解,D MF 还原制备纳米银线,不同之处在于用5mL Ti(OC 4H 9)4取代TEOS,同时由于无稳定剂存在时Ti(OC 4H 9)4水解速度较TEOS 快,故滴加之前先将5mL Ti(OC 4H 9)4与20mL D MF 均匀混和,再缓慢滴加到0.01mol/L AgNO 3水溶液5mL 与20mL D MF 混和液中.

3.用稳定剂Ac Ac 与Ti(OC 4H 9)4配位,通过控制其水解形成的网络通道为模板合成Ag 纳米线.具体制备过程类似上述以TEOS 水解形成的模板合成Ag 纳米线,不同之处在于用体积比V (Ac Ac)B V [Ti(OC 4H 9)4]=1B 1各取5mL 均匀混和后逐滴加入0.01mol/L AgNO 3水溶液5mL 与40mL DMF 混和液中.

4.直接用40mL D MF 于70e 下还原5mL 0.01mol/L

AgNO 3水溶液,作对比试验.

2 结果与讨论

图1给出了DMF/AgNO 3/H 2O 反应体系中不同金属醇盐存在时得到产品的TEM 照片.在D MF/AgNO 3/TEOS/H 2O 体系中,由于反应在微酸性(pH=6)条件下进行,TEOS 水解时产生的聚合物相互高度缠绕和渗透,且连续性较差[11],在这种孔道结构条件下合成的多为无规和弯曲状Ag 纳米棒(图1a ).若在D MF/AgNO 3/H 2O 混和液中以Ti (OC 4H 9)4代替TEOS,亦能合成银纳米棒(图1b).当加入AcAc 作为稳定剂,合成的银纳米线长度更长,结构更加均匀(图1c).由于Ac Ac 与Ti(OC 4H 9)4的配位作用能有效地控制Ti(OC 4H 9)4水解速度,银纳米颗粒晶相成长初期受到Ti(OC 4H 9)4水解形成的孔道结构的限制,逐渐成长为Ag 纳米棒状结构.但由于晶相银颗粒生长受Ostwald 生长机制的影响[13]

,反应过程中小颗粒逐渐溶解,大颗粒进一步变大,因此,与SiO 2固体模板合成银纳米线不同,反应后期Ag 纳米线的生长不再受到网络孔道的控制,Ag 纳米线的最终尺寸与这种溶胶模板的孔道尺寸并没有必然联系[7].从图1c 与图1b 对比可以看出,当加入Ac Ac 后,制备出的Ag 纳米线纵横比均匀,长度也更长.但在相同条件下,无金属醇盐存在时直接用D MF 还原AgNO

3

图1 不同实验条件下的银纳米线的TEM 照片[其中c 的右上图为样品对应的选区电子衍射花样(SAED)]

Figure 1 TE M i mages of samples prepared under different conditions (Inset i n the corner of figure c is the SAED pattern of the silver nanowires)

1672 化学学报Vol.61,2003

水溶液得到全部为Ag 纳米颗粒(图1d).由此可以推断,DMF/H 2O 体系中金属醇盐存在时,金属醇盐水解形成的多孔溶胶结构为Ag 纳米线的定向生长提供了一种必要的模板,正是通过这种在空间具有一定连续性的模板,使Ag 纳米颗粒定向生长为纳米线.

图2是D MF/AgNO 3/Ti(OC 4H 9)4/AcAc/H 2O 体系中银纳米线生长过程的TEM 照片,可以看到,用Ac Ac 作为T-i

(OC 4H 9)4的稳定剂时,反应温度为70e ,10min 后提取反应混合物进行观察,HR TEM 照片(图2a)显示此时通过均相成核作用,经DMF 还原已经开始产生粒径在10nm 以下的Ag 纳米颗粒.随着反应的进行,1h 后开始出现银纳米棒(图2b).反应进行3h 后银纳米线进一步在径向方向变长(图2c),长度在1L m 左右.当反应进行8h 后,纳米线长度可达20L m(图2d).进一步延长反应时间,实验发现银纳米线长度随时间变化很小,反而出现银纳米线粒径逐渐增加.作为溶剂和Ag +

还原剂的D MF 是一种极性很强的非质子溶剂,在DMF/H 2O 体系中,金属醇盐存在时,金属醇盐水解产生的)O H 与D MF 中)C HO 基团形成了O )H ,O C 型的氢键,在大量D MF 溶液中,这种氢键通过诱导效应传递到金属醇盐水解产生的溶胶网络结构中,加之钛醇盐与Ac Ac 的配位作用使得溶胶相对更稳定,脱水成凝胶变得困难,因此在适当温度条件下,水热还原形成的Ag 纳米颗粒能在一定范围内于溶胶体系中形成Ag 纳米线.同时实验发现,反应体系中硝酸银浓度偏大时,生成的银纳米颗粒较多且出

现局部堆积,使得银纳米线空间生长受到一定限制.因此,要使反应初期产生的银纳米颗粒充分定向生长为银纳米线,避免最后产生过多银纳米颗粒,实验发现硝酸银在作为溶剂和还原剂的DMF 中浓度应控制在0.01mol/L 以下为宜.

Ac Ac 存在两种异构体[图式1(a)]:酮式和烯醇式,其中烯醇式很容易和Ti(OC 4H 9)4反应形成络合物[图式1(b)

].

图式1 乙酰丙酮结构及与钛醇盐反应式

Scheme 1 Two i someric structures of acetylacetone and i ts chelation wi th Ti(OR)4

Ac Ac 与Ti(OC 4H 9)4形成的配合物使得Ti(OC 4H 9)4中的烷氧基减少且剩下的烷氧基被OH -取代发生水解的反应速度也变慢,这一水解过程可表示为:Ac Ac -Ti(OR)3+n H 2O

Ac Ac -T-i OH +

n H

-OR (n [3)图2 不同阶段Ag 纳米线生长TE M 照片

(a,b,c,d 分别是反应进行10mi n,1h,3h,8h 时样品TEM 照片,a 为HRTEM 照片)

Figure 2 (a)HRTE M and (b,c,d)TE M images of silver nanowires showing different stages of wire growth

Samples from a to d are taken from the reaction mixture after 10min,1h,3h and 8h,respectively

1673

No.10赵启涛等:软化学法低温合成银纳米线及其生长机制

水解过程中产生的AcAc -T-i O H 会相互聚合在一起,分子间通过氢键在空间相互连接形成的网络结构中有较长的微孔(如图式2所示),Ag +位于网络之间,以网络结构中的微孔为模板,被还原通过均向成核定向生长为Ag 纳米线

.

图式2 钛酸丁酯水解形成的网络结构

Scheme 2 Network structure of the sol prepared by hydrolysis and condensation of Ti(OC 4H 9)4

所得样品的EDS 元素分析表明(见图3),用该法制备银纳米线过程中,控制一定的Ac Ac 用量,可以有效地使醇盐水解/中途停顿0而控制在溶胶阶段,此时在大量的溶剂D MF 中,并未形成TiO 2纳米颗粒[12],银纳米线可以有效地从溶剂和溶胶模板中分离出来,但其中仍然含有少量Ag 纳米颗粒(离心转速过高时增加纳米颗粒数量,控制在2000r/min 为宜

).

图3 银纳米线的EDS 元素分析Figure 3 EDS elemental analysis of Ag nanowires

从以上实验结果可以看到,在D MF/AgNO 3/Ti(OC 4H 9)4/Ac Ac /H 2O 体系中,于较低温度(70e )下,将水热还原与金

属醇盐水解反应结合起来,是一种制备银纳米线的有效途径.通常情况下Ti(OC 4H 9)4在水存在时水解速度很快,采用Ac Ac 作为其配位剂,使之生成新的分子前驱物,控制钛醇盐的水解、聚合反应;在这种情况下,大量的Ag NO 3水溶液可以一次加入溶液中而不会使Ti(OC 4H 9)4产生沉淀,通过DMF 还原AgNO 3产生的Ag 颗粒在以钛醇盐水解和部分缩聚形成的分子模板中生长出的Ag 纳米线与未使用AcAc 作为配位剂相比,长度更长,纵横比更均匀(图1c).

3 结论

将水热法与溶胶-凝胶法相结合,以乙酰丙酮为钛酸丁酯的稳定剂,通过乙酰丙酮与钛醇盐配位有效控制了水解速度;水解形成的空间网络结构为Ag 纳米线的生长提供了一

种有效的分子模板,在较低温度(70e )下,合成了纵横比均匀、长达20L m 的银纳米线.以不同组分的溶胶体系对比研究发现,金属醇盐水解形成的网络结构对晶相Ag 的生长有导向作用,为制备一维纳米材料提供了一种有效途径.

References

1Wang, B.-L.;Yin,S.-Y.;Wang,G.-H.;Buldum, A.;Zhao,J.-J.Phys.Rev.Lett.2001,86,2046.

2Schider,G.;Kren,J.R.;Gotschy,W.;Lamprecht, B.;Ditlbacher,H.;Leitner, A.J.Appl.Ph ys.2001,90,3825.3Wang,J.-L.;Chen,X.-S.;Wang,G.-H.;Wang , B.-L.;Wei,L.;Zhao,J.-J.Ph ys.Rev.B 2002,66,085408.

4Kottmann,J.P.;Olivier,J. F.M.Phys.Re v.B 2001,64,235402.

5Barbic,M.;Jack,J.M.;S mith,D.R.;Schultz,S.J .Appl.Phys.2002,91,9341.

6

Sloan,J.;David,M.W.;Woo ,H.-G.;Bailey,S.;Brown,G.;Andrew,P. E.Y.;Coleman,K.S.;Hutchison,J.L.;Green,https://www.wendangku.net/doc/8a8452014.html,mun.1999,699.7Bhattacharyya,S.;Saha,S.K.Appl.Ph y s.Lett.2000,77,3770.

8Hee, B.;Bae,S.-C.;Lee, C.-W.;Jeong,S.;Ki m,K.-S.Science 2001,294,348.

9Hassenkam,T.;Norgaard,K.;Iversen,L.;Kiely, C.J.;Brust,M.;Bjornholm,T.Adv.Mater.2002,14,1126.10Sun,Y.-G.;Gates, B.;Mayers, B.;Xia,Y.-N.N ano Lett.2002,2,165.

11

Gan, F.-X.(Eds.),Science and Technology o f Modern Glass,2nd Vol.,Shanghai Publishing Company of Science and T echnology,Shan ghai,1990,p.403(in Chinese).

(干福熹主编,现代玻璃科学技术(下),上海科学技术出版社,1990,p.403.)12

Roosen, A.R.;Carter,W. C.Physica A 1998,261,232.

(A0302217 S HE N ,H.;DONG,L.J.)

1674

化学学报Vol.61,2003

银纳米线及其透明导电膜的制备

第44卷第5期2016年5月 硅酸盐学报Vol. 44,No. 5 May,2016 JOURNAL OF THE CHINESE CERAMIC SOCIETY https://www.wendangku.net/doc/8a8452014.html, DOI:10.14062/j.issn.0454-5648.2016.05.13 银纳米线及其透明导电膜的制备 梁树华1,卫文飞2,何岗2,胡卫南2 (1. 深圳市东方亮化学材料有限公司,广东深圳 518000;2. 中国地质大学(武汉)材料与化学学院,武汉 430074) 摘要:采用水热法,以乙二醇(EG)作为还原剂和溶剂制备银纳米线,在硝酸银(AgNO3)与聚乙烯吡咯烷酮(PVP–K30)摩尔比为1:2时,加入1.0 mg/mL的氯化钠(NaCl),在160 ℃的高压反应釜中反应7h,经用去离子水洗涤静置,得到直径为100nm左右、长度30~50μm的银纳米线。将得到的银纳米线用无水乙醇配制成1.0 mg/mL的分散液,在1000r/min下旋涂制备成膜,然后再以4000r/min速率旋涂浓度为21 mg/mL的聚甲基丙烯酸甲酯(PMMA)的1-甲基-2-吡咯烷酮溶液,可制备成具有良好附着性能、透明率为92.90%、方块电阻为12 (?/□)的透明膜。 关键词:银纳米线;透明膜;旋涂;透光性;方块电阻 中图分类号:TB333 文献标志码:A 文章编号:0454–5648(2016)05–0707–04 网络出版时间:2016–04–26 19:11:10 网络出版地址:https://www.wendangku.net/doc/8a8452014.html,/kcms/detail/11.2310.TQ.20160426.1911.013.html Preparation of Silver Nanowires and Transparent Conductive Film LIANG Shuhua1, WEI Wenfei2, HE Gang2, HU weinan2 (1. Shenzhen Eastlight Chemical Co., Ltd, Shenzhen 518000, Guangdong, China; 2. College of Materials and Chemistry China University of Geosciences (Wuhan), Wuhan 430074, China) Abstract: Silver nanowires were synthesized by a hydrothermal method from AgNO3 with polyvinylpyrrolidone (PVP–K30) with mole ratio as 1:2,1.0 mg/mL NaCl, and ethylene glycol (EG) as a reducing agent. The silver nanowires synthesized in autoclave at 160 ℃ for 7 h are about 100 nm in diameter and about 30–50 μm in length. The transparent conductive film was firstly prepared with the silver nanowires (1.0 mg/mL in EG) at rotating speed of 1 000 r/min and then coated with 21 mg/mL polymethylmethacrylate (PMMA) 1-methyl-2-PVP solution at rotating speed of 4 000 r/min. This film prepared has a good adhesion performance, the transparency of 92.90% and the sheet resistance of 12 ?/□. Keywords: silver nanowires; transparent film; spin coating; translucent; sheet resistance 除了ITO[1],制备透明导电膜(TCFs)的材料还有石墨烯[2]、碳纳米管[3]、金属纳米线[4]等。其中银纳米线透明导电膜,因银纳米线制备相对简单,既可在硬质基材上成膜,又可在有机柔性基片上成膜[5],并且制备出的TCFs具有优异的透光性能和较小的表面电阻,因此在光电、生物传感、催化、二极管和触摸屏等领域有着广泛的应用前景[6–9]。 针对银纳米线的制备已开展了众多的研究工作,其合成方法有电化学法、化学还原法、光还原法、微波加热法等[10]。目前很多学者也对银纳米线制备透明导电膜进行了研究。Lin等[11]使用多元醇法制备的银纳米线成膜,在可见光平均波长下具有92.15%的透光率,方块电阻为20?/□。Park 等[12]将银纳米线经油墨印刷工艺制备成膜,其电阻为32?/mm时具有95%的透光率。Jiu等[13]使用长度大于60μm、直径约为60nm的银纳米线,制备出方块电阻为25?/□,550nm波长处的透光率为91%的薄膜。Madaria等[14]在柔性衬底聚对苯二甲酸乙二醇酯(PET)上使用银纳米线制备出方块电阻为10?/□,透光率为85%的透明导电膜。 收稿日期:2015–12–28。修订日期:2016–01–13。 基金项目:国家自然科学基金(50972135);清华大学新型陶瓷与精细工艺国家重点实验室开放课题(KF201305)。 第一作者:梁树华(1964—),男,博士,高级工程师。Received date: 2015–12–28. Revised date: 2016–01–13. First author: LIANG Shuhua (1964–), male, Ph.D., Senior Engineer. E-mail: 755811996@https://www.wendangku.net/doc/8a8452014.html,

碳纳米管的现状和前景

碳纳米管的现状和前景 信息技术更新日新月异,正如摩尔定律所言,集成电路的集成度每隔18 个月翻一番,即同样的成本下,集成电路的功能翻一倍。这些进步基于晶体管的发展,晶体管的缩小提高了集成电路的性能。 在硅基微电子学发展的过程中,器件的特征尺寸随着集成度的越来越高而日益减小,现在硅器件已经进入深微亚米阶段,也马上触及到硅器件发展的瓶颈,器件将不再遵从传统的运行规律,具有显著的量子效应和统计涨落特性. 为了解决这些问题,人们进行了不懈地努力,寻找新的材料和方法,来提高微电子器件的性能。研究基于碳纳米管的纳电子器件就是其中很有前途的一种方法。 碳纳米管简介 一直以来都认为碳只有两种形态——金刚石和石墨。直至1985年发现了以碳60为代表的富勒烯、从而改变了人类对碳形态的认识。1991年,日本筑波NEC研究室内科学家首次在电子显微镜里观察到有奇特的、由纯碳组成的纳米量级的线状物。此类纤细的分子就是碳纳米管 碳纳米管有许多优异的性能,如超高的反弹性、抗张强度和热稳定性等。被认为将在微型机器人、抗撞击汽车车身和抗震建筑等方面有着极好的应用前景。但是碳纳米管的第一个获得应用的领域是电子学领域、近年来,它已成为微电子技术领域的研究重要方面。 研究工作表明,在数十纳米上下的导线和功能器件可以用碳纳米管来制造,并连接成电子电路。其工作速度将过高于已有的产品而功率损耗却极低! 不少研究组已经成功地用碳纳米管制成了电子器件。例如IBM 的科学家们就用单根半导体碳纳米管和它两端的金属电极做成了场效应管(FETs)。通过是否往第三电极施加电压,可以成为开关,此器件在室温下的工作特性和硅器件非常相似,而导电性却高出许多,消耗功率也小。按理论推算,纳米级的开关的时钟频率可以达到1太赫以上,比现有的处理器要快1000倍。 碳纳米管的分类 石墨烯的碳原子片层一般可以从一层到上百层,根据碳纳米管管壁中碳原子层的数目被分为单壁和多壁碳纳米管。 单壁碳纳米管(SWNT)由单层石墨卷成柱状无缝管而形成是结构完美的单分子材料。SWNT 的直径一般为1-6 nm,最小直径大约为0.5 nm,与C36 分子的直径相当,但SWNT 的直径大于6nm 以后特别不稳定,会发生SWNT 管的塌陷,长度则可达几百纳米到几个微米。因为SWNT 的最小直径与富勒烯分子类似,故也有人称其为巴基管或富勒管。 多壁碳纳米管MWNT可看作由多个不同直径的单壁碳纳米管同轴套构而成。其层数从2~50 不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。多壁管的典型直径和长度分别为2~30nm 和0.1~50μm。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

水热法制备纳米线阵列

水热法制备锥状ZnO纳米线阵列及其光电性研究水热法制备锥状ZnO纳米线阵列及其光电性研究 摘要 ZnO是一种在光电领域中具有重要地位的半导体材料。采用聚乙二醇(PEG(2000))辅助的水热合成法制备出了粒径较为均匀的锥状氧化锌纳团线阵列, 并用SEM、XRD对其进行了表征。实验结果表明,表面活性剂(PEG22000)和氨水的加入量对ZnO纳米线阵列的形貌有直接的影响;分析出了不同体系中的化学反应过程及生长行为,研究了衬底状态、生长溶液浓度、生长时间、pH值等工艺参数对薄膜生长的影响,并对薄膜柱晶等特殊形貌晶体的生长机理进行了探讨。研究表明:薄膜的晶粒成核方式主要为异质成核,柱晶的生长方式为层-层生长。生长的ZnO柱晶的尺寸和尺寸分布与晶种层ZnO晶粒有着相同的变化趋势。随着生长液浓度的增加,ZnO棒晶的平均直径明显增大。生长体系长时间放置,会导致二次生长,形成板状晶粒。NH3·H2O生长系统,可以调节pH值来控制薄膜的生长。对于碱性溶液体系,ZnO合适的生长温度为70~90℃,通过调节温度,可以改变纳米棒的生长速率。 关键词:ZnO薄膜,低温,水热法,薄膜生长

HYDROTHERMAL SYNTHESIS OF ZnO NANOWIRE ARRAYSCONE AND OPTOELECTRONIC RESEARCH ABSTRACT ZnO is an important area in the status of photovoltaic semiconductor material.Polyethylene glycol (PEG (2000)) assisted hydrothermal synthesis were prepared by a more uniform particle size of zinc oxide nano cone line array group and use SEM, XRD characterization was carried out. The results show that surfactant (PEG22000) and ammonia addition on the morphology of ZnO nanowire arrays have a direct impact; analyze the different systems of chemical reactions and growth behavior of the state of the substrate, growth concentration, growth time, pH, and other process parameters on film growth, and morphology of thin film transistors and other special column crystal growth mechanism was discussed. The results show that: the film grain nucleation is mainly heterogeneous nucleation, crystal growth patterns column for the layer - layer growth. The growth of ZnO crystal size and column size distribution of ZnO grain and seed layer have the same trend. With the increase in the growth of concentration, ZnO rods significantly increased the average diameter of crystal.Growth system extended period of time will lead to secondary growth, the formation of tabular grains. NH3 ? H2O growth system, you can adjust the pH value to control the film growth. The alkaline solution system, ZnO is a suitable growth temperature 70 ~ 90 ℃, by adjusting the temperature, can change the growth rate of nanorods. Key words:ZnO films, low temperature, hydrothermal method, thin film growth

水热法合成纳米氧化锌

水热法合成纳米氧化锌 一、引言 二、实验部分 2.1实验仪器 集热恒温磁力搅拌器山东鄄城永兴仪器厂2(加搅拌子2) X射线衍射仪(DX-2000型)丹东方圆仪器有限公 司 1 光学显微镜 1 恒温干燥箱 1 聚四氟乙烯高压反应釜编号100-25、100-44 2 马弗炉 1 量筒(50ml) 1 烧杯3个100ml、2个150ml 坩埚 1 玻璃棒 1 培养皿 2 抽滤瓶 1 载玻片 2 2.2实验药品 草酸天津市元立化工有限公司分析纯氢氧化钠天津市福晨化学试剂厂分析纯 硝酸锌天津市天大化工试剂厂分析纯 氨水天津市元立化工有限公司25% 无水乙醇天津市风船化学试剂有限公司分析纯

去离子水 2.3实验内容 2.3.1水热合成纳米氧化锌 称取8.9482gZn(NO3).6H2O固体溶解于20ml去离子水中,在充分搅拌条件下缓慢滴加2 5%的浓氨水,至生成的沉淀恰好消失为止( p H≈10 ),得到前驱体溶液(其浓度认为等于Zn的浓度)。将上述溶液转移到聚四氟乙烯内胆的高压釜中,保持其填充度为80%。在180℃下反应3h后,自然冷却至室温。抽滤并收集白色沉淀,然后用去离子水反复冲洗以除去吸附的多余离子,于90℃烘箱中干燥以备表征。 2.3.2草酸高温合成纳米氧化锌 称取3.111gZn(NO3).6H2O溶解于20ml去离子水,在充分搅拌情况下缓慢滴加滴加草酸溶液(1~2d每秒为宜),使之沉淀完毕,搅拌0.5h,进行抽滤,用去离子水和无水乙醇洗涤,放入90℃烘箱干燥2h,然后高温700℃灼烧2h。 2.3.3在玻璃基体上生长纳米氧化锌阵列 (1)晶种层的制备 载玻片衬底先后在稀氢氟酸、氢氧化钠溶液、去离子水和无水酒精中超声清洗,然后放入烘箱中烘干备用。 Z n O种子液配制如下:制备等量的0.001mol/L和0.002mol/L的硝酸锌溶液,于磁力搅拌下分别缓慢滴加稀氨水,直至沉淀消失,在60℃水浴30min获得均匀澄清溶液采用浸渍提拉法在清洁衬底上涂敷Z n O凝胶膜:浸人种子液的浸渍时间为1 min,提拉速度0 .8 5 m m/s,8 0℃烘箱烘干,重复以上操作3次,最后将涂有薄膜的衬底进行热处理5 5 0℃,保温 1.5h 。最终获得晶种膜。 (2)水溶液生长 一定量的硝酸锌和氨水( 2 5 %) 加入去离子水中。配制20ml的生长液。搅拌均匀并密封,锌浓度范围为0.001mol/L。氨水和硝酸锌的物质的量的比为4:1至11:1,将有晶种层的衬底放人装有生长液的密封反应釜中。于9 0℃水浴中保持6h。硝酸溶液( p H = 0.4 ) 和氨水(2 5 %) 被用来进行生长液p H值( 8.2~9.8) 的原位二次调整。最后合成的薄膜用去离子水清洗,空气中晾干。 三、结果与讨论 3.1纳米氧化锌的XRD表征谱图 两组纳米氧化锌粉末进行XRD测试,设置扫描范围20°~70°,扫描速度0.1,铜靶波长1.54184?。两者对照谱图如下:

碳纳米管科普

碳纳米管科普 骞伟中?
一 心细如发,发真得够细吗??
中国有句谚语为"心细如发",用来形容一个人的心思缜密,细微程度达 到了头发丝的尺寸。 在古人的眼里, 头发丝已经是非常细的东西的代表了。 或者, 人们形容薄时,爱用“薄如蝉翼” ,但蝉翼真得够薄吗?然而,大家知识头发丝 的直径或蝉翼的厚度是什么尺度的吗?仅仅是几十微米而已。 有没有比头发丝更 细的丝及比蝉翼更薄的纸吗? 事实上还多得很。 比如铜丝,现代的加工技术可以将铜丝拉伸到小于 10 微米的级别。用于光 导通讯的玻璃纤维丝,也能达到这个级别。 而更绝的是,用激光刻蚀可以在硅片上刻出几十纳米(nm)的细槽,从而成 为现代超级计算机的基础。 但你可能更加想不到的是, 人类真得造出了直径仅 0.4‐1nm 的碳丝(图 1), 而 且还是中空结构。这种材料与头发丝相比,直径小了 1 万倍。另外一种比喻可以 让你进一步想象 1nm 有多大,人的指甲的生长速度几乎是不为人察觉的。人一 般觉得指甲长了,总得一周左右 的时间。但即使这样,您的指甲 仍以每秒 1nm 的速度在不停地生 长。但由于一个分子的大小也就 在 0.3nm(如氢气分子)到 0.6 nm(如苯分子),所以你可以想象 这种碳丝在本质上就是一种原子 线或分子线。但它的确构成了一 种长径比巨大的固体材料,成为 一种实物,而不再是无所束缚的, 到处乱跑的分子或原子。
图1 碳纳米管的三种卷曲结构 (从上而下的英文 字形结构;手性结构)?
armchair
zigzag
chiral
为:扶手椅式结构;Z

实际上, 这种神奇的材料的发现是基于非常偶然的机缘。 在 1985‐1990 年间, 科学家热衷于制造一种形状像足球的由 60 个碳组成的分子。这种分子通常是用 电弧放电,将石墨靶上的碳原子进行激发,然后进行自组装而得。而在偶然的机 缘里,科学家发现,只要能量足够,这些碳原子就会自动连接起来,形成一条碳 链。而利用放大倍数在 10 万倍至 100 万倍的电子显微镜下,科学家惊异地发现 这个丝状的材料竟然是中空的管状材料,所以,根据其元素,尺寸与形状,科学 家形象地称这种材料为“碳纳米管” 。应该说这种丝状材料与头发相比,才是真 正算得上细与小。当然如果说一个人“心细如碳纳米管” ,则恐怕不只是“心细 如发”的赞许与褒扬,而或许带有一种调侃或讽刺意味的“小心眼”了。由此可 见,社会科学中的词语包含了粗与细的平衡,什么事都得适可而止,非常玄妙。 然而,在追求真理与真知的“实心眼”科学家那里,却不是这样,自从 C60 与碳纳米管的发现,人类正式进行了纳米时代,可能大家都听过“纳米领带” , “纳米洗衣机” 或 “纳米药物” 。 不论这些东西是否属实, 却毫无疑问地夸耀 “细” 与“小”的作用。 事实上,追求细小或细微或精细,是人类科技进步的一条主线。 从人类走过的路程可以看到,从旧石器时代,新石器时代,以及青铜时代, 铁器时代,到火车轮船时代,以及飞机及计算机时代。从手工打造,铸造,到普 通车床加工, 再到数字车床加工, 激光刻蚀。 比如, 普通汽车与拖拉机的发动机, 一般有成千至万个零件。而飞机或火箭的发动机则有上百万个零件组成。而保证 这个零件良好组合或密封,以及长时间工作不损伤的关键因素,就在加工结构的 精细化与细微化。一般来说,汽车与拖拉机对应的加工精度为微米级,而计算机 与手机等通讯产品中硅片的加工精度则为纳米级。人类加工的产品越来越精细, 也就越来越有功能。而到达纳米级后,计算机硅片的加工要求又从 100 nm,小 到 60?nm,直到目前的 15?nm。这些数字减小的后面,是一代一代计算机的更新 换代与巨大的产业价值。 而我们故事的主人公:碳纳米管,竟然可以小至 0.4‐1nm。大家可以想见, 如果计算机的加工基础可以小到这个程度,或由这么小的材料来组装器件,则现 代的工业革命又将会发生什么样的变化。 在此开篇,有必要向大家介绍一下时空的概念。在时间尺度上,生物的新陈

实验2-2 水热法制备炭包碲化银纳米线解析

实验2-2 水热法制备炭包碲化银纳米线 一、目的要求 (1)熟悉水热法制备炭包碲化银纳米线,理解其形成机理,并对不同实验条件下的产物组成进行结果讨论与分析。 (2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。 二、实验原理 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer模型(见图1),当0.5 molL-1的葡萄糖溶液在低于140 C或反应时间小于1h时不会聚合现象,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为 0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响最终形成炭球的粒径分布。

图1 葡萄糖分子中的醛基,有还原性,能与银氨溶液反应: CH2OH(CHOH)4CHO+2Ag(NH3)2OH→CH2OH(CHOH)4COONH4+2Ag↓+3NH3+ H2O 目前已经有文献报道通过在葡萄糖溶液中加入―硝酸银‖或―亚碲酸盐‖后通过水热法成功的制备出炭包银和炭包碲纳米线[1] : Ag@C nanowire Te@C nanowier 基于对以上文献报道数据及其原理的分析,本实验通过在葡萄糖溶液中同时加入硝酸银和亚碲酸钠后对其进行水热合成。通过调整反应物浓度、反应时间、反应酸碱度等反应条件预期合成出均匀的炭包碲化银纳米线。 三、实验预备药品、仪器。 葡萄糖(天津大茂化学试剂厂),亚碲酸钠(>97%,阿拉丁试剂),硝酸银(AR,阿拉丁试剂),去离子水,95%乙醇;50mL高压反应釜,50ml小烧杯,玻璃棒,鼓风干燥箱,电子天平,砂芯漏斗,超声波清洗仪。 四、实验过程 1.材料制备 用电子天平分别称取0.085g硝酸银、0.0554g亚碲酸钠放入50mL烧杯中,用移液管准确移取32mL去离子水加入到上述烧杯中,并于超声波清洗仪超声分散 10min,然后加入3.0g葡萄糖于混合溶液中,再次置于超声清洗仪超声分散 10min,最后加入3ml的1M NaOH 溶液,用手拧紧反应釜,放入烘箱中。设定反

ZnS纳米球的水热法制备及其光催化性能研究_刘海瑞

收稿日期:2014-06-19。收修改稿日期:2015-01-05。国家自然科学基金(NO.50432030、U1304110)资助项目。 * 通讯联系人。E -mail :liuhairui1@https://www.wendangku.net/doc/8a8452014.html, ZnS 纳米球的水热法制备及其光催化性能研究 刘海瑞*,1,2 方力宇2 贾 伟2 贾虎生2 (1河南师范大学物理与电子工程学院,新乡453007)(2太原理工大学材料科学与工程学院,太原 030024) 摘要:在表面活性剂十六烷基三甲基溴化铵(CTAB)的辅助下,以乙酸锌为锌源,硫脲(NH 2)2CS 为硫源,使用水热法通过改变反应时间,成功制备了不同粒径的ZnS 球状颗粒。利用X 射线衍射(XRD)、扫描电子显微镜(SEM)、X -射线能谱,高分辨透射电子显微镜(HRTEM))、紫外可见分光光谱和光致发光谱(PL)等测试手段对样品的晶体结构、形貌、光学性质进行了分析。通过对不同粒径的ZnS 纳米颗粒对亚甲基蓝的光催化降解的催化活性进行了评估。实验结果表明:在表面活性剂CTAB 的作用下,随着反应时间的增加,生成的ZnS 晶核生长成纳米颗粒,然后ZnS 纳米颗粒将进一步发生团聚从而形成平均粒径超过500nm 的ZnS 纳米球,但制备的ZnS 产物的晶体结构均为立方纤锌矿结构。随着ZnS 粒径的增加,样品的紫外吸收峰从418nm 逐渐蓝移到 362nm ,而PL 发射峰位的峰强随着粒径的增大而增强。光催化结果显示,反应12h 制备的ZnS 纳米球的光催化性能最佳。 关键词:ZnS ;球状结构;水热法;光催化中图分类号:O643.3 文献标识码:A 文章编号:1001-4861(2015)03-0459-06 DOI :10.11862/CJIC.2015.074 Fabrication of ZnS Nanoparticles with Enhanced Photocatalytic Activity by Hydrothermal Method LIU Hai -Rui *,1,2FANG Li -Yu 2JIA Wei 2JIA Hu -Sheng 2 (1College of Physics and Electronics Engineering,Henan Normal University,Xinxiang,Henan 453007,China )(2College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China ) Abstract:Under the role of CTAB,different size ZnS spherical -like particles were fabricated by hydrothermal method.The crystal structure,morphology,composition and optical property of the samples were characterized by X -ray diffraction (XRD),scanning electron microscopy (SEM),high resolution transmission electron microscopy (HRTEM),X -ray energy spectrum (EDS),UV -Vis absorption spectrum and photoluminescence spectrum (PL).Photocatalytic activities were evaluated by degradation of MB solution.The results show that ZnS nanoparticles were formed by aggregation of crystal nucleus under the role of CTAB.With the increase of reaction time,the size of ZnS particles increased to 500nm,however,the crystal structure of product has no change.With the increase of particle size,the UV -Vis absorption peak of samples shifted from 418to 362nm and the PL intensity further increased.Finally,the photocatalytic activity presented that fabricated ZnS nanoparticles with reaction time 12h showed best photcatalytic performance. Key words:ZnS;spherical structure;hydrothermal method;photocatalysis 第31卷第3期2015年3月 Vol .31No .3459-464 无机化学学报 CHINESE JOURNAL OF INORGANIC CHEMISTRY

水热法制备纳米氧化锌及其光催化性质的研究

水热法制备纳米氧化锌及其光催化性质的研究 纳米氧化锌因其很小的微粒尺寸,其比表面积较一般氧化锌粒子要大很多,具有其块状物料没有的表面与界面效应,小尺寸效应,量子尺寸效应,宏观量子隧道效应等。使其在很多领域都有非常重要的应用价值。本文通过水热法加入不同配比和不同类别的表面活性剂和掺杂钠钾离子,和对反应体系的某些条件来控制合成纳米氧化锌的微观形貌,并且对改变条件和表面活性剂的不同的纳米氧化锌对次甲基蓝的水溶液的光催化活性进行了初步的研究和探讨。在实验中我们发现,添加不同表面活性剂、掺杂有不同金属离子的纳米氧化锌的光催化的活性不同。 本文主要内容如下:首先简单介绍了纳米材料及纳米氧化锌的性能,制备,应用和表征的手段,并且对表面活性剂的类别和应用做了概述。 二、以尿素、乙酸锌、草酸钠和草酸钾为原料,用水热法通过改变不同的焙烧温度制备纳米氧化锌。所得的样品使用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、高分辨率透射电镜(HRTEM)、透射电子显微镜(TEM)对其进行了表征,得出结果,掺杂不同主族金属钠、钾离子的纳米氧化锌其形貌和粒径分布大不相同。其中,焙烧温度为600℃制备的掺杂有金属钠、钾离子的纳米氧化锌具有较小的粒径和分散性。 三、以尿素和乙酸锌为原料,通过水热法成功制备了只添加单一表面活性剂SDS(十二烷基硫酸钠),非离子表面活性剂:PEG6000(聚乙二醇6000)表面改性的纳米氧化锌和通过添加比例不同的两种表面活性剂表面改性的纳米氧化锌。发现使用不同比例以及不同种类的表面活性剂合成的纳米氧化锌具有不同的形貌和粒径,并用XRD、FT-IR、SEM、TEM、HRTEM对产品进行了表征。根据其表征结果发现,应用不同种类和不同配比的表面活性剂合成的纳米氧化锌对产品的尺寸和形貌有较大的影响。 四、自制的上述纳米氧化锌对水溶性有机染料次甲基蓝作为模拟污染物的水溶液进行了光的催化降解实验,并根据实验结果探讨了制备的纳米氧化锌的结构和形貌对其光催化活性的影响。其中,掺杂有钠或钾金属离子的纳米氧化锌600℃焙烧的样品比在400℃和800℃焙烧的样品的光催化活性更好。通过加入不同种类和配比的表面活性剂制备的纳米氧化锌的所有产品中,加入PEG6000和SDS(十二烷基硫酸钠)比例为1:3的光催化性能最好。通过实验数据发现光催化活性是与产品的形貌,粒子的尺寸大小等多种因素有关。

碳纳米技术发展综述

碳纳米管技术发展概况 学院:电子信息工程学院 专业:通信工程 姓名:彭昱 学号:3013204217 【摘要】随着社会经济的飞速发展,碳纳米材料的应用日趋广泛,以富勒烯、石墨烯和碳纳米管为代表的碳纳米材料。在经历20世纪90年代的研究高潮后,如今也已经进入了平稳扎实的研究阶段。随着研究的不断深入,碳纳米材料在人类生产生活中显示出越来越多不可替代的重要作用。碳纳米管(CNT)也是“纳米世界”中的重要一员,因其独特的结构和优异的物理化学性能,具有广阔的应用前景和商业价值。本文综述了碳纳米管的发展历程、结构性能,应用及其发展前景及展望。 【关键词】碳纳米管;发展历程;结构;特性;应用;前景 碳纳米管的发展历程 1985 年英国萨塞克斯大学的波谱学家Kroto 教授与美国莱斯大学的Smalley和Curl 两教授在合作研究中,发现碳元素可以形成由60 个或70 个碳原子构成的高度对称性笼状结构的C60和C70分子,被称为巴基球(Buckyballs);1991 年,日本NEC 科学家Iijima 在制取C60的阴极结疤中首次采用高分辨隧道电子显微镜发现一种外径为515nm、内径为213nm,仅由两层同轴类石墨圆柱面叠而成的碳纳米管;1992年,科研人员发现碳纳米管壁曲卷结构不同而呈现出半导体或良导体的特异导电性;1995年,科学家研究并证实其优良的场发射性能;1996年,我国科学家实现碳纳米管大面积定向生长;1998年,科研人员应用碳纳米管作电子管阴极,同年,科学家使用碳纳米管制作室温工作的场效应晶体管;1999年,韩国一个研究小组制成碳纳米管阴极彩色显示器样管;2000年,日本科学家制成高亮度的碳纳米管场发射显示器样管。 碳纳米管的结构 碳纳米管是由单层或多层石墨片绕中心按一定角度卷曲而成的无缝、中空纳米管。按照所含石墨片层数的不同,碳纳米管可分为:单壁碳纳米管和多壁碳纳米管。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。下图为常见的碳纳米管结构图。虽然从本质上讲,碳纳米管都是有相同的石墨层构成的但它们的导电特性却并不一样,具体情况取决于起的是金属还是半导体的作用。 碳纳米管的特性 碳纳米管的独特结构决定了它具有许多特殊的物理和化学性质。组成碳纳米管的C=C 共价键是自然界最稳定的化学键,所以使得碳纳米管具有非常优异的力学性能。理论计算表明,碳纳米管具有极高的强度和极大的韧性。其理论值估计杨氏模量可达5TPa,强度约为钢的100 倍,而重量密度却只有钢的1/6。Treacy 等首次利用了TEM 测量了温度从室温到800 度变化范围内多壁碳纳米管的均方振幅,从而推导出多壁碳纳米管的平均杨氏模量约为1.8Tpa。而Salvetat 等测量了小直径的单壁碳纳米管的杨氏模量,并导出其剪切模量为1Tpa。Wong 等用原子力显微镜测量多壁碳纳米管的弯曲强度平均值为14.2±10.8GPa,而碳纤维的弯曲强度却仅有1GPa。碳纳米管无论是强度还是韧性,都远远优于任何纤维,被认为是未来的“超级纤维”。直径、螺旋角以及层间作用力等存在的差异是碳纳米管兼导体和半导体的特性;独特的螺旋分子结构使碳纳米管构筑的吸波材料具有比一般吸收材料高的吸收率。此外,碳纳米管还具有独特的光学性能,良好的热传导性,极高的耐酸、碱性和热稳定性。

水热法制备炭包碲化银纳米线

实验1 水热法制备炭包碲化银纳米线 一、目的要求 (1)熟悉水热法制备炭包碲化银纳米线,理解其形成机理,并对不同实验条件下的产物组成进行结果讨论与分析。 (2)熟悉并理解水热法的基本原理、特性,熟练使用反应釜,关注反应釜使用的注意事项。 二、实验原理 葡萄糖在水热条件下会发生许多化学反应,实验结果表明:炭微球的增长似乎符合LaMer 模型(见图1),当0.5 molL-1的葡萄糖溶液在低于140°C或反应时间小于1h时不会聚合现象,在此条件下反应后溶液呈橙色或红色并且粘度增强,表明有芳香族化合物和低聚糖形成,这是反应的聚合步骤。当反应条件为0.5molL-1、160℃、3h时开始出现成核现象,这个碳化步骤可能是由于低聚糖之间分子间脱水而引起的交联反应,或者在先前步骤中有其它大分子的形成,然后形成的核在溶液中各向同性生长所致。从现有的研究结果表明,制备过程中的反应条件如葡萄糖的起始浓度、反应温度和反应时间直接影响最终形成炭球的粒径分布。 图1水热法形成炭球的结构变化示意图 葡萄糖分子中的醛基,有还原性,能与银氨溶液反应:CH2OH(CHOH)4CHO+2Ag(NH3)2OH→CH2OH(CHOH)4COONH4+2Ag↓+3NH3+H2O 已经有文献报道通过在葡萄糖溶液中加入“硝酸银”或“亚碲酸盐”后通过水热法成功的制备出炭包银和炭包碲纳米线: 图2 Ag@C纳米线图3 Te@C纳米线 基于对以上文献报道数据及其原理的分析,本实验通过在葡萄糖溶液中同时加入硝酸银和亚碲酸钠后对其进行水热合成。通过调整反应物浓度、反应时间、反应酸碱度等反应条件预期合成出均匀的炭包碲化银纳米线。 三、实验预备药品、仪器。 葡萄糖(天津大茂化学试剂厂),亚碲酸钠(>97%,阿拉丁试剂),硝酸银(AR,阿拉丁试剂),去离子水,95%乙醇;50mL高压反应釜,50mL小烧杯,玻璃棒,鼓风干燥箱,电子天平,砂芯漏斗,超声波清洗仪。 四、实验过程 1.材料制备 用电子天平分别称取0.85g硝酸银、0.554g亚碲酸钠放入50mL反应釜内衬中,用移液管准确移取25mL去离子水加入到上述反应釜中,用玻璃棒搅拌溶液,加入2.475g葡萄糖于混合溶液中,再次搅拌使其溶解,最后加入5mL 4molL-1 的NaOH 溶液调节pH到14,用手拧紧反应釜,放入烘箱中。设定反应条件为:温度165°C,反应时间24 h。待反应结束后,降至室温,取出反应釜,将釜内黑褐色溶液抽滤(用22um有机滤膜),并及时清洗反应釜内衬,抽滤时用去离子水和95%乙醇清洗至滤液为无色。将样品用滤纸包好放入干燥箱中70℃干燥4h。收集样品,称重并计算产率。 2.材料表征

室温固相合成纳米硫化锌及其性能研究

文章编号:1007-967X(2004)06-0034-04 室温固相合成纳米硫化锌及其性能研究Ξ 马国峰,邵忠宝,姜 涛 (东北大学化学系,辽宁沈阳110004) 摘 要:用醋酸锌和硫化钠为原料,室温固相法合成纳米ZnS,用紫外吸收光谱,红外光谱,X-ray 衍射分析(XRD),透射电镜(TE M)对产物结构、组成、大小、形貌进行表征。结果表明在加 入一定量的分散剂后,制备的纳米硫化锌粒子的平均粒径约20nm,分散性好,晶相单一, 属于立方晶系。在紫外吸收光谱中纳米硫化锌吸收峰蓝移,吸收峰从340nm减少到265 nm。从红外光谱可知,该粉体无红外吸收峰,具有红外透明性。讨论了不同的分散剂,煅 烧温度等条件对硫化锌粒度的影响。少量硫化锌作为助燃剂添加到重油-煤-水三元混 合流体燃料中,明显提高了重油-煤-水三元混合流体燃料燃烧性能。 关键词:固相反应;纳米硫化锌;助燃剂 中图分类号:TF123.23 文献标识码:A 纳米材料及技术是材料科学领域一个非常重要的研究方向,现已成为国际科学前沿和世界性的研究热潮[1,2]。已有研究表明,纳米材料具有独特的表面效应、体积效应及宏观量子隧道效应等,在电学、磁学、光学、力学、催化等领域呈现出许多优异的性能,有着广阔的应用前景[3]。合成纳米材料的有多种方法,但反应均需要高温,并使用大量的有机溶剂,,设备费用高,颗粒均匀性差,粒子易粘结或团聚等[4],室温、近室温固相反应合成纳米材料近年来取得很大的进展[5]。它的突出特点是操作方便,合成工艺简单,转化率高,粒径均匀,且粒度可控污染少,可避免或减少液相中易出现的硬团聚现象,以及由中间步骤和高温反应引起的粒子团聚现象。ZnS是一种非常重要且应用广泛的半导体材料,主要应用于电子工业、国防军工、化学化工等诸多领域[6]。目前纳米ZnS的制备方法主要有元素直接反应、离子交换反应、微乳液法、水热法、溶剂热合成等[7~9]。本文利用室温固相合成法合成纳米硫化锌,并探讨了反应物反应前的处理,加入不同的分散剂和不同煅烧温度对ZnS粒径及分散性的影响,以及在重油-煤-水三元混合流体燃料中加入少量的纳米ZnS可以提高其燃烧性能,从而表明纳米ZnS 作为助燃剂有研究价值。 1 实验部分1.1 实验试剂 醋酸锌、硫化钠、氯化钠、乙二醇、无水乙醇、氨水均为分析纯。其中醋酸锌带2个结晶水,硫化钠带9个结晶水,重油取自葫芦岛市炼油五厂。各种盐在使用前,用化学法对金属含量进行标定。 1.2 实验内容 1.2.1 醋酸锌的处理 配置一定量的醋酸锌饱和溶液,加热蒸发掉一部分水,立即放入冰水中使其重结晶,然后抽滤。1.2.2 纳米硫化锌粉体的制备 按化学计量比称取一定量处理过的醋酸锌和研磨过的硫化钠放入玛瑙研钵中混合均匀,充分研磨30min,使其完全反应,用去离子水和无水乙醇分别洗涤两次,并放入稀氨水中洗涤一次,抽干,放在干燥箱中800℃干燥10h后,研磨,得到白色产物,放入马沸炉煅烧。 在反应中掺入适量的氯化钠或溶剂如乙二醇作为分散剂制备纳米硫化锌,其余过程与上述相同。1.2.3 重油-煤-水三元混合燃料的制备 向稳定性较好的乳化重油中加入适量的煤粉、分散剂、助燃剂,得到新型重油-煤-水三元混合流体燃料。 1.3 纳米材料的表征 物相分析在Philips analyti-cal X-Ray Service 第20卷第6期2004年12月 有 色 矿 冶 N ON-FERR OUS MINING AN D METALLURG Y V ol.20.№6 December2004 Ξ收稿日期:2004-05-10 作者简介:马国峰(1979—),男,东北大学硕士研究生。

实验三-水热法制备纳米银立方体及光谱分析

水热法制备银纳米立方体及紫外光谱性能研究 一、 实验目的 1掌握水热法合成单分散银纳米立方体的制备方法 2熟悉纳米银立方体的表征方法 二、实验原理 纳米银(Nano Silver )就是将粒径做到纳米级的金属银单质。由于颗粒尺寸微细化,使得纳米银表现出体相材料不具备的表面效应、小尺寸效应、量子效应和宏观量子效应等性质。纳米银形貌和大小会影响其性质,所以可控形貌合成纳米银引起了广泛关注。纳米银对大肠杆菌、淋球菌、沙眼衣原体等数十种致病微生物都有强烈的抑制和杀灭作用,而且不会产生耐药性,广泛应用于环境保护、纺织服饰、水果保鲜、食品卫生等领域。 本实验首先以[Ag(NH 3)2]OH 、葡萄糖、十六烷基三甲基溴化铵(CTAB )为原料,采用人们熟知的银镜反应,水热条件下合成银纳米立方体。 反应方程式如下: [Ag(NH 3)2]+ (aq)+ Br - (aq)错误!未找到引用源。AgBr(s) +2NH 3 (aq) (1) [Ag(NH 3)2]+ (aq) +RCHO (glucose) (aq)错误!未找到引用源。Ag (NPs)+ RCOO - (aq) +2NH 4 + (aq) (2) 反应流程如下: 三、仪器与试剂 试剂:硝酸银、氨水、去离子水、葡萄糖、十六烷基三甲基溴化铵、抗坏血酸。 仪器:烧杯、容量瓶、电子天平、搅拌器、反应釜(25 mL )、紫外可见分光光度计、X 射线衍射仪、扫描电镜、离心机、离心管。 四、实验步骤 1、溶液配制 配制[Ag(NH3)2]OH 30ml :将0.51g ,0.003mol 硝酸银溶解于50ml 的蒸馏水中,向所配置的硝酸银溶液中低价1mol/L 的氨水溶液并剧烈搅拌,直至澄清,想所

相关文档