文档库 最新最全的文档下载
当前位置:文档库 › 向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用
向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用

平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明.

原题 已知OB λOA μOC =+

,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =

)得三点共线.

证明:如图,由1λμ+=得1λμ=-,则

(1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC =

∴A 、B 、C 三点共线.

思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性;

2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满

足OB λOA μOC =+

,且1λμ+=.揭示了三点贡献的又一个性质;

3. 特别地,1

2λμ==时,1()2

OB OA OC =+ ,点B 为AC 的中点,揭示了

OAC

中线OB 的一个向量公式,应用广泛.

应用举例

例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1

3

BN BD =. 利用向量法证明:M 、N 、C 三点共线.

思路分析:选择点B ,只须证明BN λBM μBC =+

,

且1λμ+=.

证明:由已知BD BA BC =+

,又点N 在BD 上,

且1

3

BN BD =

,得 1111()3333BN BD BA BC BA BC ==+=+

又点M 是AB 的中点, 12

BM BA ∴= ,即2BA BM =

A

B

C

O

D

A

B

C

M N

2133BN BM BC ∴=+

而21133

+= ∴M 、N 、C 三点共线.

点评:证明过程比证明MN mMC =

简洁. 例2如图,平行四边形OACB 中,

13BD BC =,OD 与AB 相交于E ,求证:. 1

4

BE BA =.

思路分析:可以借助向量知识,只须证明:

14

BE BA = ,而BA BO BC =+

,又O 、D 、E 三

点共线,存在唯一实数对λ、μ,且1λμ+=,使

BE λBO μBD =+

,从而得到BE 与BA 的关系.

证明:由已知条件,BA BO BC =+ ,又B 、E 、A 三点共线,可设BE kBA =

,则

BE kBO kBC

=+ ①

又O 、E 、D 三点共线,则存在唯一实数对λ、μ,使BE λBO μBD =+

,且1λμ+=.

又13BD BC =

13

BE λBO μBC

∴=+ ②

根据①、②得

131k λk μλμ=???

=?

?

+=??,解得141434k λμ?=???=???=?? 14BE BA ∴=

1

4

BE BA ∴=

点评:借助向量知识,充分运用三点共线的向量性质解决问题,巧妙、简洁.

D

O A

C

E

B

向量证三点共线 (1)

利用共线向量巧解三点共线 例题:如图,A,B,C是平面内三个点,P是平面内任意一 点,若点C在直线AB上,则存在实数λ,使得PC=λPA+ (1-λ)PB. 证法探究: 分析:初看欲证目标,始感实难下手。我们不妨从结论出发探寻线路,欲证PC=λPA+(1-λ)PB,只需证=λ+-λ?-=λ(-)? =λ?∥.这样证明思路有了。 证法:∵向量BC与向量BA共线,∴BC=λBA,即PC-PB=λ(PA -PB),PC=λPA+PB-λPB,∴PC=λPA+(1-λ)PB. 证毕,再思考一下实数λ的几何意义究竟如何。考察向量等式BC=λBA,结合图形,易知,当点C在线段AB上时,则BC 与BA同向,有0≤λ≤1;当点C在线段AB延长线上时,则BC 与BA反向,有λ<0;当点C在线段BA延长线上时,则BC与BA 同向,有λ>1. 此例题逆命题亦成立,即 已知A,B,C是平面内三个点,P是平面内任意一点,若存在实数λ,μ,有PC=λPA+μPB,且λ+μ=1,则A,B,C三点共线. 故此逆命题可作三点共线判定方法。

为方便起见,我们将两命题作为性质叙述如下: 性质1:已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,使得PC =λPA +(1-λ)PB . 或叙述为: 已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,μ,使得PC =λPA +μPB ,则有λ+μ=1. 性质2:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μ PB ,且λ+μ=1,则A , B , C 三点共线. 三点共线性质在解题中的应用: 例1 如图,在ABC ?中,点O 是BC 的中点,过点O 的直线分别 交直线AB 、AC 于不同的两点M 、N ,若AB =AM m ,AC =AN n ,则n m +的值为 . 解析:连结AO ,因为点O 是BC 的中点,所以有AO =2121+=AN n AM m 2121+,又因为M 、O 、N 三点共线,所以12121=+n m ,故2=+n m . 点评:因为点O 是BC 的中点,所以λ=21=,由性质1,

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量得求法及其应用 一、平面得法向量 1、定义:如果,那么向量叫做平面得法向量。平面得法向量共有两大类(从方向上分),无数条。 2、平面法向量得求法 方法一(内积法):在给定得空间直角坐标系中,设平面得法向量[或,或],在平面内任找两个不共线得向量。由, 得且,由此得到关于得方程组,解此方程组即可得到。 方法二:任何一个得一次次方程得图形就是平面;反之,任何一个平面得方程就是得一次方程。,称为平面得一般 方程。其法向量;若平面与3个坐标轴得交点为,如图所示,则平面方程为:,称此方程为平面得截距式方程,把它化 为一般式即可求出它得法向量。 方法三(外积法): 设 , 为空间中两个不平行得非零向量,其外积为一长度等于,(θ为,两者交角,且),而与, 皆垂直得向量。通常我们采取「右手定则」,也就就是右手四指由得方向转为得方向时,大拇指所指得方向规 定为得方向,。 (注:1、二阶行列式: ;2、适合右手定则、) 例1、Array试求 Key: ( 例2、 求平面A 二、 1、 (1) A 图2-1 图2—1 (2) (图 (图2 两个平 得平面

平面而言向内;在图2—3中,得方向对平面而言向内,得方向对平面而言向内。我们只要用两个向量得向量积(简称“外积”,满足“右手定则")使得两个半平面得法向量一个向内一个向外,则这两个半平面得法向量得夹角即为二面角得平面角。 2、 求空间距离 (1)、异面直线之间距离: 方法指导:如图2-4,①作直线a 、b 得方向向量、, 求a 、b 得法向量,即此异面直线a 、b 得公垂线得方向向量; ②在直线a 、b 上各取一点A 、B,作向量; ③求向量在上得射影d,则异面直线a 、b 间得距离为 ,其中 (2)、点到平面得距离: 方法指导:如图2-5,若点B 为平面α外一点,点A 为平面α内任一点,平面得法向量为,则点P 到 平面α得距离公式为 (3)、直线与平面间得距离: 方法指导:如图2-6,直线与平面之间得距离: ,其中。就是平面得法向量 (4)、平面与平面间得距离: 方法指导:如图2-7,两平行平面之间得距离: ,其中。就是平面、得法向量。 3、 证明 (1)、证明线面垂直:在图2-8中,向就是平面得法向量, a 得方向向量,证明平面得法向量与直线所在向量共线()。 (2)、证明线面平行:在图2—9中,向就是平面得法向量,线a得方向向量 ,证明平面得法向量与直线所在向量垂直()。 (3)、证明面面垂直:在图2—10中,就是平面得法向量,面得法向量,证明两平面得法向量垂直() (4)、证明面面平行:在图2—11中, 向就是平面得法向量,量,证明两平面得法向量共线()。 三、高考真题新解

证明三点共线问题的方法

证明三点共线问题的方法 1、利用梅涅劳斯定理的逆定理 例1、如图1,圆内接ΔABC 为不等边三角形,过点A 、B 、C 分别作圆的切线依次交直线BC 、CA 、AB 于1A 、1B 、1C ,求证:1A 、1B 、1C 三点共线。 解:记,,BC a CA b AB c ===,易知1111AC C CC B S AC C B S ??= 又易证1 1 AC C CC B ?? .则112 2 2AC C CC B S AC b S CB a ????== ???. 同理12121212,BA c CB a A C b B A c ==.故111222 1112221AC BA CB b c a C B A C B A a b c ??=??=. 由梅涅劳斯定理的逆定理,知1A 、1B 、1C 三点共线。 2、利用四点共圆(在圆内,主要由角相等或互补得到共线) 例2 、如图,以锐角ΔABC 的一边BC 为直径作⊙O ,过点A 作⊙O 的两条切线,切点为M 、N ,点H 是ΔABC 的垂心.求证:M 、H 、N 三点共线。(96中国奥数 证明:射线AH 交BC 于D ,显然AD 为高。 记AB 与⊙O 的交点为E ,易知C 、H 、E 三点共线。 联结OM 、ON 、DM 、DN 、MH 、NH , 易知090AMO ANO ADO ∠=∠=∠=, ∴A 、M 、O 、D 、N 五点共圆,更有A 、M 、D 、N 四点共圆, 此时,0+180AND ∠∠=AMD 因为2AM AE AB AH AD =?=?(B 、D 、H 、E 四点共圆), 即 AM AD AH AM = ;又MAH DAM ∠=∠,所以AMH ADM ?? ,故AHM AMD ∠=∠ 同理,AHN AND ∠=∠。 因为0180AHM AHN AMD AND ∠+∠=∠+∠=,所以,M 、H 、N 三点共线。 3、利用面积法 如果S S EMN FMN =??,点E 、F 位于直线MN 的异侧,则直线MN 平分线段EF ,即M 、N 与 EF 的中点三点共线。 A B C C 1 B 1A 1

平面向量三点共线性质定理的推论及空间推广

平面向量三点共线定理的推论及空间推广 南昌外国语学校 梁懿涛 邮编:330025 地址:江西省南昌市桃苑西路126号南昌外国语学校 电话: 电子信箱: 一.问题的来源 平面向量三点共线定理:对于共面向量,,OA OB OC u u u r u u u r u u u r ,OC xOA yOB =+u u u r u u u r u u u r ,则A 、B 、C 三点共线的充要条件是1x y +=. 二.问题的提出 问题1.在上述定理中,如果1x y +<、1x y +>时,分别有什么结论 问题2.x 、y 有什么特定的意义吗 问题3.上述问题可以推广到空间吗 三.问题的解决 推论1. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)点C 在直线AB 外侧(不含点O 一侧)的充要条件是1x y +>. (2)点C 在直线AB 内侧(含点O 一侧)的充要条件是1x y +<. 证明:(1)必要性:如图1-1,连OC 交AB 于点C ',则存在实数λ,使得(1)OC OC λλ'=>u u u r u u u u r ,(1)OC x OA y OB x y '''''=++=u u u u r u u u r u u u r ,OC x OA y OB λλ''∴=+u u u r u u u r u u u r ,,x x y y λλ''==, ()1x y x y λ''∴+=+>. 充分性:1x y +>Q ,∴存在1λ>,使得,x x y y λλ''==且1x y ''+=. ()OC x OA y OB OC λλ'''∴=+=u u u r u u u r u u u r u u u u r ,C 'Q 在直线AB 上,C ∴在直线AB 外侧. 同理可证(2). 进一步分析,得: 推论1'. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)连接AB 得直线1l ,过点O 作平行于1l 的直线2l ,则1l 、2l 将平面OAB 分成三个区域,如图1-2点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:1x y +>;(Ⅱ)区:01x y <+<;(Ⅲ)区:0x y +<.特别地,当点C 落在1l 上时,1x y +=;当点C 落在2l 上时,0x y +=. (2)直线OA 、OB 将平面OAB 分成四个区域,如图1-3,则点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:00x y >??>?;(Ⅱ)区:00x y ?;(Ⅲ)区:00x y ??>,则点C 在线段AB 上;当0,0x y ><,则点C 在线段BA 的延长线上;当0,0x y <>,则点C 在线段AB 的延长线 上. 证明:OC xOA yOB =+u u u r u u u r u u u r Q 且1x y +=,OC xOC yOC xOA yOB ∴=+=+u u u r u u u r u u u r u u u r u u u r ,xCA yBC =u u u r u u u r , ||||||||AC y BC x ∴=。当0,0x y >>时,CA u u u r 与BC uuu r 同向,如图2-1所示,则点C 在线段AB 上;当0,0x y ><时,CA u u u r 与BC uuu r 反向,且||||AC BC <,如图2-2所示,则点C 在线段BA 的延长线上;当0,0x y <>时,CA u u u r 与BC uuu r 反向,且||||AC BC >,如图2-3所示,则点C 在线段AB 的延长线上.

经典习题平面法向量求法及应用

经典习题平面法向量求法及应用

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。 平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量 (,,1) n x y =r [或 (,1,) n x z =v ,或 (1,,) n y z =r ],在平面α内任找两个不共线的向量 ,a b r r 。由 n α ⊥r ,得 n a ?=r r 且 n b ?=r r ,由此得到 关于,x y 的方程组,解此方程组即可得到n r 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。0=+++D Cz By Ax ) 0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ; 若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(3 2 1 c P b P a P ,如图所 示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ →?b a 为一长 度等于θsin ||||→ → b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规 定为→ → ?b a 的方向,→ → → → ?-=?a b b a 。:),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ →2 1y y b a ,2 1z z 2 1x x - ,21 z z 2 1 x x ??? ?21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。) C 1A 1 D 1 z B E

点共线与三线共点的证明方法

三点共线与三线共点的证明方法 公理 1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理 3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD中作截图PQR, PQ、CB的延长线交于M,RQ、DB的延长线交于N,RP、DC的延长线交于K.求证M、N、 K三点共线. 由题意可知,M、N、K分别在直线PQ、

RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、DB 、DC 上,可知M 、N 、K 在平面BCD 上,根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1 D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11ADD A 与平面ABCD 的交线DA 上,故1 D M 、DA 、CN 三线交于点K ,即三线共点. 从上面例子可以看出,证明三线共点

用三点共线的向量结论解决平几中的一类求值问题1

用三点共线的向量结论解决平几中的一类求值问题教案 注:为了简单起见,平面几何简称为平几;师指教师,生指学生。

《用三点共线的向量结论解决平几中的一类求值问题》教案说明 向量是数与形的高度统一,它集几何图形的直观与代数运算的简捷于一身,在解决平面几何问题时能起到奇特的作用。在用向量解决平面几何问题时,首先就是要将几何关系转化为向量表示(即选择适当的基底),然后再借助向量运算来解决。因此,本节课实际就是让学生学会:在三点共线条件下,知道将几何关系转化为向量问题来解决。 本节课的教学目标是按三维目标来确定的。它包括知识与技能、过程与方法、情感态度与价值观三个方面。知识与技能目标有4点,它们是相互联系层层递进的关系。目标1是基础,目标2是内容,目标3是获得技能,目标4才是这节课的根本意图。我国新一轮课程改革提出:改变课程过于注重知识传授的倾向,强调形成积极的学习态度,使获得知识与形成技能的过程成为学会学习和形成价值观的过程。这就要求我们的教学过程应更多的考虑学生,要让他们在课堂上参与适应的探索并能在这一过程中感受成功的喜悦。 本内容是学生学习了向量的一些基本概念、向量的加法与减法、向量共线的充要条件、平面向量基本定理和三点共线的向量结论后进行的一节探究式的习题课。平面向量基本定理这一节的例5学生知道了这样一个结论:A 、B 、C 三点共线的充要条件是:有唯一的实数对λ、μ,使OC OA OB λμ=+u u r u u r u u r ,其中λ+μ=1。并且通过上节课的学习,学生还知道了在三点共线条件下写向量表达式的一种方法:如右图, 图1 图2 分母m+n 代表线段AB 的份数,即右边两向量终点表示的线段,m 代表线段CB 的份数,即左边向量OC u u r 和右边向量OB u u r 两向量终点表示的线段,n 代表线段CA 的份数,即左边向量OC u u r 和右边向量OA u u r 两向量终点表示的线段。系数m 、n 与它对应的线段恰好是交叉关系;当分点在线段的外部时,添加一个负号,其位置由系数和为1确定。在三点共线的条件下学生能较为熟练的写出向量表达式作为基础来进行这节课的教学。 A O m n OC OA OB m n m n = + ++u u r u u r u u r m+n n m

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案 教师张敏科目数学时间2013 年6 月4日 学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解 难度星级★★★★ 教学内容 上堂课知识回顾(教师安排): 1.平面向量的基本性质及计算方法 2.空间向量的基本性质及计算方法 本堂课教学重点: 1.掌握空间法向量的求法及其应用 2.掌握用空间向量求线线角,线面角,面面角及点面距 3.熟练灵活运用空间向量解决问题 得分:

平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 二、 平面法向量的应用 1、 求空间角 (1)、求线面角:如图2-1,设→ n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.| |||arccos 2,2 →→→ →→ →??->= <-= AB n AB n AB n π π θ 图2-1-2:2| |||arccos 2,π π θ-??=->=<→ →→ → → → AB n AB n AB n (2)、求面面角:设向量→ m ,→ n 分别是平面α、β的法向量,则二面角βα--l 的平面角为: θ β α → m 图2-2 → n θ → m α 图2-3 → n β | ,cos |sin ><=→ →AB n θA B α 图2-1-2 θ C → n 图2-1-1 α θ B → n A C

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

(完整版)向量共线的坐标表示

《平面向量共线的坐标表示》教案 教学目标 (1)知识目标:理解平面向量共线的坐标表示,会根据向量的坐标,判断向量是否共线,并掌握平面上两点间的中点坐标公式及定点坐标公式; (2)能力目标:通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力; (3)情感目标:在解决问题过程中要形成见数思形、以形助数的思维习惯,以加深理解知识要点,增强应用意识. 教学重点和难点 (1)重点:向量共线的坐标表示及直线上点的坐标的求解; (2)难点:定比分点的理解和应用。 教学过程 一、新知导入 (一)、复习回顾 1、向量共线充要条件: 2.平面向量的坐标运算: (1).已知 a =(x 1,y 1),b =(x 2,y 2)则 a + b =(x 1+x 2,y 1+y 2). a - b =(x 1-x 2,y 1-y 2). λa =(λx 1,λy 1). (2). 一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标. (二)、问题引入 已知下列几组向量: (1)a =(0,2),b =(0,4); (2)a =(2,3),b =(4,6); (3)a =(-1,4),b =(2,-8); (4)a =????12,1,b =??? ?-12,-1. 问题1:上面几组向量中,a 与b 有什么关系? 问题2:以上几组向量中a ,b 共线吗? ),,(),,(2211y x B y x A 若),(1212y y x x --=则. ,)(//λλ=?≠使存在唯一实数

二、新知探究 思考: 两个向量共线的条件是什么?如何用坐标表示两个共线向量? 设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a 。 由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ???==?21 21y y x x λλ 消去λ,x 1y 2-x 2y 1=0a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0 探究:(1)消去λ时能不能两式相除? (不能 ∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0) (2)能不能写成2 211x y x y = ? (不能。 ∵x 1, x 2有可能为0) (3)向量共线有哪两种形式? a ∥b (b ≠0)???===?. 01221y x y x b a λ 三、新知巩固(实例分析合作探究与指导应用) 1.向量共线问题: 例1. 已知(4,2)a =,(6,)b y =,且//a b ,求y . 变式练习1: 2.证明三点共线问题: 例2: 例2.已知 A(-1,-1),B(1,3),C(2,5),试判断A 、B 、C 三点之间的位置关系。 变式训练2:设向量=(k,12),=(4,5),=(10,k),求当k 为何值时,A 、B 、C 三点共线. 已知a //b,且a =(x,2),b =(2,1),求x 的值.

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 平面的法向量 仁定义:如果a _ :,那么向量a 叫做平面二的法向量。平面.:> 的法向量共有两大类(从方向上分) ,无 数条。 2、平面法向量的求法 斗 ■ 4 方法一(内积法):在给定的空间直角坐标系中, 设平面「的法向量n =(x,y,1)[或n =(x,1,z),或n =(1yZ ], 在平面:内任找两个不共线的向量 a,b 。由n _ :?,得n a = 0且n b = 0,由此得到关于 x, y 的方程组,解此 i 方程组即可得到n 。 方法二:任何一个 x, y, z 的一次次方程的图形是平面;反之,任何一个平面的方程是 Ax By Cz ^0 (代B,C 不同时为0),称为平面的一般方程。其法向量 n -(A, B,C);若平面与3个坐 标轴的交点为R(a,0,0), P 2(0,b,0), P 3(0,0, c),如图所示,则平面方程为?上 ]--1,称此方程为平面的截距 a b c 式方程,把它化为一般式即可求出它的法向量。 方法三(外积法):设 ,.为空间中两个不平行的非零向量,其外积 a b 为一长度等于|a||b|sinr , ( 9为 ..,.两者交角,且Ou :::二),而与..,.皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 .. 例 1、 已知,al(2,1,0),b'(-1,2,1), T T —f —f 试求(1): a^b ; (2): b 汉a. T T T T Key: (1) a b =(1,-2,5);⑵ b a =(-1,2,5) 例2、如图1-1,在棱长为2的正方体 ABCD -A 1B 1C 1D 1中, 7 T T T 的方向转为 匸的方向时,大拇指所指的方向规定为a b 的方向 ^( x i ,y i ,z i ),^(x 2, r 「 T T 丫2二2),则:a b = Z 2 X 1乙 X 2 Z 2 X 1 X 2 y 1 y 2 (注:1、二阶行列式 =ad —cb ; d 2、适合右手定 则。 x, y, z 的一次方程。

三点共线与三线共点的证明办法

三点共线与三线共点的证明方法 公理1.若一条直线上的两点在一个平面内,那么这条直线在此平面内。 公理2.过不在一条直线上的三点,有且只有一个平面。 推论1.经过一条直线和直线外的一点有且只有一个平面; 推论2.经过两条相交直线有且只有一个平面; 推论3.经过两条平行直线有且只有一个平面。 公理3.若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 例1.如图,在四面体ABCD 中作截图PQR ,PQ 、CB 的延长线交于M ,RQ 、DB 的延长线交于N ,RP 、DC 的延长线交于K .求证M 、N 、K 三点共线. 由题意可知,M 、N 、K 分别在直线PQ 、RQ 、RP 上,根据公理1可知M 、N 、K 在平面PQR 上,同理,M 、N 、K 分别在直线CB 、 DB 、DC 上,可知M 、N 、K 在平面BCD 上, 根据公理3可知M 、N 、K 在平面PQR 与平面BCD 的公共直线上,所以M 、N 、K 三点共线. 例2.已知长方体1111ABCD A B C D -中,M 、N 分别为1AA 与AB 的中点,求证:1D M 、DA 、CN 三线共点. 由M 、N 分别为1AA 与AB 的中点知1//MN A B 且112MN A B =,又1A B 与1D C 平行且相等,所以1//MN D C 且112MN D C =,根据推论3可知M 、N 、C 、1D 四点共面,且1D M 与CN 相交,若1D M 与CN 的交点为K ,则点K 既在平面11ADD A 上又在平面ABCD 上,所以点K 在平面11 ADD A

与平面ABCD的交线DA上,故 D M、DA、CN三线交于点K,即三线 1 共点. 从上面例子可以看出,证明三线共点的步骤就是,先说明两线交于一点,再证明此交点在另一线上,把三线共点的证明转化为三点共线的证明,而证明三点共线只需要证明三点均在两个相交的平面上,也就是在两个平面的交线上。

向量证明三线共点与三点共线问题.doc

用向量证明三线共点与三点共线问题 山东徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则 简捷得多. 证明A、 B、 C 三点共线,只要证明AB 与AC 共线即可,即证明AB AC .证明三线共点一般须证两线交点在第三条直线上. 例 1.证明:若向量OA 、OB 、OC 的终点A、B、C 共线,则存在实数、,且1, A B C O 图1 使得OC OA OB ;反之,也成立. 的终点 A 、 B 、 C 共线,则证明:如图 1 ,若OA 、OB 、 OC AB BC BC m AB BC OC OB AB OB OA OC OB m(OB OA) OC mOA (1 m)OB m, 1 m, , ,且1, OC OA OB OC OA OB 1, 1 OC OA (1 )OB OC OB OA OB BC BA BC和 BA OA OB OC 例 2.证明:三角形的三条中线交于一点. 证明:如图 2,D、E、F 分别是ABC三边上的中

C D E G A F B 图2 点. 设 CA a, CB b, AD BE G.设 AG AD, BG BE .则 AG AB BG (b a) BE (b a) ( BC 1 CA) b a ( 1 a b) 1 ( 2 1 b) 2 1 b 1)a (1 )b ,又 AG AD (AC CD) ( a a 2 2 2 1 1 2 2 3 所以解得 1 2 1 2 3 则 CG CA AG a 2 AD a 2 ( a 1 b) 1 a 1 b 1 1 3 2 3 2 3 3 CF a b,所以 CG CF ,所以G在中线CF上,所以三角形三条中线交于一点. 2 2 3

整理法向量的快速求法

法向量的快速求法 在数学考试过程中,大部分同学往往因为时间不够而没法做完一份完整的试卷,有些同学也因为时间不够,计算速度加快而出现计算错误等原因导致失分,所以能够简便而快速的算出结果是很多同学梦寐以求的。用向量方法做立几题,必须会的一种功夫是求平面的法向量。不少理科同学为经常算错平面的法向量而苦恼,下面介绍一种快速求平面的法向量方法。 新教材对平面几何的要求,重点在于求平面的法向量,常见的待定系数法解方程组,运算量大,学困生容易算错,最简单快捷的方法是行列式法。 结论:向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2)是平面α内的两个不共线向量,则向量n =(y 1z 2-y 2z 1,-(x 1z 2-x 2z 1),x 1y 2-x 2y 1)是平面α的一个法向量. 如果用二阶行列式表示,则 n =( 1122y z y z ,-1 122x z x z ,1 12 2 x y x y ) ,这更便 于记忆和计算. 结论证明(用矩阵与变换知识可以证明,此处略去),但你可以验证 n 一定满足 m a m b ??=?? ?=???111222 0x x y y z z x x y y z z ++=??++=?; 而且∵a 、b 不共线,∴n 一定不是0. 怎样用该结论求平面的法向量呢?举例说明. 例、向量a =(1,2,3),b =(4,5,6)是平面 α内的两个不共线向量,求平面α的法向量 解:设平面α的法向量为n =(x ,y ,z ), 则0 n a n b ??=???=???2304560x y z x y z ++=?? ++=? 令z =1,得n =(1,-2,1). 注意: ① 一定按上述格式书写,否则易被扣分. ② n 的计算可以在草稿纸上完成,过程参照 右边“草稿纸上演算过程”. a =(1,2, b =(4,5,交叉相乘的差就是求y 时,a 、b 的纵坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差的时,a 、b 的竖坐标就不参与运算,a =(1,2,b =(4,5,6) 交叉相乘的差就是 ∴n =(-3,6

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或( 1,,)n y z =],在平面α内任找两个不共线的向量,a b 。由n α⊥,得0n a ?=且0n b ?=,由此得到关于,x y 的方程组,解此方程组即可得到n 。 方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。 0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。其法向量),,(C B A n =→ ;若平面与3个坐 标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++c z b y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。 方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→ → ?b a 为一长度等于θsin ||||→ → b a ,(θ 为 ,两者交角,且πθ<<0),而与 , 皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由 的方向转为 的方向时,大拇指所指的方向规定为→→?b a 的方向,→ →→→?-=?a b b a 。 :),,,(),,,(222111则设z y x b z y x a ==→ → ??=?→ → 21y y b a ,2 1z z 21x x - ,21z z 21x x ???? 21y y (注:1、二阶行列式:c a M = cb ad d b -=;2、适合右手定则。 ) 例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key: (1) )5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -中, 求平面AEF 的一个法向量n 。 )2,2,1(:=?=→ →→AE AF n key 法向量

重点高中数学--空间向量之法向量求法及应用办法

精心整理 高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果α⊥→ a ,那么向量→ a 叫做平面α的法向量。平面α的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或 (1,, n y z =,得0n a ?=且0n b ?=,由此得到关 于,x y 的一次次方程的图形是平面;反之,任何一个平面的方程是z y ,的一次方程。Ax ),C B ;若平面与31=c z ,称此方法三( 为空间中两个不平行的非零向量,其外积θsin |||→ b ,(θ为皆垂直的向量。通常我们采取「右手定则」,也就是右手四指由的方向转为的方向时,大拇指所指的方向规定为→ →?-a b 。 (1设x a =→ (注:1例1、 已知,)1,2,1(),0,1,2(-==→ → b a , 试求(1):;→ → ?b a (2):.→ →?a b Key:(1))5,2,1(-=?→ → b a ;)5,2,1()2(-=?→ → a b 例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -求平面AEF 的一个法向量n 。 ) 2,2,1(:=?=→ → → AE AF n key 法向量

二、 1、 (1)、AB 图图(2),→=

向量三点共线结论的推广及应用

向量中“三点共线”结论的推广及应用 一、引例:(1)在△ABC 中,若点D 满足BD →=2DC →,则AD →=______AB →+______AC → (2)已知AP →=43AB →,则OP →=______OA →+______OB → 结论:已知O ,A ,B 是不共线的三点,且OP →=mOA →+nOB → (1)若m +n =1,求证:A ,P ,B 三点共线; (2)若A ,P ,B 三点共线,求证:m +n =1. 变式.已知A ,P ,B 是共线的三点,O 为面内任意一点,且OP →=mOA →+nOB →(m ,n ∈R), 若OP tOP '=u u u u v u u u v ,则tm tn +的值为_________ 二、三点共线例题分析 例1.设a ,b 不共线,AB →=2a +pb ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线, 求实数p 的值. 例2.如图,在△ABC 中,AN →=13 NC →,P 是BN 上的一点,若AP →=mAB →+211 AC →,求实数m 的值. 变式1.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别 交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,求m +n 的值. 变式2.如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,

设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,求1n +1m 的值. 变式3.如图所示,在△ABO 中,OC →=14OA →,OD →=12 OB →,AD 与BC 相交于点M ,设OA →=a ,OB →=b .试用a 和b 表示向量OM →. 例3.已知O 是△ABC 内部一点,)(2PC PB AB +=,求△PBC 与△ABC 的面积之比. 变式1.已知O 为三角形ABC 内一点,且满足()1OA OB OC O λλ++-=u u u v u u u v u u u v u v ,若OAB ?的 面积与OAC ?的面积比值为13 ,则λ的值为 变式2.已知P 是△ABC 内部一点,且OA →+OC →=-2OB →,求△AOB 与△AOC 的面积之 比.

相关文档
相关文档 最新文档