文档库 最新最全的文档下载
当前位置:文档库 › 单片机多通道数据采集系统

单片机多通道数据采集系统

单片机多通道数据采集系统
单片机多通道数据采集系统

单片机多通道数据采集系统

目录

1.功能描述 (3)

2 方案设计 (3)

2.1 系统分析 (3)

2.2 器件选择 (4)

2.2.1 微处理器 (4)

2.2.2 显示器 (4)

2.2.3 按键 (4)

2.2.4 闹铃 (4)

3、硬件电路设计 (5)

3.1 最小系统设计 (5)

3.2 显示电路设计 (6)

3.3 按键电路设计 (7)

3.4 声音报警电路设计 (6)

3.5多通道数据采集电路设计 (8)

4、软件设计 (9)

4.1 操作功能设计 (9)

4.2程序编制思想 (9)

4.3 主程序 (10)

5 程序调试 (17)

6 技术小结 (18)

7多通道数据采集系统的使用说明 (19)

8心得体会 (20)

9参考文献 (21)

附录1:电路原理图 (22)

附录2:程序参考清单 (23)

设计报告

1.功能描述

利用单片机控制A/D转换器实现多通道数据采集系统。具有如下功能:

1.基本功能

(1)采集的数据为0-5V电压信号;

(2)通过按键选择任意通道的数据显示或轮流显示;

(3)可以设定报警上下限。

2.扩展功能

自行扩展功能,如音乐铃声,通讯功能等。

2 方案设计

2.1 系统分析

根据系统功能要求,可将系统组成结构分成五大部分:单片机控制中心、按键接口、多通道数据采集、数码管显示和报警播放音乐,如下图为系统的组成结构图。其中,单片机控制中心是核心。MCU根据按键输入,可切换不同的模式或设置不同的参数,从而实现多通道数据的采集。报警播放音乐可设置最高或最低温度报警值。

图2.1 系统总体结构图

2.2 器件选择

2.2.1 微处理器

市场上微处理器种类很多。这里,选取微处理器从多方面考:成本低、性能高、能够满足功能要求等等。

这里,选取STC89C52芯片。因为其功能与普通51芯片相同,其价格非常低廉、程序空间大、资源较丰富、在线下载非常方便。同时,使用该芯片,编程上亦可采用所熟悉的KEIL软件,使课程设计非常简单。

2.2.2 显示器

常见的显示器件LED数码管和LCD液晶器件。

LED数码管能够显示数字和部分字符,价格便宜,硬件电路、软件编程均非常简单,而且使用动态扫描技术可节省大量硬件成本。

LCD液晶显示器件,显示字迹清晰、能够显示数字、字符,本实验主要是用于显示所采集的电压与温度的显示。

系统显示主要还是数字,根据这两种显示器件的特性,选取LED数码管器件。由于系统要求显示所采集的通道数据,采用四位数码管显示即可。

2.2.3 按键

按键是用来变换显示模式以及设置传送上位机信息等功能的。这里采用普通按键即可,选用原则:以最少的按键,实现尽可能多的功能。所以这里,设置两个按键:模式键、传送键。

2.2.4 闹铃

选用最常见,亦最常用的声音提示方式——蜂鸣器,用于报警音乐定时播放。

3.1 最小系统设计

GND

图3.1 最小系统电路

图3.2 数码管显示电路3.3 声音报警电路设计

图3.3 蜂鸣器连接电路

图3.4 按键电路

3.5多通道数据采集电路设计

图3.5 PCF89C51多通道数据采集

4、软件设计

4.1 操作功能设计

根据系统功能描述,可以将功能大致分成四类:多通道数据播放采集功能、脉冲波形输出功能、报警温度设置功能和音乐功能,上位机信息传送功能。

系统设有四个数码管,四个按键。采用模式式人机对话,便于操作。所以可分成多种菜单,功能键切换模式,UP或DOWN键可以设置报警上下限温度值。

模式设计如下:

模式1:温度显示:显示格式为:AA.BB摄氏度(如:51.25,为51.25摄氏度)

模式2:电位电压显示:显示格式为:AA.BB伏(如03.45,为电位电压3.45伏)模式3:电压显示:显示格式为:AA.BB.伏(如02.34,为电压2.34伏)

模式4:输入电压显示:显示格式为:AA.BB.伏(如04.55,为输入电压4.55伏)模式5:脉冲波形输出:显示格式为:NF.分钟(如NF.34,为闹铃时间分钟设为34分)模式6:调节警报下限:显示格式为:AA.BB摄氏度(如00.00为当前报警温度下限),在此种模式下,UP键设为用来增加报警温度下限值、DOWN键用来减小报警温度下限值。

模式7:调节警报上限:显示格式为:AA.BB摄氏(如50.00为当前报警温度上限),在此种模式下,UP键设为用来增加报警温度上限值、DOWN键用来减小报警温度上限值。

模式8:播放音乐:使用蜂鸣器播放音乐。

4.2程序编制思想

数码管采用动态扫描原理。所以系统需使用单片机定时器资源。定时时间可设为5ms,即4位数码管,每5ms扫描一位数码管,20ms循环一次。

另一方面,按键接普通IO口,所以按键管理程序所涉及到的识键、译键均需采用软件扫描的方法。这里选用查询扫描控制方式。

所以,程序编制思想为:使用定时器0完成数码管动态扫描,并在主程序中循环查询按键是否被按下。查询到相应的按键时,如模式键,则执行相应的操作,如切换模式。切换模式的方法,主要是通过程序定义一个变量,变量不同的值表示不同的模式。在进行切

换模式后,跳到相应模式的处理函数,并更新数码管显示内容。另外,系统有播放音乐功能,所以,切换到播放音乐模式,播放美妙动听的音乐。

4.3 主程序

(程序流程图主要根据学生的思路来绘制)这里只给出数码管动态扫描所涉及的流程图。

图4.2温度显示模块

图4.3 电位电压显示模块

图4.4 输入电压显示模块

图4.5 DA转换波形显示模块

图4.6 温度警报上限调节模块

图4.7 温度警报下限调节模块

图4.8 音乐播放模块

5 程序调试

在程序编制当中易出现问题:定时器中断的用法、动态扫描的过程、按键与显示的对应,按键的消抖动等。

问题1:在按模式按键进行切换模式时,遇到按一次,模式切换多次的问题

解决思路:

在按按键时,在IO口由高电平变为低电平及低电平变为高电平的过程中,会电平抖动现象,为了不让抖动对按键判断产生干扰,需延时一段时间,再判断按键是否按下,并且当按键一直处于低电平时在原处循环,直到电平为高则退出循环。

问题2:在读取温度值时,读到的是一个0~255之间的值,并不是我想要的温度值解决思路:使用PCF89C51读取温度值时,使用IIC协议读取时返回一个unsigned char 的数值,最大为255,最小为0,而设定的温度是20摄氏度到80摄氏度之间。假设返回值与温度值是线性关系(实际上不是,这里假设为有线性关系,方便计算),建立线性方程,求得关系系数为0.235294,将读到的数与相关系数相乘加20,即得到想要显示的温度值。

6 技术小结

单片机多通道数据采集系统的主要技术应包括:单片机最小系统结构、数码管显示技术、按键检测技术、系统功能设计、软硬件调试等技术。

系统设计:单片机多通道数据采集系统包含的功能有采集0~5V的电压信号,通过按键选择任意通道的数据显示,设置警报上下限以及音乐播放等功能。将功能细分为8种模式:温度显示模式、电位显示模式、电压显示模式、输入电压显示模式、脉冲波形显示模式、调节警报上限模式、调节警报下限模式及播放音乐模式。选择不同的模式来实现多通道数据采集系统。

硬件设计:在设计单片机多通道数据采集系统的最小系统结构时,考虑到要在数码管上动态显示采集到的数据、温度报警的设置以及要使用PCF89C51芯片来采集几种信号等,硬件电路应能提供3.3V~5V的电压来正常驱动蜂鸣器等设备,用USB转串口线来提供系统所要的运行电压。

软件设计:在设计单片机多通道数据采集系统的软件层时,要依据不同的按键实现不同的功能,本系统采用了按键查询的方法来实现按键检测功能,既简单易实现,在实际的测试中表现也很稳定。在用数码管显示多通道采集的温度、电压等信号时,因为是实时采集动态显示的,所以在设计数码管显示时,将采集到的数经过相应的计算及转换后,赋给P0,在定时器0中快速循环选择不同的数码管段码,即可动态显示温度、电压等信号。

7多通道数据采集系统的使用说明

1功能使用:

(1)温度显示:读取通过PCF89C51采集的数据并转换为20~50摄氏度的温度,在数码管上动态显示

(2)电位电压显示:读取通过PCF89C51采集的数据并准换为0~5伏的电压,在数码管上动态显示

(3)电压显示:读取通过PCF89C51采集的数据并转换为电压,在数码管上动态显示

(4)输入电压显示:读取通过PCF89C51采集的数据并转换为0~5V的电压,在数码管上动态显示

(5)脉冲波形输出:通过PCF89C51将数据转换为相应的电压,在示波器上输出脉冲波形

(6)警报设置:通过调整温度警报的上下限值,当温度达到警报值时,蜂鸣器警报(7)播放音乐:播放单片机上的音乐

2操作说明:

进入系统,在第一个数码管上显示“0”,按KEY键,模式值循环变换,当调整到要进入的模式时,按下ENTER键,即可进入该模式。

在一种模式下,要进入另一种模式时,直接按KEY键,即可循环选择模式,之后的过程同上。

在调节警报温度值模式下,按UP键,设定值增加,按DOWN键,设定值减小,显示值即为设定值。

8心得体会

通过这一周的课程设计,我学到了许多有关51单片机系统设计及管理的东西,实际动手能力也得到了很大的提高,对51单片机系统的设计流程有了进一步的了解,通过团队合作,协商分析项目,提高了我的团队协作意识和能力。在本次课程设计中我也遇到了许多的困难,比如用有源蜂鸣器来播放音乐,IIC协议的实现,以及对系统总体构思不完整等问题。在以后的学习中希望能够对51单片机系统的设计更加熟悉,使设计出来的51单片机系统更加易用,更加稳健。

基于Ucos的多通道数据采集系统(DOC)(可编辑修改word版)

课程设计(论文)任务书 信息工程学院物联网专业2014-2 班 一、课程设计(论文)题目基于Ucos 的多通道数据采集系统 二、课程设计(论文)工作自2017 年06 月26 日起至2017 年06 月30 日止。三、 课程设计(论文) 地点:嵌入式系统实验室 四、课程设计(论文)内容要求: 1.本课程设计的目的 (1)使学生掌握嵌入式开发板(实验箱)各功能模块的基本工作原理; (2)培养嵌入式系统的应用能力及嵌入式软件的开发能力; (3)使学生较熟练地应用嵌入式操作系统及其API 开发嵌入式应用软件; (4)培养学生分析、解决问题的能力; (5)提高学生的科技论文写作能力。 2.课程设计的任务及要求 1)基本要求: (1)分析所设计嵌入式软件系统中各功能模块的实现机制; (2)选用合适嵌入式操作系统及其API; (3)编码实现最终的嵌入式软件系统; (4)在实验箱上调试、测试并获得最终结果。 2)创新要求: 在基本要求达到后,可进行创新设计,如改善嵌入式软件实时性能;扩展嵌入式软件功能及改善其图形用户界面。 3)课程设计论文编写要求 (1)要按照书稿的规格打印誊写课程设计论文。 (2)论文包括目录、正文、小结、参考文献、谢辞、附录等(以上可作微调)。 (3)课程设计论文装订按学校的统一要求完成。 4)课程设计评分标准: (1)学习态度:20 分; (2)回答问题及系统演示:30 分 (3)课程设计报告书论文质量:50 分。 成绩评定实行优秀、良好、中等、及格和不及格五个等级。不及格者需重做。 5)参考文献: (1)罗蕾.《嵌入式实时操作系统及应用开发》北京航空航天大学出版社 (2)Jean https://www.wendangku.net/doc/871241161.html,brosse. 《嵌入式实时操作系统uC/OS-II》北京航空航天大学出版社 (3)王田苗.《嵌入式设计与开发实例》.北京航空航天大学出版社 (4)北京博创科技公司. 《嵌入式系统实验指导书》

USB接口的高速数据采集卡的设计与实现

摘要:讨论了基于USB接口的高速数据采集卡的实现。该系统采用TI公司的TUSB3210芯片作为USB通信及主控芯片,完全符合USB1.1协议,是一种新型的数据采集卡。 关键词:USB A/D FIFO 固件 现代工业生产和科学研究对数据采集的要求日益提高,在瞬态信号测量、图像处理等一些高速、高精度的测量中,需要进行高速数据采集。现在通用的高速数据采集卡一般多是PCI 卡或ISA卡,存在以下缺点:安装麻烦;价格昂贵;受计算机插槽数量、地址、中断资源限制,可扩展性差;在一些电磁干扰性强的测试现场,无法专门对其做电磁屏蔽,导致采集的数据失真。 通用串行总线USB是1995年康柏、微软、IBM、DEC等公司为解决传统总线不足而推广的一种新型的通信标准。该总线接口具有安装方便、高带宽、易于扩展等优点,已逐渐成为现代数据传输的发展趋势。基于USB的高速数据采集卡充分利用USB总线的上述优点,有效解决了传统高速数据采集卡的缺陷。 1 USB数据采集卡原理 1.1 USB简介 通用串行总线适用于净USB外围设备连接到主机上,通过PCI总线与PC内部的系统总线连接,实现数据传送。同时USB又是一种通信协议,支持主系统与其外设之间的数据传送。USB器件支持热插拔,可以即插即用。USB1.1支持两种传输速度,既低速1.5Mbps和高速 12Mbps,在USB2.0中其速度提高到480Mbps。USB具有四种传输方式,既控制方式(Control mode)、中断传输方式(Interrupt mode)、批量传输方式(Bulk mode)和等时传输方式(Iochronous mode)。 考虑到USB传输速度较高,如果用只实现USB接口的芯片外加普通控制器(如8051),其处理速度就会很慢而达不到USB传输的要求;如果采用高速微处理器(如DSP),虽然满足了USB传输速率,但成本较高。所以选择了TI公司内置USB接口的微控制器芯片 TUSB3210,开发了具有USB接口的高速数据采集卡。 1.2 系统原理图

【价格】多通道数据采集 80K 14位 16路同步模拟量输入采集卡)系列)图

PCI8008 同步采集卡硬件使用说明书 阿尔泰科技发展有限公司 产品研发部修订

阿尔泰科技发展有限公司 目录 目录 (1) 第一章概述 (3) 第一节、产品应用 (3) 第二节、AD 模拟量输入功能 (3) 第三节、其他指标 (4) 第四节、板卡外形尺寸 (4) 第五节、产品安装核对表 (4) 第六节、安装指导 (4) 一、软件安装指导 (4) 二、硬件安装指导 (4) 第二章元件布局图及简要说明 (5) 第一节、主要元件布局图 (5) 一、信号输入输出连接器 (5) 二、电位器 (5) 三、跳线器 (5) 四、物理ID 拨码开关 (6) 五、指示灯 (7) 第三章信号输入输出连接器 (8) 第一节、AD 模拟量信号输入连接器定义 (8) 第二节、模拟量输入/输出接口 (8) 第三节、跳线器设置 (9) 第四章各种信号的连接方法 (10) 第一节、AD 模拟量输入的信号连接方法 (10) 一、AD 单端输入连接方式 (10) 二、AD 双端输入连接方式 (10) 第二节、同步触发脉冲信号的连接方法 (11) 一、同步触发脉冲信号输入连接方式 (11) 二、同步触发脉冲信号输出连接方式 (11) 第三节、时钟输入输出信号的连接方法 (11) 第四节、触发信号连接方法 (12) 第五节、多卡同步的实现方法 (12) 第五章数据格式、排放顺序及换算关系 (14) 第一节、AD 模拟量输入数据格式及码值换算 (14) 一、AD 双极性模拟量输入数据格式 (14) 二、AD 单极性模拟量输入数据格式 (14) 第二节、关于AD 数据端口高位空闲部分的定义 (14) 第三节、AD 多通道采集时的数据排放顺序 (15) 第六章各种功能的使用方法 (16) 第一节、AD 触发功能的使用方法 (16) 一、AD 内触发功能 (16) 二、AD 外触发功能 (16) 第二节、AD 内时钟与外时钟功能的使用方法 (19) 一、AD 内时钟功能 (19) 二、AD 外时钟功能 (19)

数据采集系统简介研究意义和应用.doc

一前言 1.1 数据采集系统简介 数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机(或微处理器)的测量软硬件产品来实现灵活的、用户自定义的测量系统。该数据采集系统是一种基于TLC549模数转换芯片和单片机的设备,可以把ADC采集的电压信号转换为数字信号,经过微处理器的简单处理而交予数码管实现电压显示功能,并且通过与PC的连接可以实现计算机更加直观化显示。 1.2 数据采集系统的研究意义和应用 在计算机广泛应用的今天,数据采集的在多个领域有着十分重要的应用。它是计算机与外部物理世界连接的桥梁。利用串行或红外通信方式,实现对移动数据采集器的应用软件升级,通过制订上位机(PC)与移动数据采集器的通信协议,实现两者之间阻塞式通信交互过程。在工业、工程、生产车间等部门,尤其是在对信息实时性能要求较高或者恶劣的数据采集环境中更突出其应用的必要性。例如:在工业生产和科学技术研究的各行业中,常常利用PC或工控机对各种数据进行采集。这其中有很多地方需要对各种数据进行采集,如液位、温度、压力、频率等。现在常用的采集方式是通过数据采集板卡,常用的有A/D 卡以及422、485等总线板卡。卫星数据采集系统是利用航天遥测、遥控、遥监等技术,对航天器远地点进行各种监测,并根据需求进行自动采集,经过卫星传输到数据中心处理后,送给用户使用的应用系统。 1.3 系统的主要研究内容和目的 本课题研究内容主要包括:TLC549的工作时序控制,常用的单片机编辑C语言,VB 串口通信COMM控件、VB画图控件的运用等。 本课题研究目的主要是设计一个把TLC549(ADC)采集的模拟电压转换成八位二进制数字数据,并把该数据传给单片机,在单片机的控制下在实验板的数码管上实时显示电压值并且与计算机上运行的软件示波器连接,实现电压数据的发送和接收功能。

基于ADC0809和51单片机的多路数据采集系统设计

基于ADC0809和51单片机的多路数据采集系统设计 “数据采集”是指将温度、压力、流量、位移等模拟物理量采集并转换成数字量后,再由计算机进行存储、处理、显示和打印的过程,相应的系统称为数据采集系统。本文的主要任务是对0~5V的直流电压进行测量并送到远端的PC机上进行显示。由于采集的是直流信号,对于缓慢变化的信号不必加采样保持电路,因此选用市面上比较常见的逐次逼近型ADC0809芯片,该芯片转换速度快,价格低廉,可以直接将直流电压转换为计算机可以处理的数字量。同时选用低功耗的LCD显示器件来满足其在终端显示采集结果的需求。终端键盘控制采用尽可能少的键来实现控制功能,为了防止键盘不用时的误操作,设计时还设置了锁键功能,在键盘的输入消抖方面,则采用软件消抖方法来降低硬件开销,提高系统的抗干扰能力。软件设计方面则采用功能模块化的设计思想;键盘模数转换等采用中断方式来实现,从而大大提高了单片机的效率以及实时处理能力。1 数据采集系统的硬件结构数据采集系统的硬件结构一般由信号调理电路、多路切换电路、采样保持电路、A/D转换器以及单片机等组成。本文主要完成功能的系统硬件框图。 2 ADC0809模数转换器简介2.1 ADC0809的结构功能本数据采集系统采用计算机作为处理器。电子计算机所处理和传输的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,模拟量经传感器转换成电信号后,需要模/数转换将其变成数字信号才可以输入到数字系统中进行处理和控制,因此,把模拟量转换成数字量输出的接口电路,即A/D转换器就是现实信号转换的桥梁。目前,世界上有多种类型的A/D转换器,如并行比较型、逐次逼近型、积分型等。本文采用逐次逼近型A/D转换器,该类A/D转换器转换精度高,速度快,价格适中,是目前种类最多,应用最广的A/D转换器。逐次逼近型A/D转换器一般由比较器、D/A转换器、寄存器、时钟发生器以及控制逻辑电路组成。 ADC0809就是一种CMOS单片逐次逼近式A/D转换器,其内部结构。该芯片由8路模拟开关、地址锁存与译码器、比较器、8位开关树型D/A转换器、逐次逼近寄存器、三态输出锁存器等电路组成。因此,ADC0809可处理8路模拟量输入,且有三态输出能力。该器件既可与各种微处理器相连,也可单独工作。其输入输出与TTL兼容。 ADC0809是8路8位A/D转换器(即分辨率8位),具有转换起停控制端,转换时间为100μs采用单+5V电源供电,模拟输入电压范围为0~+5V,且不需零点和满刻度校准,工作温度范围为-40~+85℃功耗可抵达约15mW。 ADC0809芯片有28条引脚,采用双列直插式封装,图3所示是其引脚排列图。各引脚的功能如下: IN0~IN7:8路模拟量输入端; D0~D7:8位数字量输出端; ADDA、ADDB、ADDC:3位地址输入线,用于选通8路模拟输入中的一路; ALE:地址锁存允许信号,输入,高电平有效; START:A/D转换启动信号,输入,高电平有效; EOC:A/D转换结束信号,输出,当A/D转换结束时,此端输出一个高电平(转换期间一直为低电平); OE:数据输出允许信号,输入,高电平有效。当A/D转换结束时,此端输入一个高电平才能打开输出三态门,输出为数字量; CLK:时钟脉冲输入端。要求时钟频率不高640kHz; REF(+)、REF(-):基准电压; Vcc:电源,单一+5V; GND:地。 ADC0809工作时,首先输入3位地址,并使ALE为1,以将地址存入地址锁存器中。此地址经译码可选通8路模拟输入之一到比较器。START上升沿将逐次逼近寄存器复位;下降沿则启动A/D转换,之后,EOC 输出信号变低,以指示转换正在进行,直到A/D转换完成,EOC变为高电平,指示A/D转换结束,并将结果数据存入锁存器,这个信号也可用作中断申请。当OE输入高电平时,ADC

毕业设计--基于单片机的数据采集系统的设计

存档日期:存档编号: 本科生毕业设计(论文) 论文题目:基于单片机的数据采集系统的设计 姓名: 学院: 专业: 班级、学号: 指导教师:

摘要 本文介绍了基于单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。 本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89C52来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块和串行接口部分。 本系统下位机负责数据采集并应答主机的命令。8路被测电压通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口RS-485传输到上位机,由上位机负责数据的接受、处理和显示,并用LED数码显示器来显示所采集的结果。软件部分应用VC++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。 关键词:数据采集AT89C52ADC0809RS-485

Abstract This article describes the hardware design and software design of the data on which based on signal-chip microcomputer .The data collection system is the link between the digital domain and analog domain. It has an very important function. The introductive point of this text is a data to collect the system. The hardware of the system focuses on signal-chip microcomputer .Data collection and communication control use modular design. The data collected to control with correspondence to adopt a machine8051to carry out. The part of hardware’s core is AT89C52, is also includes A/D conversion module, display module, and the serial interface. Slave machine is responsible for data acquisition and answering the host machine.8roads were measured the electric voltage to pass the in general use mold-few conversion of ADC0809,the realization carries on the conversion that imitates to measure the numeral to measure towards the data that collect .Then send the data to the host machine through RS-485,the host machine is responsible for data and display, LED digital display is responsible display the data. The software is partly programmed with VC++. The software can realize the function of monitoring and controlling the whole system. It designs much program like data-acquisition treatment,data-display and data-communication ect. Keyword:data acquisition AT89C52ADC0809RS-485

基于LabVIEW的多通道数据采集系统信号处理

目:基于LabVIEW的多通道数据采集系统 2010 年 03 月 20 日 互联网会议PPT资料大全技术大会产品经理大会网络营销大会交互体验大会 毕业设计开题报告 1.结合毕业论文课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 1. 本课题的研究背景及意义 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置原来越多的被个人计算机所占据。其中,软件系统是计算机系统的核心,设置是整个测控系统的灵魂,应用于测控领域的软件系统成为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统在很多领域得到了广泛的应用,并形成了一套完整的理论。 2. 本课题国内外研究现状 早期的测控系统采用大型仪表集中对各个重要设备的状态进行监控,通过操作盘进行集中式操作;而计算机系统是以计算机为主体,加上检测装置、执行机构与被控对象共同构成的整体。系统中的计算机实现生产过程的检测、监督和控制功能。由于通信协议的不开放,因此这种测控系统是一个自封闭系统,一般只能完成单一的测控功能,一般通过接口,如RS-232或GPIB接口可与本地计算机或其他仪器设备进行简单互联。随着科学技术的发展,在我国国防、通信、航空、气象、环境监测、制造等领域,要求测控和处理的信息量越来越大、速度越来越快。同时测控对象的空间位置日益分散,测控任务日益复杂,测控系统日益庞大,因此提出了测控现场化、远程化、网络化的要求。传统的单机仪器已远远不能适应大数量、高质量的信息采集要求,产生由计算机控制的测控系统,系统内单元通过各种总线互联,进行信息的传输。 网络化的测控技术兴起于国外,是在计算机网络技术、通信技术高速发展,以及对大容量分布的测控的大量需求背景下发展起来,主要分为以下几个阶段:第一阶段: 起始于20世纪70年代通用仪器总线的出现,GPIB实现了计算机与测控系统的首次 结合,使得测量仪器从独立的手工操作单台仪器开始总线计算机控制的多台仪器的测控系统。此阶段是网络化测控系统的雏形与起始阶段。第二阶段:

高速以太网通讯数据采集卡使用说明

16 位 64 通道 500KSPS 光隔 AD 16 通道光隔数字入/16 通道光隔数字出 T9255 使用说明书 一、性能特点: 本板采用有线 10M/100M 以太网口的数据采集器。 本采集卡提供基于 DLL 的编程技术,用户不需要网络知识就可以实现网络采集与控制功能。 本板通过采用高速高精度 AD 芯片、高精度的放大器、高密度 FPGA 逻辑芯片、精细地布线以及优良的制版工艺,实现了高速、高精度实时数据采集,具有以下性能特点: 1、2、 3、 4、5、6、64 通道模拟量高速采集。可以设置 1-64 通道采集,起始通道号可以自由设定。 AD 幅值采集高精度:16 位采集精度,长时间采集时,误差跳码为±2LSB,相对精度优于 0.001%,直流电压波动小于 0.1 毫伏。 软件校准:将校准信息存储在板卡上,用户不用打开仪器设备就可以进行校 准,使用方便,一般情况下不需要用户进行任何校准。 丰富的备用扩展资源:板上 CPLD 资源非常丰富,可以为用户的特殊需求进行定制,如旋转编码器接口、脉冲周期测量接口、PWM 输出接口、外同步接口、触发记录接口、开关量控制接口等(定制)。 提供外部时钟模式:在该模式下,外部时钟信号启动所有通道采集一次,从而 实现多通道与外时钟同步采集模式(定制)。 提供外部触发启动模式:在该模式下,只有当外部给出上升延触发信号后才开 始采集,从而实现用户外触发采集模式的需要(定制)。

二、功能与指标 AD 的性能指标: AD 采样精度:16 位 AD 通道数:单端方式 64 通道。 AD 采集的综合跳码误差为±2LSB。 模拟采集的定时精度:缺省情况下为 50PPM,特殊要求可以定制 AD 输入电压范围:-5V 到+5V、0-10V 可选,或根据用户需要定制量程。 AD 输入阻抗:100 千欧 模拟输入安全电压:±15 伏。当超过 AD 输入量程时,只要不超过安全电压就不 会损坏硬件。建议用户尽可能使输入信号在量程范围内。 抗静电电压:2000 伏 采集方式:连续采集 模拟量安全电压:当输入电压超过±20V 时,有可能造成硬件损坏,由此造成的损 失不在保修范围内。 接口: 总线方式:10M/100M 以太网 开关量指标: 16 路数字量输入,独立光电隔离模式,TTL 电平方式,高电平输入为 高于 2.4V,低电平低于 0.8V,限流电阻 1k 欧姆。 开关量输入的电流,小于 1uA 16 路数字量输出,上电复位清零功能,高电平输出大于 2.4V,低电平 输出低于 0.2V 开关量输出的电流大于 5mA,小于 10mA。 电源: 外部电源输入 10-30V DC,电源电流 200mA。 尺寸: 电路板尺寸:150mm*100mm 电路板定位孔:140*90——Φ3.5mm 工作环境 工作温度:0-70℃ 环境湿度:90%以内

单片机和蓝牙模块无线传输的数据采集系统

单片机和蓝牙模块无线传输的数据采集系统

1.引言 蓝牙技术是近年来发展迅速的短距离无线通信技术,可以用来替代数字设备间短距离的有线电缆连接。利用蓝牙技术构建数据采集无线传输模块,与传统的电线或红外方式传输测控数据相比,在测控领域应用篮牙技术的优点主要有[1][2][3]: 1.采集测控现场数据遇到大量的电磁干扰,而蓝牙系统因采用了跳频扩频技术,故可以有效地提高数据传输的安全性和抗干扰能力。 2.无须铺设线缆,降低了环境改造成本,方便了数据采集人员的工作。 3.可以从各个角度进行测控数据的传输,可以实现多个测控仪器设备间的连网,便于进行集中监测与控制。 2.系统结构原理 本课题以单片机和蓝牙模块ROK 101 008为主,设计了基于蓝牙无线传输的数据采集系统,整个装置由前端数据采集、传送部分以及末端的数据接受部分组成(如PC机)。前端数据采集部分由位于现场的传感器、信号放 大电路、A/D转换器、单片机、存储器、串口通信等构成,传送部分主要利用自带微带天线的蓝牙模块进行数据的无线传输;末端通过蓝牙模块、串口通信传输将数据送到上位PC机进一步处理。整个系统结构框架图如图1所示。 AT89C51单片机作为下位机主机,传感器获得的信号经过放大后送入12位A/D转换器AD574A进行A/D 转换,然后将转换后的数据存储到RAM芯片6264中。下位机可以主动地或者在接收上位机通过蓝牙模块发送的传送数据指令后,将6264中存储的数据按照HCI-RS232传输协议进行数据定义, 通过MAX3232进行电平转换后送至蓝牙模块,由篮牙模块将数据传送到空间,同时上位机的蓝牙模块对此数据进行接收,再通过MAX3232电平转换后传送至PC 机,从而完成蓝牙无线数据的交换。

基于ADC0832的单片机数据采集系统设计

院肥学合 告报程设计创新课 目题的单片机数据采集系统设计:基于ADC0832 别系 __ __ 电子信息与电气工程系: 业专___ _______ ___ 通信工程: 级班______ _ 班____ _10通信(1)(2): 号学100507200_1005072032 1005072033_ : 名姓__ _ __ : 师导_ _____ _ 张大敏:_____ :绩成____________ ___________

日01年2014 月07 《通信技术创新课程设计》任务书

摘要 随着时代的进步,用指针式万用表测量小幅度直流电压已经显得有些不太方便。因为指针式的测量不够精确,随着长时间的使用可能会造成欧姆调零以及机械调零的磨损,这都会对数据的测量造成很多困难,而采用数字式电压表来测量就可以避免这种情况的发生,而且操作更加方便。下面本文将介绍一种由数字电路以及单片机构成的简易数字电压表的设计方法。 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表本设计运用89C52和ADC0832进行A/D转换,根据数据采集的工作原理,设计实现数字电压表,最后完成单片机与PC的数据通信,传送所测量的电压值。该数字电压表测量电压类型是直流,测量范围是0-51V(本设计量程为0-5V)。 电路包括:数据采集电路的单片机最小化设计、单片机与PC接口电路、单片机钟电路、复位电路等。下位机采用89C52芯片,A/D转换采用ADC0832芯片。通过RS232行口与PC进行通信,传送所测量的直流电压数据。 关键词:STC89C52单片机 ADC0832模数转换器 LCD1602

1仪器的工作原理及系统构成-高速数据采集卡

1 仪器的工作原理及系统构成 虚拟示波器是由信号调理器,PCI总线的数据采集卡组成的外部采集系统加上软件构成的分析处理系统组成。被测信号送到信号调理电路,进行隔离、放大、滤波整流后送数据采集卡进行A/D转换,最后由控制软件对测试信号进行数据处理,完成波形显示,参数测量、频谱分析等功能。系统结构如图1显示 图1 系统结构图 2 系统的设计及功能实现 2.1硬件部分 硬件部分主要包括传感器、信号调理电路及数据采集卡。 理电路针对不同的测试对象有不同的选择和设计。数据采集是硬件部分的核心, 它的性能直接影响数据采集的速度和精度。另外,LabVIEW可对NI公司的数据 采集卡进行驱动和配置,可充分利用采集卡的性能。基于此,我选择的数据采集 卡是NI公司生产的。下面主要介绍数据采集卡的性能和安装配置。 2.1.1 PCI—6010数据采集卡的简介 PCI—6010采集卡是基于32位PCI总线的多通道的数据采集设备,具有数 字输入/输出、模拟输入/输出和计数器等功能。它通过SH37F—37M电缆与CB —37F—LF 输入输出接口面板连接,该接口面板具有37个螺旋状的接口终端。 同时此数据采集卡具有3个完全独立的DMA控制(模拟输入、定时/计数器0、 定时/计数器1)。本卡还具有刻度校准电路系统。由于运行时,时间和温度漂移 会引起一定的模拟输入、输出误差,为了使此误差最小,可以调整设备的校准刻 度。而它的出厂校准信息存储在EEPROM中,不能修改。而修改此信息必须通 过软件来实现。

该数据采集卡具有8个差动模拟输入通道(即16个对地单信号模拟输入通道),电压范围为±5V, ±1V,±0.2V;2个模拟输出通道,电压范围为±5V。同时它还具有6个数字输入通道,4个数字输出通道。数字输入的VIH(Input high voltag e)的最小值是2.0 V, 最大值是5.25 V,VIL(Input low voltage)的最大值是0. 8 V, 最小值是–0.3 V;数字输出的IOH(Output high current)的最大值是–6 mA ,IOL (Output low current) 的最大值是2 mA。信号通道的最大采样速率是200 kS/s (single channel) ,扫描时最大采样速率是33.3 kS/s (scanning)。 2.1.2 PCI—6010数据采集卡的安装 将NI PCI—6010数据采集卡插到计算机主板的一个插槽中,接好附件。附件包括一个型号为CB—37F—LF的转接板,和一条SH37F—37M电缆。转接板直接与外部信号连接。在完成了NI PCI—6010数据采集卡的硬件连接后,就需要 安装该卡的驱动程序。安装步骤如下: (1)运行程序→National Instrument DAQ→NI-DAQ Setup。在出现对话框中 单击NEXT按钮。 (2)在出现的Seletct DAQ Devices对话框中选中NI PCI—6010,单击NEXT 按钮。 (3)在后续出现的全部对话框中单击NEXT按钮,即可完成NI PCI—6010数 据采集卡的安装。 (4)重新启动计算机。完成数据采集卡的安装。 2.1.3 PCI—6010数据采集卡的配置 在安装好数据采集卡后就要对其进行系统配置。点击图标Measurement & Automation Explorer,在弹出的Devices and Interface 中进行I/O配置。 (1) 这支采集卡在系统的设备的编号:将参数Device值设为1; (2) 设置模拟输入AI的属性:将Polarity 值设为-5V~+5V,将Mode属性设 置为Differentioal(差动); (3) 设置模拟输出AO的属性:在AO窗口中,将属性设为Bipolar(双极性)。 在完成上述设定之后,单击“确定”按钮。在Systerm窗口中有“Test Resources”按钮,可检验设备是否正确配置。通过后再进行简单的通道配置,即可完成数据采集卡的全部设置。

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计 The Design Of Multi-channel Data Acquisition System Based On STM32 中国地质大学(北京) 指导教师 2013.3.31

摘要 本文是基于ARM Cortex-M3的STM32系列嵌入式微控制器的应用实践,介绍了基于STM32单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机STM32来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块,和串行接口部分。该系统从机负责数据采集并应答主机的命令。输入数据是由现场模拟信号产生器产生,8路被测电压再通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD数码显示器来显示所采集的结果。软件部分应用Keil uVision4通过C++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。 关键词:数据采集 89C52单片机 ADC0809 Keil uVision4

Abstract This article is an application of STM32 series embedded ARM controller based on Cortex-M3 and it describes the hardware design and software design of the data on which based on signal-chip microcomputer .The data collection system is the link between the digital domain and analog domain. It has an very important function. The introductive point of this text is a data to collect the system. The hardware of the system focuses on signal-chip microcomputer .Data collection and communication control use modular design. The data collected to control with correspondence to adopt a machine 8051 to carry out. The part of hardware’s core is STM32, is also includes A/D conversion module, display module, and the serial interface. Slave machine is responsible for data acquisition and answering the host machine.8 roads were measured the electric voltage to pass the in general use mold-few conversion of ADC0809,the realization carries on the conversion that imitates to measure the numeral to measure towards the data that collect .Then send the data to the host machine.the host machine is responsible for data and display, LED digital display is responsible display the data. The software is partly programmed with C++ of the Keil uVision4. The software can realize the function of monitoring and controlling the whole system. It designs much program like data-acquisition treatment,data-display and data-communication ect. Keyword: data acquisition AT89C52 ADC0809 Keil uVision4 目录

单片机数据采集系统

课程设计报告书 课程名称:单片机原理及应用 __________ 课题名称:单片机数据采集系统 ___________ 专业:___________________ 班级:_______________________ 学号:___________________ 姓名:_______________________ 成绩:___________________________________

2010年6月13 日 设计任务书 一、设计任务 1 一秒钟采集一次。 2把INO 口采集的电压值放入30H单元中 3做出原理图。 4画出流程图并写出所要运行的程序。 二、设计方案及工作原理 方案: 1.米用8051和ADC0809勾成个8通道数据米集系统。 2.能够顺序采集各个通道的信号。 3.米集信号的动态范围:0?5V。 4.每个通道的采样速率:100 SPS。 5.在面包板上完成电路,将采样数据送入单片机20h? 27h 存储单元。 6.编写相应的单片机采集程序,到达规定的性能。 工作原理: 通过一个A/D 转换器循环采样模拟电压,每隔一定时间去采样

一次,一次按顺序采样信号。A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示电压路数和数据值。

第一章系统设计要求和解决方案第一章硬件系统 第二章软件系统 第四章实现的功能 第五章缺点及可能的解决方法第六章心得体会 附录参考文献 附录二硬件原理图 附录三程序流程图

第一章系统设计要求和解决方案 根据系统基本要求,将本系统划分为如下几个部分: 信号调理电路 8路模拟信号的产生与A/D转换器 发送端的数据采集与传输控制器 人机通道的接口电路 数据传输接口电路 数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D, 单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。系统框图如 图1-1所示 被测电压为0?5V直流电压,可通过电位器调节产生' 1.1.1信号采集 多路数据采集系统多采用共享数据采集通道的结构形式数据采集方式选择程序控制数据采集。 程序控制数据采集,由硬件和软件两部分组成。,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。如图1-3所示。 程序控制数据采集的采样通道地 址可随意选择,控制多路传输门开启 的通道地址码由存储器中读出的指令 确定。即改变存储器中的指令内容便 可改变通道地址。 由于顺序控制数据采集方式缺乏 通用性和灵活性,所以本设计中选用程 序控制数据采集方 采集多路模拟信号时,一般用多 路模拟开关巡回检测的方式,即一种数据采集的方式。利用多路开关(MUX )让多个被测对象共用同一个采集通道,这就是多通道数据采集系统的实质。当采集高速信号时,

-基于Labview的多通道数据采集系统设计

第一节系统整体结构 系统的整体组成结构是测量目标经过传感器模块后转换成电信号,在由信号调理模块对信号做简单的调理工作,例如,scc-sg04全桥应变调整模块,scc-td02模块,scc-rtd01热电偶热电阻制约模块等,将调理好的信号传送到数据采集模块中进行数据采集,然后在用软件进行特定的处理。在采集的过程中同时将数据保存到指定数据库里。如图4-1多通道数据采集系统硬件结构图所示。 图4-1 多通道数据采集系统硬件结构图 第二节数据采集系统的硬件设计 一、PC机 传统仪器很多情况完成某些任务必须借助复杂的硬件电路,而由于计算机数据具备极强的信号处理能力,可以替代这些复杂的硬件电路,这便是虚拟仪器最大的特点。数据采集系统能够正常运行的前提便是选择一个优良的计算机平台。由于数据采集功能器件通常工作在工业领域中,往往伴随着强烈的振动,噪声,电源线的干扰和电磁干扰等。为了保证记录仪正常的运行,设计系统时选定工业计算机。考虑到计算机平台的可靠运行工业计算机通常采取了抗干扰措施。另一方面的考虑是工业计算机通常具有很多类型的接口,这样有利于功能进一步的扩展。 二、传感器 传感器设备能接受到来自测量目标发来的信号,而且把接受到的讯息,通

过设定的变换比例将其改变成为电信号亦或其它形式,从而能够完成数据信号的处理、存储、显示、记录和控制等任务。传感器是系统进行检测与控制的第一步。 三、信号调理 经过传感器的信号大多是要经过信号调理才可以被数据采集设备所接收,调理设备能够对信号进行放大、隔离、滤波、激励、线性化等处理。由于不同类型的传感器各有不同的功能,除了考虑一些通用功能之外,还要依据不同传感器的性质和要求来实现特殊的信号调理功能。信号调理电路的通用功能由如下几个方面: (1)放大功能为了提高系统的分辨率以及降低噪声干扰,微弱信号必须要进行放大,从而使放大之后信号电压与模数转换的电压范围一致。信号在经过传感器之后便直接进入信号调理模进行调理,这样就不易受到外部环境的影响,从而使得信噪比进一步的改善。 (2)隔离功能隔离是指为了避免直接的电连接,通过光线、交互电源或变压等方法,使得数据信息在系统之间进行传递。使用隔离的原因:一是为了安全考虑;二是能够保证采集到的数据不会受到其它原因的影响。 (3)滤波滤波是为了保证测量的信号的纯洁性,滤去不需要的信号。大部分的信号调理模块具有一个低通滤波器是用来过滤噪声。通常还需要抗混叠滤波器,滤除信号中感兴趣的最高频率以上的所有频率的信号。 (4)激励功能信号调理模块能够为某些传感器提供激励信号,而且很多信号调理模块都提供有电流源和电压源以便给传感器提供激励。 (5)线性化大部分的传感器是测量信号的线性和非线性响应的结合,为了使传感器误差补偿,对输出信号的线性化是必要的。目前,该数据采集系统可以通过软件解决这个问题。 四、输入信号的类型 要知道信号采集到的数据集,这是因为信号的要求和系统性能的不同的测量是不同的,只有了解被测信号的性质,才可以准确地选择合适的采集系统。 一个任意的信号在时间上是一个物理量的变化。在一般情况下,信号携带的信息是非常广泛的,如:状态,率,水平,形式,频率等。根据信号运载信息的不同,可以将信号分为数字信号或模拟信号。其中数字信号包括脉冲信号和开关信号两种类型。模拟信号包括直流信号、时域信号、频域信号等。 (1)数字信号 第一类数字信号为开关量信号,如图4-2所示。一个开关信号携带信息信

高速数据采集卡在超声领域的最新解决方案

高速数据采集卡在超声检测领域的最新解决方案 高速数据采集卡作为进行相关超声测量的理想工具,在开发、测试、操作超声产品中可以发挥关键作用。高速数据采集卡和任意波形发生器提供宽范围的带宽、采样率和动态范围,能够完美匹配超声测量的的相关需求。 图1,M4i.4451-x8 14bit 500MS/s PCIe 接口高速数据采集卡采集超声信号 超声应用: 超声波是一种频率超过人耳听觉范围的一种声波。超声波设备操作频率一般从20 kHz到几GHz不等。表1总结了一些超声应用的典型频率范围。 每个应用领域的的频率使用范围都反映出工程上的权衡。增加了操作频率来提高分辨率可实现对较小的工件精确检测,但另一方面,较高频率信号的渗透能力是有限的,超声波应用的常见问题是信号衰减、其与信号频率成反比。因此,非常高频率往往应用与物体表面研究应用中,相对的低频率往往应用在需要更大的渗透和能量的应用中。北京坤驰科技有限公司所提供的高速数据采集卡具有较宽动态范围,可以在检测大信号的同时,检测到的小信号,可适应较多的应用场景。 应用举例:

表1:常用超声应用的推荐产品 采样率: 通常高速数据采集卡产品的选择是基于应用使用的频率的,高速数据采集卡的采集速率通常要5到10倍于工程应用频率,也就是需要采集和检测的信号频率。但在多普勒频移应用中,因其经常需要测量信号的某些特定的小的片段,需要很高时间分辨率,高速数据采集卡的采样率有时需要多达测量频率的10倍以上。 带宽: 高速数据采集卡的带宽应该超过工程应用的最高频率。工作带宽较低将导致高频频率信号衰减,并可能限制测量的分辨率和准确性。 动态范围: 增加数字转换器的动态范围(位数)可实现小信号的检测。高分辨率ADC通常提供更好的信噪比,可实现采集卡同时检测大信号和小信号。这就是为什么应用系统前端通常使用更高分辨率的ADC或信号处理(如平均和过滤)来提高他们的整体测量灵敏度。 其他方面: 高速数据采集卡的输入电路必须与超声传感器的输出阻抗和耦合元件相

相关文档
相关文档 最新文档