文档库 最新最全的文档下载
当前位置:文档库 › 高中物理第一章碰撞与动量守恒实验验证动量守恒定律同步备课教学案粤教版选修3-5

高中物理第一章碰撞与动量守恒实验验证动量守恒定律同步备课教学案粤教版选修3-5

高中物理第一章碰撞与动量守恒实验验证动量守恒定律同步备课教学案粤教版选修3-5
高中物理第一章碰撞与动量守恒实验验证动量守恒定律同步备课教学案粤教版选修3-5

实验:验证动量守恒定律

[学习目标] 1.掌握验证动量守恒定律的方法和基本思路.2.掌握直线运动物体速度的测量方法.

一、实验目的

验证碰撞中的动量守恒定律

二、实验原理

为了使问题简化,这里研究两个物体的碰撞,且碰撞前两物体沿同一直线运动,碰撞后仍沿这一直线运动.

设两个物体的质量分别为m1、m2,碰撞前的速度分别为v1、v2,碰撞后的速度分别为v1′、v2′,如果速度与我们规定的正方向相同取正值,相反取负值.

根据实验求出两物体碰前动量p=m1v1+m2v2,碰后动量p′=m1v1′+m2v2′,看p与p′是否相等,从而验证动量守恒定律.

三、实验设计

实验设计需要考虑的问题:

(1)如何保证碰撞前后两物体速度在一条直线上.

(2)如何测定质量和速度.

①测量质量用天平.

②测定碰撞前后的速度,这是实验成功的关键.

四、实验案例气垫导轨上的实验

器材:气垫导轨、气泵、光电计时器、天平等.

气垫导轨装置如图1所示,由导轨、滑块、挡光片、光电门等组成,在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,压缩空气会从小孔中喷出,使滑块稳定地漂浮在导轨上(如图2所示,图中气垫层的厚度放大了很多倍),这样大大减小了由摩擦产生的影响.

图1 图2

设Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的滑块(挡光片)经过光电门的时间,

则v =Δx Δt

. 五、实验步骤

1.调节气垫导轨,使其水平.是否水平可按如下方法检查:打开气泵后,导轨上的滑块应该能保持静止.

2.按说明书连接好数字计时器与光电门.

3.如图3所示,把中间夹有弯形弹簧片的两滑块置于光电门中间保持静止,烧断拴弹簧片的细线,测出两滑块的质量和速度,将实验结果记入设计好的表格中.

图3

4.如图4所示,在滑块上安装好弹性碰撞架.将两滑块从左、右以适当的速度经过光电门后在两光电门中间发生碰撞,碰撞后分别沿各自碰撞前相反的方向运动再次经过光电门,光电计时器分别测出两滑块碰撞前后的速度.测出它们的质量后,将实验结果记入相应表格中.

图4

5.如图5所示,在滑块上安装好撞针及橡皮泥,将装有橡皮泥的滑块停在两光电门之间,装有撞针的滑块从一侧经过光电门后两滑块碰撞,一起运动经过另一光电门,测出两滑块的质量和速度,将实验结果记入相应表格中.

图5

6.根据上述各次碰撞的实验数据验证碰撞前后的动量是否守恒.

实验数据记录表

碰撞(烧断)前 碰撞(烧断)后 质量m (kg)

m 1 m 2 m 1 m 2

速度v (m·s -1)

v 1 v 2 v 1′ v 2′

mv (kg·m·s -1) m 1v 1+m 2v 2 m 1v 1′+m 2v 2′

结论 例1 某同学利用气垫导轨做验证碰撞中的动量守恒的实验;气垫导轨装置如图6所示,所

高中物理第一章碰撞与动量守恒第1节碰撞教学案教科版

第1节碰__撞 (对应学生用书页码P1) 一、碰撞现象 1.碰撞 做相对运动的两个(或几个)物体相遇而发生相互作用,运动状态发生改变的过程。 2.碰撞特点 (1)时间特点:在碰撞过程中,相互作用时间很短。 (2)相互作用力特点:在碰撞过程中,相互作用力远远大于外力。 (3)位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。 试列举几种常见的碰撞过程。 提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。 二、用气垫导轨探究碰撞中动能的变化 1.实验器材 气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。 2.探究过程 (1)滑块质量的测量仪器:天平。 (2)滑块速度的测量仪器:挡光条及光电门。 (3)数据记录及分析,碰撞前、后动能的计算。 三、碰撞的分类 1.按碰撞过程中机械能是否损失分为: (1)弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+ E k2′。 (2)非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。 E k1′+E k2′<E k1+E k2。 (3)完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。 2.按碰撞前后,物体的运动方向是否沿同一条直线可分为: (1)对心碰撞(正碰):碰撞前后,物体的运动方向沿同一条直线。 (2)非对心碰撞(斜碰):碰撞前后,物体的运动方向不在同一直线上。(高中阶段只研究

正碰)。 (对应学生用书页码P1) 探究一维碰撞中的不变量 1.探究方案方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的 滑块(挡光片)经过光电门的时间。 (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。 方案二:利用等长悬线悬挂等大小球实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。 (3)不同碰撞情况的实现:用贴胶布的方法增大两球碰撞时的能量损失。 方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,Δx 是纸带上两计数点间的距离,可用刻度尺测量。Δt 为小 车经过Δx 所用的时间,可由打点间隔算出。 2.实验器材 方案一:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。 方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。 方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。 3.实验步骤 不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量。 (2)安装实验装置。 (3)使物体发生碰撞。 (4)测量或读出相关物理量,计算有关速度。 (5)改变碰撞条件,重复步骤(3)、(4)。

高中物理动量守恒定律解题技巧及练习题

高中物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。已知磁场的磁感应强度B=0.5T ,导轨的间距与导体棒的长度均为L=0.5m ,导轨的半径r=0.5m ,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s 2,不计空气阻力。 (1)求导体棒刚进入凹槽时的速度大小; (2)求导体棒从开始下落到最终静止的过程中系统产生的热量; (3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J ,求导体棒第一次通过最低点时回路中的电功率。 【答案】(1) 210/v m s = (2)25J (3)9W 4 P = 【解析】 【详解】 解:(1)根据机械能守恒定律,可得:212 mgh mv = 解得导体棒刚进入凹槽时的速度大小:210/v m s = (2)导体棒早凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,圆柱体停在凹槽最低点 根据能力守恒可知,整个过程中系统产生的热量:()25Q mg h r J =+= (3)设导体棒第一次通过最低点时速度大小为1v ,凹槽速度大小为2v ,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:12mv Mv = 由能量守恒可得: 22 12111()22 mv mv mg h r Q +=+- 导体棒第一次通过最低点时感应电动势:12E BLv BLv =+ 回路电功率:2 E P R =

高中物理-动量守恒定律教案

高中物理-动量守恒定律(一) ★新课标要求 (一)知识与技能 理解动量守恒定律的确切含义和表达式,知道定律的适用条件和适用范围 (二)过程与方法 在理解动量守恒定律的确切含义的基础上正确区分内力和外力 (三)情感、态度与价值观 培养逻辑思维能力,会应用动量守恒定律分析计算有关问题 ★教学重点 动量的概念和动量守恒定律 ★教学难点 动量的变化和动量守恒的条件. ★教学方法 教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 上节课的探究使我们看到,不论哪一种形式的碰撞,碰撞前后mυ的矢量和保持不变,因此mυ很可能具有特别的物理意义。 (二)进行新课 1.动量(momentum)及其变化 (1)动量的定义:物体的质量与速度的乘积,称为(物体的)动量。记为p=mv. 单位:kg·m/s 读作“千克米每秒”。 理解要点: ①状态量:动量包含了“参与运动的物质”与“运动速度”两方面的信息,反映了由这两方面共同决定的物体的运动状态,具有瞬时性。 师:大家知道,速度也是个状态量,但它是个运动学概念,只反映运动的快慢和方向,而运动,归根结底是物质的运动,没有了物质便没有运动.显然地,动量包含了“参与运动的物质”和“运动速度”两方面的信息,更能从本质上揭示物体的运动状态,是一个动力学概念. ②矢量性:动量的方向与速度方向一致。 师:综上所述:我们用动量来描述运动物体所能产生的机械效果强弱以及这个效果发生

的方向,动量的大小等于质量和速度的乘积,动量的方向与速度方向一致。 (2)动量的变化量: 定义:若运动物体在某一过程的始、末动量分别为p和p′,则称:△p= p′-p为物体在该过程中的动量变化。 强调指出:动量变化△p是矢量。方向与速度变化量△v相同。 一维情况下:Δp=mΔυ= mυ2- mΔυ1矢量差 【例1(投影)】 一个质量是0.1kg的钢球,以6m/s的速度水平向右运动,碰到一个坚硬的障碍物后被弹回,沿着同一直线以6m/s的速度水平向左运动,碰撞前后钢球的动量有没有变化?变化了多少? 【学生讨论,自己完成。老师重点引导学生分析题意,分析物理情景,规范答题过程,详细过程见教材,解答略】 2.系统内力和外力 【学生阅读讨论,什么是系统?什么是内力和外力?】 (1)系统:相互作用的物体组成系统。 (2)内力:系统内物体相互间的作用力 (3)外力:外物对系统内物体的作用力 〖教师对上述概念给予足够的解释,引发学生思考和讨论,加强理解〗 分析上节课两球碰撞得出的结论的条件: 两球碰撞时除了它们相互间的作用力(系统的内力)外,还受到各自的重力和支持力的作用,使它们彼此平衡。气垫导轨与两滑块间的摩擦可以不计,所以说m1和m2系统不受外力,或说它们所受的合外力为零。 3.动量守恒定律(law of conservation of momentum) (1)内容:一个系统不受外力或者所受外力的和为零,这个系统的总动量保持不变。这个结论叫做动量守恒定律。 公式:m1υ1+ m2υ2= m1υ1′+ m2υ2′ (2)注意点: ①研究对象:几个相互作用的物体组成的系统(如:碰撞)。 ②矢量性:以上表达式是矢量表达式,列式前应先规定正方向; ③同一性(即所用速度都是相对同一参考系、同一时刻而言的) ④条件:系统不受外力,或受合外力为0。要正确区分内力和外力;当F内>>F外时,系统动量可视为守恒; 思考与讨论: 如图所示,子弹打进与固定于墙壁的弹簧相连的木块, 此系统从子弹开始入射木块到弹簧压缩到最短的过程中,

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

大学物理仿真实验报告-碰撞与动量守恒

大学物理仿真实验报告 实验名称 碰撞与动量守恒 班级: 姓名: 学号: 日期:

碰撞和动量守恒 实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥

或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10)

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

2018_2019学年高中物理第一章碰撞与动量守恒实验验证动量守恒定律分层训练粤教版选修3_5201

实验验证动量守恒定律 1.图1是“验证碰撞中的动量守恒”实验的实验装置.让质量为m1的小球从斜面上某处自由滚下,与静止在支柱上质量为m 2的小球发生对心碰撞,则 图1 图2 (1)两小球的质量关系必须满足________. A.m1=m2B.m1>m2 C.m1<m2D.没有限制 (2)实验必须满足的条件是________. A.轨道末端的切线必须是水平的 B.斜槽轨道必须是光滑的 C.入射小球m1每次都必须从同一高度由静止释放 D.入射小球m1和被碰小球m2的球心在碰撞的瞬间可以不在同一高度上 (3)若采用图1装置进行实验,以下所提供的测量工具中必需的是________. A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表 (4)在实验装置中,若用游标卡尺测得小球的直径如图2,则读数为_______cm. 解析:(1)在“验证碰撞中的动量守恒”实验中,为防止被碰球碰后反弹,入射球的质量必须(远)大于被碰球的质量,因此B正确,A、C、D错误.故选B. (2)要保证每次小球都做平抛运动,则轨道的末端必须水平,故A正确;“验证动量守恒定律”的实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,只要离开轨道后做平抛运动,对斜槽是否光滑没有要求,故B错误;要保证碰撞前的速度相同,所以入射球每次都要从同一高度由静止滚下,故C正确;要保证碰撞后都做平抛运动,两球要发生正碰,碰撞的瞬间,入射球与被碰球的球心应在同一水平高度,两球心的连线应与轨道末端的切线平行,因此两球半径应该相同,故D错误.故选AC. (3)小球离开轨道后做平抛运动,它们抛出点的高度相同,在空中的运动时间t相等,m1v1=m1v1′+m2v2′,两边同时乘以时间t,则有:m1v1t=m1v1′t+m2v2′t,m1OP=m1OM+m2(ON-2r),则实验需要测出:小球的质量、小球的水平位置、小球的半径,故需要用到的仪器有:天平,直尺和游标卡尺;故选,ABC.

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求: ①物块C的质量? ②B离开墙后的运动过程中弹簧具有的最大弹性势能E P? 【答案】(1)2kg(2)9J 【解析】 试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2 即m c=2 kg ②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

高中物理动量守恒定律练习题及答案

高中物理动量守恒定律练习题及答案 一、高考物理精讲专题动量守恒定律 1.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111 -22 m gl m v m v μ=- 解得:17m/s v = 碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v ' =+ 取向左为正方向,由题意11m/s v =-', 解得:24m/s v =

验证动量守恒定律练习题(附答案)

(1)若已得到打点纸带如图所示,并将测得的各计数点间距离标在图上, A 点是运动起 始的第一点,则应选 __________ 段来计算A 的碰前速度,应选 __________ 段来计算A 和 B 碰后 的共同速度(以上两格填“ AB '或“ BC"或“CD"或"DE ”). A B C D E = U ------ r J-f * ... 小 1 8,40c m 1 2 10.50cm 1 9.08cm 1 6.95cm r } (2)已测得小车 A 的质量 m 仁0. 40kg ,小车B 的质量 m2=0 . 20kg ,由以上测量结 果可得:碰前 mAv++mBv= ____________________ k g ?m /s ;碰后 mAvA ,+mBvB= ___________ k g ?m /s .并 比较碰撞前后两个小车质量与速度的乘积之和是否相等 2.某同学用所示装置通过半径相同的 a. b 两球的碰撞来验证动量守恒定律。实验 时先使a 球从斜槽上某一固定位置由静止开始滚下, 落到位于水平地面的记录纸 上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把b 球放在水平槽上 靠近槽末端的地方,让a 球仍从同一位置由静止开始滚下, 记录纸上的垂直投影 点。b 球落点痕迹如图所示,其中米尺水平放置。 I | I r 11 | H 111 30 (cm) 1 碰撞后b 球的水平射程应取为 ________ cm. 2 在以下选项中,哪些是本次实验必须进行的测量?答: ____________ (填选项 号) A. 水平槽上未放b 球时,测量a 球落点位置到O 点的距离 B. a 球与b 球碰撞后,测量a 球落点位置到O 点的距离 C. 测量a 球或b 球的直径 D. 测量a 球和b 球的质量(或两球质量之比) E. 测量地面相对于水平槽面的高度 3)设入射球a 、被碰球b 的质量分别为m 1、m 2,半径分别为门、r 2,为了减 小实验误差,下列说法正确的是( ) 验证动量守恒定律 1.某同学设计了一个用打点计时器验证动量守恒定律的实验: 在小车A 的前端 粘有橡皮泥,推动小车 A 使之做匀速运动?然后与原来静止在前方的小车 B 相碰并粘合成 一体,继续做匀速运动,他设计的具体装置如图所示?在小车 A 后连着纸带,电磁打点计 时器电源频率为50Hz ,长木板下垫着小木片用以平衡摩擦力.

验证动量守恒定律

验证动量守恒定律 一、目的:验证两小球碰撞中的动量守恒 二、器材 斜槽,两个大小相同而质量不等的小球,天平,刻度尺、重锤线、白纸、复写纸、圆规、游标卡尺 三、原理 大小相同,质量为m1和m2的两个小球相碰,若碰前m1运动,m2静止,根据系统动量守恒定律有:m1v1=m1v1′+m2v2′。 因小球从斜槽上滚下后做平抛运动,由平抛运动知识可知,只要小球下落的高度相同,在落地前运动的时间就相同,则小球的水平飞行距离跟做平抛运动的初速度成正比。所以只要测出小球的质量及两球碰撞前后飞出的水平距离,代入公式就可以验证动量守恒定律。 由于v1、v1′、v2′均为水平方向,且它们的竖直下落高度都相等,所以它们飞行时间也相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在图中分别用OP、OM和O′N表示。因此只需验证:m1OP=m1OM+m2(ON-2r)即可。 四、步骤

1.在桌边固定斜槽(如图实8-1),使它的末端切线水平,并在它的末端挂上重锤线。在桌边的地板上铺上记录纸来记录小球的落地点,在纸上记下重锤线所指位置O点。 2.用天平测出入射球质量m1和被碰球质量m2。 3.用游标卡尺测出两球直径d(两球直径应相等),在纸上标出O′点,OO′=d。 4.不放被碰球m2,让m1从斜槽顶点A自由滚下,重复若干次记下落地点平均位置P。 5.把被碰球m2放在斜槽末端支柱上(如图实8-2),使两球处于同一高度,让m1从A点自由滚下与m2相碰,重复若干次,分别记下m1、m2落地点的平均位置M、N。 6.用刻度尺分别测出OP,OM,O′N,验证:是否成立。 五、数据记录及处理(略) 六、注意事项 1.入射球质量m1应大于被碰球质量m2。 2.两球发生正碰,碰后均做平抛运动,这要求通过调整支柱使两球等高。 3.入射球每一次都从同一高度无初速度释放。 4.在实验中,至少重复10次,用尽可能小的圆把各小球的落点分别圈在里面,以确定小球落点的平均位置,其目的是为了减小实验误差。思考与注意: (1)小球a、b的质量ma、mb应该满足什么关系?为什么? ma> mb,保证碰后两球都向前方运动; (2)放上被碰小球后,两小球碰后是否同时落地?如果不是同时落地,对

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

1.4 实验:验证动量守恒定律

1.4 实验:验证动量守恒定律 一、实验目的 1.掌握动量守恒定律适用范围。2.会用实验验证动量守恒定律。 二、实验原理 1.碰撞中的特殊情况——一维碰撞 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动. 2.两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是这些力与系统内两物体的相互作用力相比很小,在可以忽略这些外力的情况下,使系统所受外力的矢量和近似为0,因此,碰撞满足动量守恒定律的条件。 3.物理量的测量 需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。物体的质量可用天平直接测量。速度的测量可以有不同的方式,根据所选择的具体实验方案来确定。 三、实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞,实验装置如图所示: (1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为计时器显示的滑块(挡光片)经过光电门时对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量. (4)碰撞的实现:两小车的碰撞端分别装上撞针和橡皮泥. 实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧、细线、弹性 碰撞架、胶布、撞针、橡皮泥等. 实验过程: (1)测质量:用天平测出小车的质量m 1、m 2。 (2)安装:正确安装好光电计时器和滑轨。 (3)实验:接通电源,让质量小的小车在两个光电门之间,给质量大的小车一个初速度去碰撞质量小的小车,利用配套的光电计时器测出两个小车各种情况下碰撞前后的速度v 1、v 1′、v 2′。 本实验可以研究以下几种情况。 a.选取两个质量不同的滑块,在两个滑块相互碰撞的端面装上弹性碰撞架,滑块碰撞后随即分开。 b.在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,使两个滑块连成一体运动。 如果在两个滑块的碰撞端分别贴上尼龙拉扣,碰撞时它们也会连成一体。 c.原来连在一起的两个物体,由于相互之间具有排斥的力而分开,这也可视为一种碰撞。这种情况可以通 过下面的方式实现:在两个滑块间放置轻质弹簧,挤压两个滑块使弹簧压缩,并用一根细线将两个滑块固定。烧断细线,弹簧弹开后落下,两个滑块由静止向相反方向运动。

大学物理仿真实验报告 碰撞与动量守恒

大学物理仿真实验报告 实验目的 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律, 定量研究动量损失和能量损失在工程技术中有重要意义。 同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可 改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取 负号。 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 由(3)、(4)两式可解得碰撞后的速度为

如果v20=0,则有 动量损失率为 能量损失率为 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 在实验中,让v20=0,则有 动量损失率 动能损失率

一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个 光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算

高中物理动量守恒定律试题经典

高中物理动量守恒定律试题经典 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:

实验,验证动量守恒定律

高中物理实验 验证动量守恒定律 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并j测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得小l车A的质量m1=0.40kg,小车B的质量m2=0.20kg,由以上测量结果可得:碰前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G由静止开始滚下,记录纸上的垂直投影点。B球落点痕迹如图2所示,其中米 尺水平放置。且平行于G.R.Or所在的平面,米尺的零点与O 点对齐。 (1)碰撞后B球的水平射程应取为______cm. (2)在以下选项中,哪些是本次实验必须进行的测量?答: _________(填选项号) A. 水平槽上未放B球时,测量A球落点位置到O点的 B. A球与B球碰撞后,测量A球落点位置到O点的距离 C. 测量A球a或B球的直径 D. 测量A球和B球的质量(或两球质量之比) E. 测量G点相对于水平槽面的高度 3. 用如图所示的装置验证动量守恒,图中A、B两球的直径均为d,质量分别是为m1和m2. ①实验中所必需的测量工具是_______________ ②A球为入射球,B球为被碰球,两球质量的关系是m1___m2。 ③根据题中给出的数据和图中点间距离,动量守恒要验证的关系 式是______________。

碰撞和动量守恒_大物仿真实验

大学物理仿真实验 实验名称碰撞和动量守恒实验日期2012年11月21日 姓名班级学号 一、实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验目的 1.利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律; 2.通过实验提高误差分析的能力。 三、实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2)

对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有

相关文档
相关文档 最新文档